

Automatic generation and topological classification of low-energy Hamiltonians at multi-fold degeneracies

Kirill Alpin Max Planck Institute for Solid State Research, Stuttgart, Germany

Yukawa Institute for Theoretical Physics, Kyoto - November 2022

Topological band crossings

from [Setyawan et al. 2010]

Topological band crossings

Simplest is a **Weyl point** (WP):

- Two band crossings at single k-point
- Sources and sinks of Berry curvature Ω_n (band n)
- $\Omega_n =
 abla imes oldsymbol{A}_n$ with Berry connection $oldsymbol{A}_n = i \left< n |
 abla | n \right>$
- Topological invariant/charge $\nu_n = \frac{1}{2\pi} \int_S \Omega_n \cdot d\mathbf{S} \in \mathbb{Z}$ over sphere S around Weyl point $\neq 0 \implies$ Weyl point stable against perturbations
- Can only be removed by annihilation with WP of opposite charge

Physical implications: Anomalous Hall effect, Fermi arc-states, nonlinear optic responses, quantum oscillation

Other kinds of topological crossings are possible:

- Multi-fold crossings (crossings of >2 bands)
- Higher dimensional crossings (crossings on lines or planes in the BZ)

Today: Multi-fold crossings. Goal: Classify (compute ν_n) all multi-fold crossings in all space groups

Space groups: collection of symmetries of lattices (example: rotations C_n)

Multi-fold crossings at high-symmetry points possible (where gk = k). Example: R Need build local Hamiltonian to compute Ω and ν

Low-energy Hamiltonian must be symmetric in the little group G

$$\forall g \in G : H(gk) = D(g)H(k)D(g^{-1})$$

(1) from [Setyawan et al. 2010]

Representation D(g) simple example of C_2 with two orbitals (no lattice)

Exchange of orbitals: $\sigma_{\rm X}$ in orbital position space

Project rotated orbital onto original basis: $\exp(-i\phi J)$ rotation with angular momentum operator So: $D(g) = \sigma_x \otimes \exp(-i\pi J)$ Multi-fold crossings at high-symmetry points possible (where gk = k). Example: R

 $\forall g \in G : H(gk) = D(g)H(k)D(g^{-1})$

Need build local Hamiltonian to compute Ω and ν

Low-energy Hamiltonian must be symmetric in the little group G

(1) from [Setyawan et al. 2010]

Simultaneous **block-diagonalization** of all D(g) in little group G:

Representations D(g) can be decomposed into irreducible representations (irreps) $D(g) = D_1(g) \oplus D_2(g)...$ d_g is the dimension of an irrep $D_n(g)$ mass terms are not allowed by $D_n(g)$

 \implies *H* is d_g degenerate

Look up irreps in all space groups (BILBAO [Aroyo et al. 2006]), search for all $d_g > 2$ (multi-fold degeneracy) General low-energy **Hamiltonian** at high-symmetry points (expansion in k) $n, m \le d_g$:

$$H_{nm}(\mathbf{k}) = \sum_{hp_1} \alpha_{h,1} H^1_{hp_1 nm} k_{p_1} + \sum_{hp_1 p_2} \alpha_{h,2} H^2_{hp_1 p_2 nm} k_{p_1} k_{p_2} + \mathcal{O}(k^3)$$
(2)

We only look at linear k terms H^1

Input: Space group, Irrep

Output: All possible terms of a general low-energy Hamiltonian

- Start by generating some number (30) random hermitian matrices \tilde{H}^1_{haam} ($0 \le h < 30$)
- Symmetrize with [Gresch et al. 2018]

$$H_{h\nu ij}^{1} = \frac{1}{|G|} \sum_{g \in G} g_{\nu p}^{-1} D(g)_{in} \tilde{H}_{hpnm}^{1} D(g^{-1})_{mj}$$
(3)

- Find all **linearly independent** terms via Gram-Schmidt orthogonalization Discard all other terms
- Problem: H^1 is ugly. Random numerical values.

