2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties

Artem Pulkin

California Institute of Technology (Caltech), Pasadena, CA 91125, US Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

pulkin@caltech.edu

November 1, 2017

Spin-orbit coupling

Two-dimensional transition metal dichalcogenides

- Quantum spin Hall phase in 2D TMDs
- Edges and topological edge modes
- Structural phase boundaries
- Line defects and transport of electronic spin

Topological insulators

- 1975-1981 (Nobel prize 1985) Quantum Hall effect
- 2005 Quantum spin Hall (QSH) effect, topological order
- 2006 First realization in HgTe quantum wells

Materials?

The QSH effect in 2D

Kane-Mele model

$$H = \sum_{\rm spin} \left[\sum_{\rm NN} t_{\rm NN} \cdot c^{\dagger} c + \sum_{\rm NNN} i \nu t_{\rm NNN} \cdot c^{\dagger} c \right]$$

Tight-binding model of graphene

Spin-orbit coupling

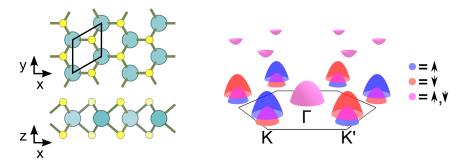
Spin-orbit coupling

Increases with atomic number Z:

$$\Delta_{SO} \sim \frac{Z^2}{n^3 l(l+1)}$$

Valence shells in carbon:

 $\Delta_{SO} < meV$

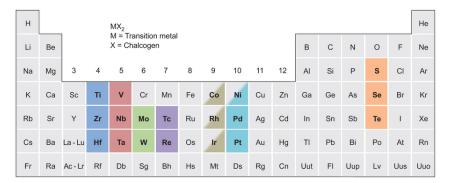

Too small for spectroscopic and transport measurements

Compare: HgTe quatnum wells: **10-100 meV** (Bernevig et al. Science **314**, 1757 (2006))

Are there any 2D materials with a large spin-orbit coupling?

Two-dimensional transition metal dichalcogenides

TMD = MX_2 , $M = \{Mo, W\}$, $X = \{S, Se, Te\}$ 2H phase



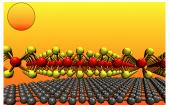
• stable phase (except for WTe_2), semiconductor in a hexagonal lattice;

- large spin-orbit splitting in the valence band (150 meV in MoS_2 , up to 460 meV in WSe_2): spin-polarized states;
- spin-valley coupling

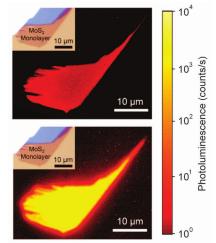
Artem Pulkin (Caltech, EPFL)

2D TMDs

M. Chhowalla, et al., Nat Chem 5, 263275 (2013)


Applications

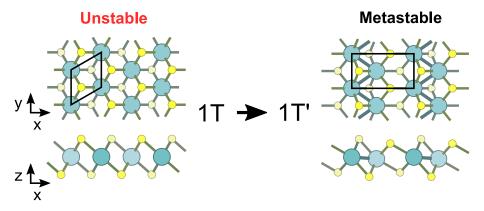
Transistors


Radisavljevic et al., Nat Nano **6** no. 3 147-150 (2011)

Solar cells

Bernardi el al., Nano Lett. **13** no. 8 3664-3670 (2013)

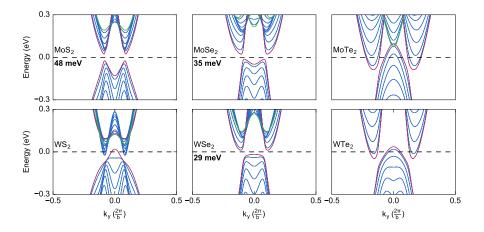
LEDs


Amani et al., Science **350** no. 6264 1065-1068 (2015)

Artem Pulkin (Caltech, EPFL)

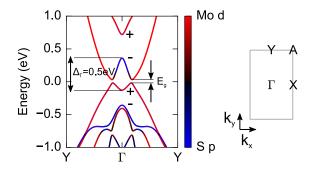
Is it possible to drive 2D TMDs into the QSH phase?

