Topology and edge modes in quantum critical chains

Frank Pollmann

Technische Universität München

Verresen, Moessner, FP, arXiv:1707.05787 **Verresen**, Jones, FP, arXiv:1709.03508

Technische Universität München

Novel Quantum States in Condensed Matter Kyoto, Oct. 31st 2017

Topology and edge modes in quantum critical chains

Novel quantum phases of matter: No symmetry breaking and no local order parameters

- Integer quantum Hall 🍥 [Klitzing '80]
- Topological insulators [Kane & Mele '05]
- Fractional quantum Hall @ [Tsui '82, Laughlin '83]
- Quantum spin-liquids [Anderson '73]
- Haldane gap: Symmetry protected topological (SPT) phases
 [Haldane '83]

Quantum critical properties of SPT phases

(1) Quantum critical points between SPTs?(2) Critical SPT phases?

Symmetry protected topological phases

- Haldane phase: Gapped and no symmetry breaking [Haldane '83]
- Spin-1/2 excitations at the edges: Protected by symmetry [Affleck et al '87]

Complete classifications of (gapped) SPT phases in ID: "Symmetry fractionalization"

[FP, Turner, Berg, Oshikawa '10, Fidkowski, Kitaev '11, Turner, Berg, FP '11, Chen, Gu, Wen '11]

Symmetry protected topological phases

One dimensional chain of coupled Majoranas [Kitaev '01]

$$c = \frac{1}{2} (\gamma + i\tilde{\gamma}) \qquad \begin{array}{l} \gamma^{\dagger} = \gamma & T\gamma T = -\gamma \\ \tilde{\gamma}^{\dagger} = \tilde{\gamma} & T\tilde{\gamma}T = -\tilde{\gamma} \end{array}$$
Majorana Mode $\longrightarrow \qquad \begin{array}{l} \gamma_{1}\tilde{\gamma}_{1} & \gamma_{2}\tilde{\gamma}_{2} \end{array} \qquad \begin{array}{l} \bullet & \bullet & \bullet \\ \gamma_{1}\tilde{\gamma}_{1} & \gamma_{2}\tilde{\gamma}_{2} \end{array} \qquad \begin{array}{l} \bullet & \bullet & \bullet \\ H = \sum c_{n}^{\dagger}c_{n+1} + c_{n}^{\dagger}c_{n+1}^{\dagger} + h.c. \qquad = i\sum \tilde{\gamma}_{n}\gamma_{n+1} \end{array}$

Generalized " α - chain" (stacks of Kitaev chains)

$$H_{\alpha} = i \sum \tilde{\gamma}_{n} \gamma_{n+\alpha} + (T \text{-preserving interactions})$$

Kitaev chain : BDI class

\mathbb{Z}_8 classification of the interacting BDI class fermion parity (P) and time reversal (T)

[Fidkowski, Kitaev '11, Turner, Berg, FP '11, Chen, Gu, Wen '11]

	lpha	P	T	PT	total degeneracy
	-3	non-local fermion	left, (right)	[left], right	8
	-2		fermion on left	right	4
	-1	non-local fermion	(left)	[right]	2
Trivial →	0				1
Kitaev 🔿	1	non-local fermion	[right]	(left)	2
SSH →	2		right	left	4
	3	non-local fermion	[left], right	left, (right)	8
Haldane→	4		left, right	left, right	4

Group structure: Adding stacks of chains

Transitions between SPT and trivial phases

Dimension (d) : # low-energy d.o.f. at one edge **Central charge** (C) : # linearly dispersing modes

Examples: Haldane chain has d=2 and c=1Kitaev chain has $d=\sqrt{2}$ and c=1/2

Conjecture: $c \ge \log_2 d$

Testing the conjecture : α -chain

Testing the conjecture: $SU(2)_k$ anyonic SPT

[Trebst, Troyer, Wang, Ludwig '08]

	k	central charge c	$\log_2 d$	$\frac{c - \log_2 d}{c}$
Kitaev chain →	2	$\frac{1}{2}$	$\frac{1}{2}$	0
Fibonacci →	3	$\frac{7}{10}$	pprox 0.6942	pprox 0.0082
	4	$\frac{4}{5}$	pprox 0.7925	pprox 0.0094
	5	$\frac{6}{7}$	pprox 0.8495	pprox 0.0089
	:			
	k	$1 - \frac{6}{(k+1)(k+2)}$	$\log_2\left(2\cos\frac{\pi}{k+2}\right)$	$0 \le \frac{c - \log_2 d}{c} < \frac{1}{100}$
	:		•	
Haldane →	∞	1	1	0

