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Topological band crossings

E—Ef(eV)

from [Setyawan et al. 2010]

Band crossings of CoSi [Huber et al. 2022]



Topological band crossings

Simplest is a Weyl point (WF): e Two band crossings at single k-point
e Sources and sinks of Berry curvature €, (band n)

e 2, =V x A, with Berry connection A, =i (n|V|n)

Q >
E @:.0:.0’.." e Topological invariant/charge v, = % js Qn-dS € Z over
W sphere S around Weyl point # 0 = Weyl point stable

N\ against perturbations

e Can only be removed by annihilation with WP of opposite

charge

;"n.%.’.‘
i

0y Physical implications: Anomalous Hall effect, Fermi arc-states, non-

linear optic responses, quantum oscillation

Other kinds of topological crossings are possible:
o Multi-fold crossings (crossings of >2 bands)

e Higher dimensional crossings (crossings on lines or planes in
the BZ)

Today: Multi-fold crossings. Goal: Classify (compute v,) all multi-fold crossings in all space groups

Space groups: collection of symmetries of lattices (example: rotations Cy)



Irreducible representations

Multi-fold crossings at high-symmetry points possible (where gk = k). Example: R

Need build local Hamiltonian to compute €2 and v

Low-energy Hamiltonian must be symmetric in the little group G
Vg € G: H(gk) = D(g)H(k)D(g_l) (1) from [Setyawan et al. 2010]

Representation D(g) simple example of C> with two orbitals (no lattice)

}

R

Exchange of orbitals: ox in orbital position space
Project rotated orbital onto original basis: exp(—i¢J) rotation with angular momentum operator

So: D(g) = ox ® exp(—ind)



Irreducible representations

Multi-fold crossings at high-symmetry points possible (where gk = k). Example: R

Need build local Hamiltonian to compute €2 and v

Low-energy Hamiltonian must be symmetric in the little group G

Vg € G : H(gk) = D(g)H(k)D(g ) (1) from [Setyawan et al. 2010]
Simultaneous block-diagonalization of all D(g) in little group G:
Representations D(g) can be decomposed into irreducible representations (irreps) D(g) = Di(g) ® D2(g)...
dg is the dimension of an irrep Dy(g)
mass terms are not allowed by D,(g)
= His d, degenerate
Look up irreps in all space groups (BILBAO [Aroyo et al. 2006]), search for all dg > 2 (multi-fold degeneracy)
General low-energy Hamiltonian at high-symmetry points (expansion in k) n,m < dg:

Hom(k) = @h 1 Hipy ks + Y @n2Hiy i ki + O(K) )
hpy hp1p2



The algorithm: generation of symmetric Hamiltonians

We only look at linear k terms H!
Input: Space group, Irrep

Output: All possible terms of a general low-energy Hamiltonian

e Start by generating some number (30) random hermitian matrices Hh am (0 < h < 30)
e Symmetrize with [Gresch et al. 2018]
1 ~ —
Hflrvij = 1A gvplD( )’"H;pan(g 1)mj (3)

|G|
geG

Find all linearly independent terms via Gram-Schmidt orthogonalization

Discard all other terms

e Problem: H! is ugly. Random numerical values.

Solution: New terms from superpositions of old terms. Matrix of all nonzero entries in HI% per h Mpq with
g = (v,i,j). Reduce g entries such that M is invertible and quadratic. Build up new H terms

h’pnm Z Mh’h thnm (4)

(redefinition o = Zh/ auy Mh’h)



The algorithm: generation of symmetric Hamiltonians

We only look at linear k terms H!
Input: Space group, Irrep

Output: All possible terms of a general low-energy Hamiltonian

e Start by generating some number (30) random hermitian matrices Hh am (0 < h < 30)
e Symmetrize with [Gresch et al. 2018]
hvu |G| ZgilD ’"H;pan(gil)mj (3)
getG

e Find all linearly independent terms via Gram-Schmidt orthogonalization

Discard all other terms

Example

M™M=
H = ao(041kox +02kyoz)t .\ {041 0.2] — g = H =agkxox+
a1(—0.2keox 4 0.41ky07) —0.2 0.41 {0 1] arkyo,



Input to the algorithm

Example: Irrep T¢T7 with dimension 4 of space group 198

Input (from BILBAO [Aroyo et al. 2006]):

| {200111/2,0,1/2} | {201000,1/2,1/2}

—i 0 0 0 0o -1 0 0

Fol 0 i 0 0 1 0 0 0

00 i O 0 0 0 -1

0 0 0 —i 0 0 1 0
{31+11\07070} Time-reversal T
eidm/12  g—im/12 0 0 0 o0 —1 0
I__6 F7 el57r/12 elllTr/12 0 0 0 0 0 1
0 0 e B7/12 eim/12 1 0 0 0
0 0 e 57/12 g—illm/12 0o 1 0 0



Output of the algorithm

Example: Irrep T¢T7 with dimension 4 of space group 198

«p are parameters
o and 7 are Pauli matrices

20 |:kX0'Z‘rX + kyooTy, + kzo'z‘rZ:|



Topological classification

What now? Find an analytical mapping from parameters « to topological invariant v : ag, ...,ay > v —
topological phase diagram

Problems:

e Classification must be done manually :(

e Can not analytically integrate v = ﬁ fs Q(k, H) - dS in general

Strategy:

e Need to only find points in parameter
space with H gapless away form kK =0
analytically. Only places where
topological phase transition can
happen.

e Color spaces in between with computed a
n

Chern number at one single point
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Topological classification

What now? Find an analytical mapping from parameters « to topological invariant v : ag, ...,y — v —>
topological phase diagram

Problems:

e Classification must be done manually :(

e Can not analytically integrate v = ﬁ fS Q(k, H) - dS in general

Strategy:

e Need to only find points in parameter
space with H gapless away form kK =0
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happen.
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Topological classification of all multi-fold crossings

3-fold crossings: points are all equivalent in all space groups.
Hamiltonian consistent with [Bradlyn et al. 2016]. v = £2

v2
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3-fold crossings: points are all equivalent in all space groups.