QSH effect in 2D TMDs

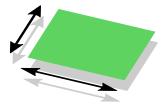

1T' phase

- same material in a metastable structure
- ullet hexagonal symmetry breaking ightarrow rectangular unit cell
- formation of dimerization chains

Artem Pulkin (Caltech, EPFL)

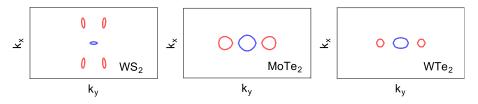

Electronic properties of the 1T' structural phase

- spin-degenerate bands (inversion + time reversal symmetries)
- semimetals or semiconductors with a 10 meV-order band gap
- topological band inversion


Artem Pulkin (Caltech, EPFL)

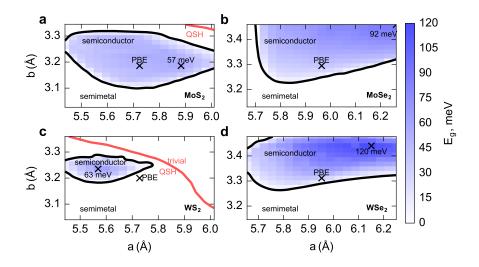
QSH phase in 1T' 2D TMDs

band inversion at $\Gamma \rightarrow$ quantum spin Hall (QSH) topological phase


Qian et al., Science **346**, 1344-1347 (2014) Choe et al., Phys. Rev. B **93**, 125109 (2016) Is the QSH phase in 1T' TMDs robust against lattice deformations?

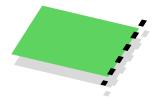
Electronic structure in equilibrium

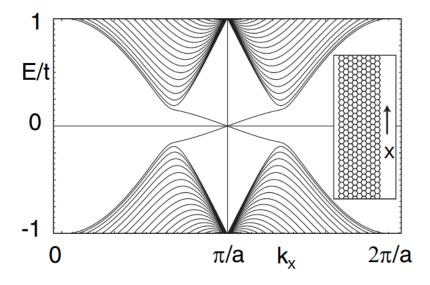
At the density functional theory level (GGA):


- MoS₂, MoSe₂, WSe₂ have a band gap;
- WS₂, MoSe₂, WTe₂ are semimetals;

Hole, electron pockets in semimetallic 1T' TMDs

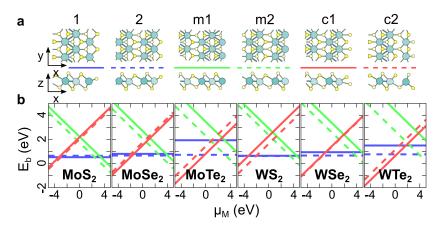
Close to semiconducting phase transition phase?


Band gap under strain in 1T' 2D TMDs


Pulkin & Yazyev Journal of Electron Spectroscopy and Related Phenomena 219 72-76 (2017)

- 1T'-TMDs posess a topological band inversion at the Gamma point;
- MoS_2 , $MoSe_2$, WSe_2 also have a positive band gap \rightarrow topological insulators;
- The size of the band gap is sensitive to lattice deformations;
- Both semiconductor-to-semimetal and topological phase transitions can be induced by strain

How do topological edge states in 1T' TMDs look like?

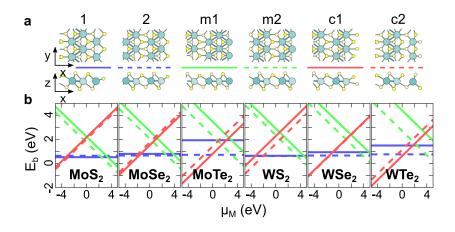


Recall: Kane-Mele model

Edges in 1T' TMDs

• The "zigzag" edge

1,2 = neutral

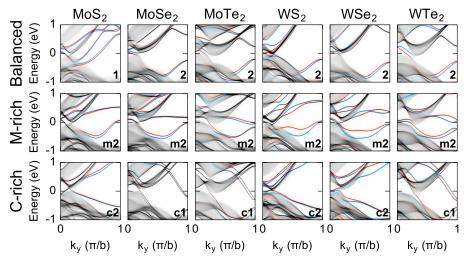

Transport in 2D materials

m1,m2 = metal-rich

Artem Pulkin (Caltech, EPFL)