Solution: New terms from superpositions of old terms. Matrix of all nonzero entries in H_h^1 per $h M_{hq}$ with q = (v, i, j). Reduce q entries such that M is invertible and quadratic. Build up new H terms

$$H_{h'pnm}^{1} = \sum_{h} M_{h'h}^{-1} H_{hpnm}^{1}$$
(4)

(redefinition $\alpha_h = \sum_{h'} \alpha_{h'} M_{h'h}^{-1}$)

We only look at linear k terms H^1

Input: Space group, Irrep

Output: All possible terms of a general low-energy Hamiltonian

- Start by generating some number (30) random hermitian matrices \tilde{H}_{hann}^1 ($0 \le h < 30$)
- Symmetrize with [Gresch et al. 2018]

$$H^{1}_{hvij} = \frac{1}{|G|} \sum_{g \in G} g^{-1}_{vp} D(g)_{in} \tilde{H}^{1}_{hpnm} D(g^{-1})_{mj}$$
(3)

• Find all **linearly independent** terms via Gram-Schmidt orthogonalization Discard all other terms

Example

$$\begin{array}{ccc} H = \alpha_0(0.41k_x\sigma_x + 0.2k_y\sigma_z) + \\ \alpha_1(-0.2k_x\sigma_x + 0.41k_y\sigma_z) \end{array} \implies M = \begin{bmatrix} 0.41 & 0.2 \\ -0.2 & 0.41 \end{bmatrix} \implies \begin{array}{ccc} M^{-1}M = \\ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \implies \begin{array}{ccc} H = \alpha_0k_x\sigma_x + \\ \alpha_1k_y\sigma_z \end{array}$$

Input to the algorithm

Example: Irrep $\bar{\Gamma}_{6}\bar{\Gamma}_{7}$ with dimension 4 of space group 198

Input (from BILBAO [Aroyo et al. 2006]):

	$\{2_{001} 1/2,0,1/2\}$						$\{2_{010} 0,1/2,1/2\}$				
		(—i	0	0	0)			/0	$^{-1}$	0	0)
$\bar{\Gamma}_6 \bar{\Gamma}_7$		0	i	0	0			1	0	0	0
		0	0	i	0			0	0	0	-1
		0	0	0	_i/			0	0	1	o/

		$\{3^+_{111}$		Time-reversal ${\cal T}$						
	$e^{i5\pi/12}$	$e^{-i\pi/12}$	0	0)		/0	0	$^{-1}$	0)	
E E	$e^{i5\pi/12}$	$e^{i11\pi/12}$	0	0		0	0	0	-1	
617	0	0	$e^{-i5\pi/12}$	$e^{i\pi/12}$		1	0	0	0	
	\ 0	0	$e^{-i5\pi/12}$	$e^{-i11\pi/12}$	\	0	1	0	0/	

Example: Irrep $\overline{\Gamma}_6\overline{\Gamma}_7$ with dimension 4 of space group 198

 α_n are parameters

 σ and τ are Pauli matrices

$$\begin{split} H = &\alpha_0 \left[2k_x \sigma_x \tau_z + k_y \left(-\sqrt{3}\sigma_x \tau_0 - \sigma_y \tau_0 \right) + k_z \left(\sigma_x \tau_x + \sqrt{3}\sigma_y \tau_x \right) \right] + \\ &\alpha_1 \left[-2k_x \sigma_y \tau_z + k_y \left(-\sigma_x \tau_0 + \sqrt{3}\sigma_y \tau_0 \right) + k_z \left(\sqrt{3}\sigma_x \tau_x - \sigma_y \tau_x \right) \right] + \\ &2\alpha_2 \left[k_x \sigma_z \tau_x + k_y \sigma_0 \tau_y + k_z \sigma_z \tau_z \right] \end{split}$$

What now? Find an analytical mapping from parameters α to topological invariant $\nu : \alpha_0, ..., \alpha_N \rightarrow \nu \implies$ topological phase diagram

Problems:

- Classification must be done manually :(
- Can not analytically integrate $\nu = \frac{1}{2\pi} \int_{S} \Omega(k, H) \cdot dS$ in general

Strategy:

- Need to only find points in parameter space with *H* gapless away form *k* = 0 analytically. Only places where topological phase transition can happen.
- Color spaces in between with computed Chern number at **one single point**

What now? Find an analytical mapping from parameters α to topological invariant $\nu : \alpha_0, ..., \alpha_N \rightarrow \nu \implies$ topological phase diagram

Problems:

- Classification must be done manually :(
- Can not analytically integrate $\nu = \frac{1}{2\pi} \int_{S} \Omega(k, H) \cdot dS$ in general

Strategy:

- Need to only find points in parameter space with *H* gapless away form *k* = 0 analytically. Only places where topological phase transition can happen.
- Color spaces in between with computed Chern number at **one single point**

What now? Find an analytical mapping from parameters α to topological invariant $\nu : \alpha_0, ..., \alpha_N \rightarrow \nu \implies$ topological phase diagram

Problems:

- Classification must be done manually :(
- Can not analytically integrate $\nu = \frac{1}{2\pi} \int_{S} \Omega(k, H) \cdot dS$ in general

Strategy:

- Need to only find points in parameter space with *H* gapless away form *k* = 0 analytically. Only places where topological phase transition can happen.
- Color spaces in between with computed Chern number at **one single point**

3-fold crossings: points are all equivalent in all space groups.

Hamiltonian consistent with [Bradlyn et al. 2016]. $u = \pm 2$

3-fold crossings: points are all equivalent in all space groups.

Hamiltonian consistent with [Bradlyn et al. 2016]. $u = \pm 2$

https://www.safetyemporium.com/01614

3-fold crossings: points are all equivalent in all space groups.

Hamiltonian consistent with [Bradlyn et al. 2016]. $u = \pm 2$

https://www.safetyemporium.com/01614

6-fold crossings: all crossings are equivalent. Hamiltonian consistent with [Bradlyn et al. 2016]. $\nu_{12} = \pm 4$

4-fold crossings: many different models.

Without SOC:

Space group	Irrep	ν_1	ν_2	ν_{12}	Model	Transformation
19	R_1R_1	-	-	±2	9	-
92	A_1A_2	-	-	±2	7	$k_x \rightarrow k_y, k_y \rightarrow -k_x, \alpha_2 = 0, \alpha_3 = 0$
96	A_1A_2	-	-	±2	7	$k_y ightarrow -k_y, lpha_2 = 0, lpha_3 = 0$
198	R_1R_3/R_2R_2	-	-	±2	5	-
212/213	R_1R_2	-	-	±2	5	-
212/213	R ₃	-	-	±2	6	-

4-fold crossings: many different models.

With SOC:

Space group	Irrep	ν_1	ν2	ν_{12}	Model	Transformation
18	$\bar{S}_{5}\bar{S}_{5}/\bar{R}_{5}\bar{R}_{5}$	-	-	±2	3	-
19	$\bar{S}_{5}\bar{S}_{5}$	-	-	±2	3	-
19	$\overline{T}_5 \overline{T}_5$	-	-	±2	3	$k_X \rightarrow k_Y, k_Y \rightarrow k_Z, k_Z \rightarrow k_X$
19	$\bar{U}_5 \bar{U}_5$	-	-	±2	3	$k_y \rightarrow k_Z, k_Z \rightarrow k_y$
90	$\bar{A}_{6}\bar{A}_{7}/\bar{M}_{6}\bar{M}_{7}$	-	-	±2	7	-
92/94/96	$\bar{M}_6 \bar{M}_7$	-	-	±2	7	-
92/96	$\bar{R}_5 \bar{R}_5$	-	-	±2	3	$k_X \rightarrow k_y, k_y \rightarrow k_Z, k_Z \rightarrow k_X$
92/96	$\bar{A}_7 \bar{A}_7$	-	-	± 4	8	-
94	$\bar{A}_6 \bar{A}_7$	-	-	±2	7	$k_X \leftrightarrow k_y$
195/196/197/198/199	Ē ₆ Ē ₇	±3	土1, 干5	土4, 干2	1	-
195	$\bar{R}_6 \bar{R}_7$	±3	土1,干5	土4,干2	1	-
197	$\overline{H}_{6}\overline{H}_{7}$	±3	土1, 干5	土4, 干2	1	-
198	$\overline{M}_5 \overline{M}_5$	-	-	±2	3	-
199	$\overline{H}_{6}\overline{H}_{7}$	±3	土1, 干5	土4,干2	1	$U = \sigma_Z \tau_X$
207/208/209/210	Ē ₈	±3	土1,干5	土4,干2	2	-
/211/212/213/214						
207/208	R ₈	±3	土1, 干5	土4, 干2	2	-
211	- <i>H</i> ₈	±3	土1,干5	土4,干2	2	-
212	M ₆ M ₇	-	-	±2	4	-
213	$\overline{M}_{6}\overline{M}_{7}$	-	-	±2	4	$k_y \rightarrow -k_y$
214	- <i>H</i> ₈	±3	±1,∓5	土4, 干2	2	$U = \sigma_0 \tau_X, \gamma \to -\gamma$