Hamiltonian consistent with [Bradlyn et al. 2016]. v = £2
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of all multi-fold crossings

6-fold crossings: all crossings are equivalent. Hamiltonian consistent with [Bradlyn et al. 2016]. v = +4

Va2 +a3



Topological classification of all multi-fold crossings

4-fold crossings: many different models.

Without SOC:
Space group | lrrep v1 | v | vi2 | Model | Transformation
19 RiRy - - +2 | 9 -
92 A1A2 = o +2 7 kX — ky,ky — —kx,ag = 0,&3 =0
96 A1A2 = = +2 7 ky = —ky,ag =0,a03=0
198 RiR3/R2Ry | - - +2 | 5 -
212/213 RiR> - - +2 | 5 -
212/213 R3 - - +2 | 6 -




Topological classification of all multi-fold crossings

4-fold crossings: many different models.

With SOC:
Space group Irrep vy vy V1o Model [ Transformation
18 S555/RsRs - - +2 3 -
19 S555 - - EED) 3 =
19 T5Ts - - 2 3 T = ky, ky — kg, kz — ky
19 UsUs - - +2 3 ky — kz, kz — ky
90 AgAz/MgMy | - - +2 7 -
92/94/96 Mg M7 - - +2 7 -
92/96 R R, = - +2 8 v ky — kz, kz — kx
92/96 A7A7 - - +4 8 -
94 AgA7 - - EED) 7 kx> ky
195/196/197/198/199 | Tgl7 +3 | +155 [ +4F2 [ 1 -
195 R Ry +3 +1,F5 +4,F2 1 -
197 Heg H7 == +1,F5 +4,F2 1 -
198 M Mg - - EE2) 3 -
199 Hg H7 +3 +1,F5 +4,F2 1 U=o0,7x
207/208,/209/210 Tg +3 | +1LF5 [ 4F2 | 2 -
/211/212/213/214
207/208 Rg +3 +1,F5 +4,F2 2 -
211 Hg +3 +1,F5 +4,F2 2 -
212 Mg My - - +2 4 -
213 Mg My - - +2 4 ky — —ky
214 Hg +3 | +155 [ +4F2 [ 2 U=ogmxvy = —




Finding topological phase transitions

Example: Irrep Tgl7 with dimension 4 of
space group 198

1.0 1.0

Main points of derivation: ; o o
e Characteristic polynomial of H is woo @ oo w00
X(E) = E* + aE? + det(H) = -

spectrum is particle-hole symmetric -10 -05 cl.(o 05 10 -10 -05 oko 05 10 " 30 s 0‘;0 05 10

e —> can become gapless when
Er=E3=—-E;=0o0r 51 =E

o Happens when det(H) = E1E(—E1)(—E2) = E2EZ =0
or Q = a?—4det(H) =0

e X(E) is rotationally invariant in phase space around the ay axis
— topological phase diagram is rotationally invariant

e det(H) > 0 = Don't find det(H) = 0. Easier, find minimum with V,det(H) =0
o Same can be shown for Q

e Use scale-invariance of H in « and k (H is linear)



Topological phase diagram of T¢l;

Example: Irrep T¢T7 with dimension 4 of space group 198. v, € {-5,-1,1,5}

ad +a?

v2



Topological phase diagram of Tl

Example: Irrep T¢T7 with dimension 4 of space group 198. v, € {-5,-1,1,5}

Weyl point production via phase transitions

.
v o
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& : OO
5 . .
1 ° L
5 .
o vy =1{=3,5,-5,3} * vy ={=-3,-1,1,3) ¢ w3 ={1,-1}
e vip={=L1} * vy ={-L1} ¢ vy ={-11}

o = {3,1,-1,-3)

Creation of total of 26 WPs



v = 5 phase material search

Material search was performed to find v = 5 phase near Efermi

0.75
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0.251
0.00
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firy
I -0.50
w
—0.751
—1.00 4
—-1.251
-1.50 T T T
r XM r R M R
o {3,-5,5,-3} x {-2,2} ---- {21,-21} — {3,-3}
x {2,-2} x  {-3,-1,1,3} ---- {-9,9} — {-3,3}
BaAsPt in SG 198 * {1,-1} * {-4,0, 4} ---- {21,21}  — {99}
x  {-1,1} ---- {-15,15} ---- {-5,5} S.DOS energy

Full topological classification of BaAsPt with Fel7 in v = 5 phase



v = 5 phase material search

Material search was performed to find v = 5 phase near Efermi

BaAsPt in SG 198

Surface DOS with Fermi arcs and projected charges 13



Conclusion

e Automatic generation of low-energy Hamiltonian at multi-fold crossings

Analytical tools for topological phase diagrams

Applied to all space groups
e Found unusually high Chern number of v =5

e Material BaAsPt
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