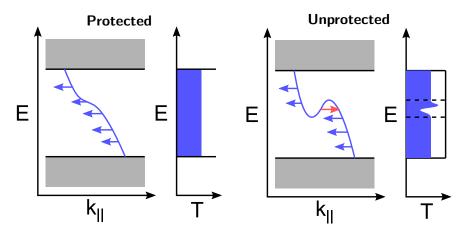
c1.c2 = chalcogen-richNovember 1, 2017

Edges in 1T' TMDs



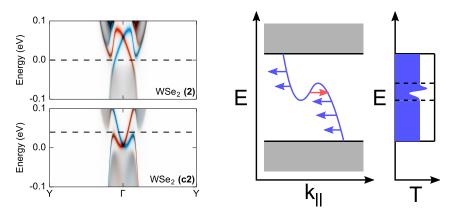
- m2 is always preferred for metal-rich conditions;
- 2 is usually preferred for chemically balanced conditions;
- c1, c2 are equally preferred for calcogen-rich conditions

Artem Pulkin (Caltech, EPFL)


Electronic properties of edges in 1T' TMDs

- Energetically preferred terminations are considered;
- Method: DFT + Green's function (NEGF)

Is topological protection of the ballistic transport regime possible?


Topologically protected transport

topological protection \neq protection against back-scattering

⁰A single spin channel is shown

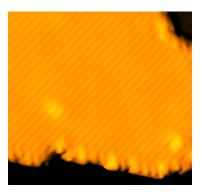
Ballistic transport along 1T'-WSe_2 edges

- non-uniform dispersion of edge modes;
- protected transport is **possible** in a narrow energy region and only at specific edges of 1T'-WSe₂

What is available experimentally?

Experimental observations of the 1T' phase in 2D WSe_2

✓ Defect-free bulk

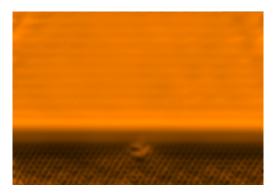


Images are courtesy of Miguel M. Ugeda, nanoGUNE, San Sebastian, Spain

Artem Pulkin (Caltech, EPFL)

Experimental observations of the 1T' phase in 2D WSe_2

- Defect-free bulk
- ? Regular periodic edges

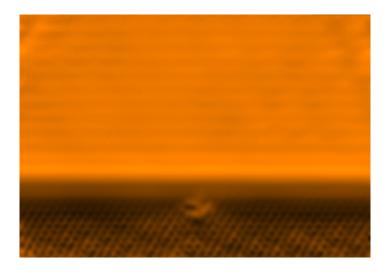


Images are courtesy of Miguel M. Ugeda, nanoGUNE, San Sebastian, Spain

Artem Pulkin (Caltech, EPFL)

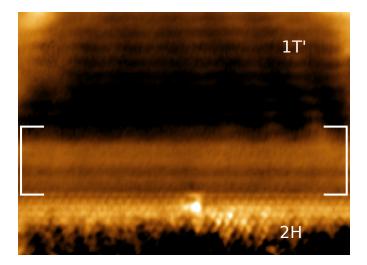
Experimental observations of the 1T' phase in 2D WSe_2

- Defect-free bulk
- ? Regular periodic edges
- ! Structural phase boundaries



Images are courtesy of Miguel M. Ugeda, nanoGUNE, San Sebastian, Spain

Artem Pulkin (Caltech, EPFL)


