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Topological insulators



Timeline

1975-1981 (Nobel prize 1985) Quantum Hall effect

2005 Quantum spin Hall (QSH) effect, topological order

2006 First realization in HgTe quantum wells

Materials?
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The QSH effect in 2D

Kane-Mele model

H =
∑
spin

[∑
NN

tNN · c†c +
∑
NNN

iνtNNN · c†c

]

Tight-binding model of graphene
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Spin-orbit coupling
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Spin-orbit coupling

Increases with atomic number Z :

∆SO ∼
Z 2

n3l(l + 1)

Valence shells in carbon:
∆SO < meV

Too small for spectroscopic and transport measurements

Compare: HgTe quatnum wells: 10-100 meV (Bernevig et al. Science
314, 1757 (2006))
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Are there any 2D materials with a large spin-orbit coupling?



Two-dimensional transition metal dichalcogenides

TMD = MX2, M = {Mo, W}, X = {S, Se, Te}
2H phase

=
=
=  ,

K K'
Γ

stable phase (except for WTe2), semiconductor in a hexagonal lattice;
large spin-orbit splitting in the valence band (150 meV in MoS2, up
to 460 meV in WSe2): spin-polarized states;
spin-valley coupling
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2D TMDs

M. Chhowalla, et al., Nat Chem 5, 263275 (2013)
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Applications

Transistors

Radisavljevic et al., Nat Nano 6 no. 3 147-150
(2011)

Solar cells

Bernardi el al., Nano Lett. 13 no. 8 3664-3670
(2013)

LEDs

Amani et al., Science 350 no. 6264 1065-1068
(2015)
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Is it possible to drive 2D TMDs into the QSH phase?



QSH effect in 2D TMDs

1T’ phase

same material in a metastable structure

hexagonal symmetry breaking → rectangular unit cell

formation of dimerization chains
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Electronic properties of the 1T’ structural phase
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spin-degenerate bands (inversion + time reversal symmetries)
semimetals or semiconductors with a 10 meV-order band gap
topological band inversion
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QSH phase in 1T’ 2D TMDs

band inversion at Γ → quantum spin Hall (QSH) topological phase

Qian et al., Science 346, 1344-1347 (2014)
Choe et al., Phys. Rev. B 93, 125109 (2016)
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Is the QSH phase in 1T’ TMDs robust against lattice deformations?



Electronic structure in equilibrium

At the density functional theory level (GGA):

MoS2, MoSe2, WSe2 have a band gap;

WS2, MoSe2, WTe2 are semimetals;

ky

k x

WS2

ky

k x

MoTe2

ky

k x

WTe2

Hole, electron pockets in semimetallic 1T’ TMDs

Close to semiconducting phase transition phase?
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Band gap under strain in 1T’ 2D TMDs
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Pulkin & Yazyev Journal of Electron Spectroscopy and Related Phenomena 219 72-76 (2017)
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Conclusions

1T’-TMDs posess a topological band inversion at the Gamma
point;

MoS2, MoSe2, WSe2 also have a positive band gap → topological
insulators;

The size of the band gap is sensitive to lattice deformations;

Both semiconductor-to-semimetal and topological phase transitions
can be induced by strain

Artem Pulkin (Caltech, EPFL) Transport in 2D materials November 1, 2017 13 / 32



How do topological edge states in 1T’ TMDs look like?



Recall: Kane-Mele model
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Edges in 1T’ TMDs

The “zigzag” edge

1,2 = neutral m1,m2 = metal-rich c1,c2 = chalcogen-rich
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Edges in 1T’ TMDs

m2 is always preferred for metal-rich conditions;

2 is usually preferred for chemically balanced conditions;

c1, c2 are equally preferred for calcogen-rich conditions
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Electronic properties of edges in 1T’ TMDs

Energetically preferred terminations are considered;
Method: DFT + Green’s function (NEGF)
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Is topological protection of the ballistic transport regime possible?



Topologically protected transport

Protected Unprotected

topological protection 6= protection against back-scattering

0A single spin channel is shown
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Ballistic transport along 1T’-WSe2 edges
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non-uniform dispersion of edge modes;

protected transport is possible in a narrow energy region and only at
specific edges of 1T’-WSe2
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What is available experimentally?