Finding topological phase transitions

Example: Irrep $\overline{\Gamma}_6\overline{\Gamma}_7$ with dimension 4 of space group 198 Main points of derivation:

- Characteristic polynomial of *H* is $\chi(E) = E^4 + aE^2 + \det(H) \implies$ spectrum is **particle-hole symmetric**
- \implies can become **gapless** when $E_2 = E_3 = -E_2 = 0$ or $E_1 = E_2$

- Happens when $\det(H) = E_1 E_2 (-E_1) (-E_2) = E_1^2 E_2^2 = 0$ or $Q = a^2 - 4\det(H) = 0$
- *χ*(*E*) is rotationally invariant in phase space around the *α*₂ axis
 ⇒ topological phase diagram is rotationally invariant
- $det(H) \ge 0 \implies$ Don't find det(H) = 0. Easier, find minimum with $\nabla_{\alpha} det(H) = 0$
- $\bullet\,$ Same can be shown for ${\cal Q}$
- Use scale-invariance of H in α and k (H is linear)

Topological phase diagram of $\overline{\Gamma}_6\overline{\Gamma}_7$

Example: Irrep $\overline{\Gamma}_6\overline{\Gamma}_7$ with dimension 4 of space group 198. $\nu_2 \in \{-5, -1, 1, 5\}$

Topological phase diagram of $\overline{\Gamma}_6\overline{\Gamma}_7$

Example: Irrep $\overline{\Gamma}_6\overline{\Gamma}_7$ with dimension 4 of space group 198. $\nu_2 \in \{-5, -1, 1, 5\}$

Weyl point production via phase transitions

Creation of total of 26 WPs

$\nu = 5$ phase material search

Material search was performed to find $\nu = 5$ phase near $E_{\rm fermi}$

BaAsPt in SG 198

Full topological classification of BaAsPt with $\bar{\Gamma}_6\bar{\Gamma}_7$ in $\nu=5$ phase

$\nu = 5$ phase material search

Material search was performed to find u = 5 phase near $E_{\rm fermi}$

Surface DOS with Fermi arcs and projected charges

Conclusion

- Automatic generation of low-energy Hamiltonian at multi-fold crossings
- Analytical tools for topological phase diagrams
- Applied to all space groups
- Found unusually high Chern number of $\nu = 5$
- Material BaAsPt

References i

- Huber et al. (2022). "Network of topological nodal planes, multifold degeneracies, and Weyl points in CoSi". In: *Physical Review Letters* 129.2, 026401.
- Setyawan and Curtarolo (2010). "High-throughput electronic band structure calculations: Challenges and tools". In: Computational materials science 49.2, 299–312.
- Aroyo et al. (2006). "Bilbao Crystallographic Server. II. Representations of crystallographic point groups and space groups". In: Acta Crystallographica Section A: Foundations of Crystallography 62.2, 115–128.
- Gresch et al. (2018). "Automated construction of symmetrized Wannier-like tight-binding models from ab initio calculations". In: *Physical Review Materials* 2.10, 103805.
- Bradlyn et al. (2016). "Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals". In: *Science* 353.6299.