Transport in 2D materials

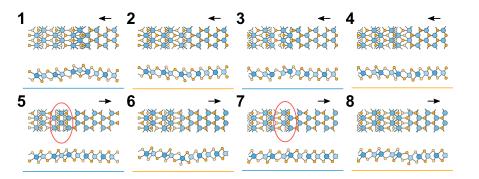
November 1, 2017 19 / 32

Structural phase boundary is topologically non-trivial

$1T'-WSe_2$ interface states

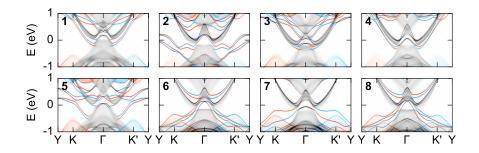
Images are courtesy of Miguel M. Ugeda, nanoGUNE, San Sebastian, Spain

Artem Pulkin (Caltech, EPFL)


Can theory confirm the presence of interface modes?

Are these modes "topological"?

Atomic structures of phase boundaries in WSe_2


Construct model:

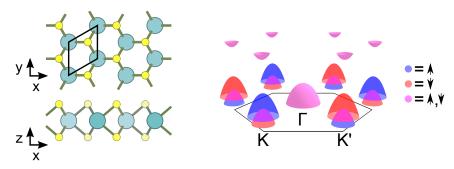
- choose the zigzag edge of the 2H phase (2x);
- choose the zigzag edge of the 1T' phase (4x, half discarded);
- concatenate

Electronic structure of phase boundaries in WSe_2

• Method: DFT + NEGF

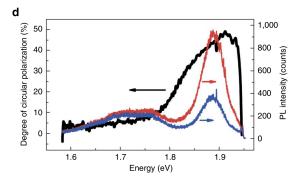
- 1, 3 and 6, 8 are similar
- Multiple spectroscopic signatures
- No topological protection of transport

Artem Pulkin (Caltech, EPFL)


- Edge modes of real topological materials require *ab-initio* description;
- DFT+NEGF calculations reveal multiple spin-polarized modes spanning a large energy region in 1T'-TMDs;
- The dispersion of edge modes is consistent with the QSH phase;
- Specific 1T'-WSe₂ edges are suitable for ballistic charge carrier transport protected against back-scattering;
- Regular topological phase boundary is accessible experimentally!

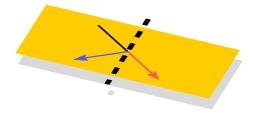
Topological edge states carry **spin-polarized current in a non-magnetic media** \rightarrow applications for spintronics and quantum computing.

Other examples in 2D?


Idea

2H phase

Discriminate valleys in some physical process \rightarrow spin-valley coupling \rightarrow induce spin polarization

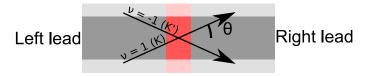

Example: optical excitation of charge carriers in semiconducting 2D ${\rm MoS}_2$

Cao et al. Nat Commun 3 887 (2012)

Also: Mak et al. Nat Nano **7** no. 8 494-498 (2012); Zeng et al., Nat Nano **7** no. 8 490-493 (2012)

Is it possible to achieve valley polarization in an all-electric manner?

Idea: valley-polarized transport across a line defect

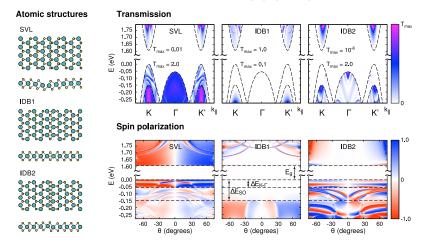

D. Gunlycke and C.T. White PRL 106, 136806 (2011), graphene

• Symmetry:
$$T_{\nu}(\theta) = T_{-\nu}(-\theta) \neq T_{-\nu}(\theta)$$
,

• Polarization:

$$P(\theta) = rac{T_{
u=1} - T_{
u=-1}}{T_{
u=1} + T_{
u=-1}} pprox \sin heta$$

 \mathcal{T}_{ν} - transmission probability; $\nu=\pm 1$ - valley; θ - group velocity angle


In TMDs valley ν and spin σ are coupled!