Experimental observations of the 1T’ phase in 2D WSe2

3 Defect-free bulk

? Regular periodic edges

! Structural phase boundaries

Images are courtesy of Miguel M. Ugeda, nanoGUNE, San Sebastian, Spain
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Structural phase boundary is topologically non-trivial



1T’-WSe2 interface states

2H

1T'

Images are courtesy of Miguel M. Ugeda, nanoGUNE, San Sebastian, Spain
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Can theory confirm the presence of interface modes?

Are these modes “topological”?



Atomic structures of phase boundaries in WSe2

Construct model:

choose the zigzag edge of the 2H phase (2x);

choose the zigzag edge of the 1T’ phase (4x, half discarded);

concatenate
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Electronic structure of phase boundaries in WSe2

Method: DFT + NEGF
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Multiple spectroscopic signatures

No topological protection of transport

Artem Pulkin (Caltech, EPFL) Transport in 2D materials November 1, 2017 22 / 32



Conclusions

Edge modes of real topological materials require ab-initio description;

DFT+NEGF calculations reveal multiple spin-polarized modes
spanning a large energy region in 1T’-TMDs;

The dispersion of edge modes is consistent with the QSH phase;

Specific 1T’-WSe2 edges are suitable for ballistic charge carrier
transport protected against back-scattering;

Regular topological phase boundary is accessible experimentally!
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Topological edge states carry spin-polarized current in a non-magnetic
media → applications for spintronics and quantum computing.

Other examples in 2D?



Idea

2H phase

=
=
=  ,

K K'
Γ

Discriminate valleys in some physical process → spin-valley coupling →
induce spin polarization
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Example: optical excitation of charge carriers in
semiconducting 2D MoS2

Cao et al. Nat Commun 3 887 (2012)

Also: Mak et al. Nat Nano 7 no. 8 494-498 (2012); Zeng et al., Nat Nano 7 no.
8 490-493 (2012)
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Is it possible to achieve valley polarization in an all-electric manner?



Idea: valley-polarized transport across a line defect

D. Gunlycke and C.T. White PRL 106, 136806 (2011), graphene

Symmetry: Tν (θ) = T−ν (−θ) 6= T−ν (θ) ,

Polarization:

P(θ) =
Tν=1 − Tν=−1

Tν=1 + Tν=−1
≈ sin θ

Tν - transmission probability; ν = ±1 - valley; θ - group velocity angle

In TMDs valley ν and spin σ are coupled!
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Results of simulations: line defects in 2H-MoS2

Pulkin & Yazyev, Phys. Rev. B 93 041419(R) (2016)

valley and spin filtering with strong energy dependence
spin-orbit transport gap for holes in IDB1
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Poor/no transport across inversion domain boundaries: why?



Ballistic transport

MoS MoS2 2
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Take into account:

conservation of energy ( = ballistic transport);

conservation of pseudo-momentum ( = periodic line defect);

conservation of spin ( = planar non-magnetic defects)

Project the bands onto 1D Brillouin zone (BZ) of the defect (size 2π/d)

d - periodicity of the defect & a - TMD lattice constant (3-4 Å)
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Transport gap Et

Spin match (no gap)
e.g. sulfur vacancy line

Spin mismatch (transport gap)
e.g. inversion domain boundary

K K

K’ K’

K K’

K’ K
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Transport gap Et: criterion

Other line defects with a transport gap?

Defect periodicity vector

d = nLa1,L + mLa2,L = nRa1,R + mRa2,R

d = (1, 0)
|d| = a = 0.3 nm

d = (1, 0)L = (−1, 0)R
|d| = a = 0.3 nm

d = (3, 5)L = (5, 3)R
|d| = 7a = 2.2 nm

Komsa et. al. PRB 88, 035301 (2013); Zhou et. al. Nano Lett. 13, 2615-2622 (2013)
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Transport gap Et: criterion

Spin match (no gap)
e.g. sulfur vacancy line

Spin mismatch (transport gap)
e.g. inversion domain boundary

K K

K’ K’

K K’

K’ K

(nL −mL) mod 3 = (nR −mR)
mod 3 6= 0

0 6= (nL −mL) mod 3 6= (nR −mR)
mod 3 6= 0
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Summary

2D TMDs are prospective materials for modern electronics,
spintronics and topological electronic structure community;

There is a large experimental effort towards confirming the QSH
phase in 1T’-TMDs;

Line defects found in these materials can be employed for
spin-selective transport both along or across the defect, with or
without relying on topological arguments;

In either case, the spin polarization of charge carrier current exists
without net magnetization and macroscopic magnetic fields:
fewer spin relaxation channels and the increased spin lifetime in the
material
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Thank you
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