Testing the conjecture: WZW $SU(2M)_1$

[Nonne, Moliner, Capponi, Lecheminant, Totsuka '13]

M	central charge c	$\log_2 d$	$rac{c - \log_2 d}{c}$
1	1	1	0
2	3	$\log_2 6 \approx 2.59$	pprox 0.14
3	5	$\log_2 20 \approx 4.32$	pprox 0.14
4	7	$\log_2 70 \approx 6.13$	pprox 0.12
÷	:		:
M	c=2M-1	$\log_2 \frac{(2M)!}{(M!)^2}$	$\sim rac{\log_2 M}{4M}$ (M large)
:	:		:
∞	∞	∞	0

Proof? Not clear if the conjecture holds in general...

Fixed point example in the (non-interacting) BDI class

$$H = i \sum_{\alpha = -\infty}^{+\infty} t_{\alpha} \left(\sum_{n \in \text{sites}} \tilde{\gamma}_n \gamma_{n+\alpha} \right) = \sum_{\alpha} t_{\alpha} H_{\alpha} \quad f(z) = \sum_{\alpha = -\infty}^{\infty} t_{\alpha} \ z^{\alpha}$$

$$H_0 \quad \bullet \quad \bullet \quad \bullet \quad \bullet \quad f(z) = 1$$

$$H_1 \quad \bullet \quad \bullet \quad \bullet \quad \bullet \quad f(z) = z$$

$$H_2 \quad \bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet \quad f(z) = z^2$$

$$H_0 + H_1 \quad \bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet \quad f(z) = z + 1$$

$$H_1 + H_2 \quad \bullet \quad \bullet \quad \bullet \quad \bullet \quad f(z) = z(z+1)$$

Critical point $H_1 + H_2$ has localized edge modes! No gapped sectors [Kestner et al '11, Keselman and E. Berg '15, ...]

Physical relevance of the zeros z of f(z)

 $w = N_Z - N_P$ with N_Z zeros |z| < 1 N_P order of the pole at z = 0

Number of edge modes

c = half the number of zeros with <math>|z| = 1— Central charge if non-degenerate

see also Motrunich et al. '01: Edge modes from transfer matrix approach

Theorem 1. If the topological invariant $\omega > 0$, then

1. each boundary has ω Majorana zero modes,

2. the modes have localization length $\xi_i = -\frac{1}{\ln(|z_i|)}$ where $\{z_i\}$ are the ω largest zeros of f(z) within the unit disk,

3. the modes on the left (right) are real (imaginary)

If $\omega < -2c$ (where c = half the number of zeros on the unit circle), the left (right) boundary has $|\omega + 2c|$ imaginary (real) Majorana modes with localization length $\xi_i = \frac{1}{\ln(|z_i|)}$, with $\{z_i\}$ the $|\omega + 2c|$ smallest zeros outside the unit disk. For any other value of ω , no localized edge modes exist.

Classification of critical phases

Chains with different w are separated by a phase transition!

 $t_{\alpha} \in \mathbb{R}$: f(z) come in complex conjugate pairs Canonical form $f(z) = \pm (z^{2c} \pm 1) z^{\omega}$

Different signs can be connected by allowing for unit cells **BDI Class: Critical phases are classified by** c and ω

Theorem 2. The phases in the BDI class described in the bulk by a CFT and obtained by deforming a translation invariant Hamiltonian (or a stacking thereof) with an arbitrary unit cell, are classified by the semigroup $\mathbb{N} \times \mathbb{Z}$: they are labeled by the central charge $c \in \frac{1}{2}\mathbb{N}$ and the topological invariant $\omega \in \mathbb{Z}$. Translation invariance gives an extra \mathbb{Z}_2 invariant when c = 0 and an extra $\mathbb{Z}_2 \times \mathbb{Z}_2$ invariant when $c \neq 0$.

Theorem 3. A phase transition between two gapped phases with winding numbers ω_1 and ω_2 obeys $c \geq \frac{|\omega_1 - \omega_2|}{2}$.

Stability of edge mode against disorder

Stability of edge mode against interactions

 $H = H_1 + H_2 + U \sum_{n=1}^{L} \gamma_n \gamma_{n+1} \gamma_{n+2} \gamma_{n+3} + (\gamma \leftrightarrow \tilde{\gamma})$

with U = 0.6

(I) Transitions between any SPT and a trivial phase:

Conjecture: $c \ge \log_2 d$

Verresen, Moessner, FP, arXiv:1707.05787

(2) Protected Edge modes in critical chains (BDI)

Verresen, Jones, FP, arXiv: 1709.03508

Thank You!