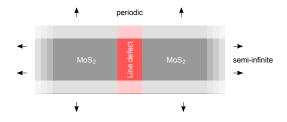
Artem Pulkin (Caltech, EPFL)

Transport in 2D materials

Results of simulations: line defects in $2H-MoS_2$

Pulkin & Yazyev, Phys. Rev. B 93 041419(R) (2016)

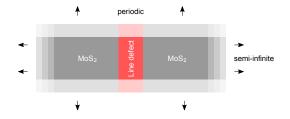
valley and spin filtering with strong energy dependence

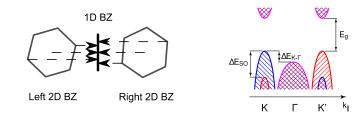

• spin-orbit transport gap for holes in IDB1

Artem Pulkin (Caltech, EPFL)

Transport in 2D materials

Poor/no transport across inversion domain boundaries: why?

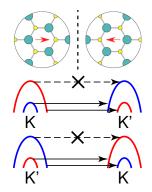

Ballistic transport


Take into account:

- conservation of **energy** (= ballistic transport);
- conservation of pseudo-momentum (= periodic line defect);
- conservation of **spin** (= planar non-magnetic defects)

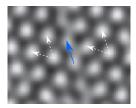
Ballistic transport

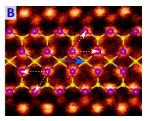
Project the bands onto 1D Brillouin zone (BZ) of the defect (size $2\pi/d$)

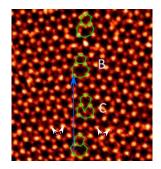


d - periodicity of the defect \gtrsim a - TMD lattice constant (3-4 Å)

Spin match (no gap) *e.g. sulfur vacancy line*




Spin mismatch (transport gap) *e.g. inversion domain boundary*



Transport gap E_t : criterion

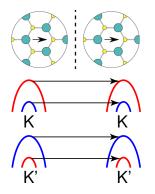
Other line defects with a transport gap?

Defect periodicity vector

$$\mathbf{d} = n_{\mathrm{L}}\mathbf{a}_{1,\mathrm{L}} + m_{\mathrm{L}}\mathbf{a}_{2,\mathrm{L}} = n_{\mathrm{R}}\mathbf{a}_{1,\mathrm{R}} + m_{\mathrm{R}}\mathbf{a}_{2,\mathrm{R}}$$

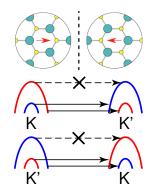
 $\mathbf{d} = (1, 0)$

 $\mathbf{d} = (1,0)_{L} = (-1,0)_{R}$ $\mathbf{d} = (3,5)_{L} = (5,3)_{R}$ $|\mathbf{d}| = a = 0.3 \text{ nm}$ $|\mathbf{d}| = a = 0.3 \text{ nm}$ Komsa et. al. PRB 88, 035301 (2013); Zhou et. al. Nano Lett. 13, 2615-2622 (2013)


 $|\mathbf{d}| = 7a = 2.2 \text{ nm}$

Artem Pulkin (Caltech, EPFL)

Transport in 2D materials


Transport gap $E_t {:}\ \mbox{criterion}$

Spin match (no gap) *e.g. sulfur vacancy line*

$$(n_{
m L} - m_{
m L}) \mod 3 = (n_{
m R} - m_{
m R}) \mod 3
eq 0$$

Spin mismatch (transport gap) *e.g. inversion domain boundary*

 $0 \neq (n_{
m L} - m_{
m L}) \mod 3 \neq (n_{
m R} - m_{
m R}) \mod 3 \neq 0$

Artem Pulkin (Caltech, EPFL)

- 2D TMDs are prospective materials for modern electronics, spintronics and topological electronic structure community;
- There is a large experimental effort towards confirming the QSH phase in 1T'-TMDs;
- Line defects found in these materials can be employed for **spin-selective transport** both along or across the defect, with or without relying on topological arguments;
- In either case, the spin polarization of charge carrier current exists without net magnetization and macroscopic magnetic fields: fewer spin relaxation channels and the increased spin lifetime in the material

Thank you