Automatic generation and topological classification of low-energy Hamiltonians at multi-fold degeneracies

Kirill Alpin

Max Planck Institute for Solid State Research, Stuttgart, Germany

Yukawa Institute for Theoretical Physics, Kyoto - November 2022

Topological band crossings

from [Setyawan et al. 2010]

Topological band crossings

Simplest is a Weyl point (WP):

- Two band crossings at single k-point
- Sources and sinks of Berry curvature $\boldsymbol{\Omega}_{n}$ (band n)
- $\boldsymbol{\Omega}_{n}=\nabla \times \boldsymbol{A}_{n}$ with Berry connection $\boldsymbol{A}_{n}=i\langle n| \nabla|n\rangle$
- Topological invariant/charge $\nu_{n}=\frac{1}{2 \pi} \int_{S} \boldsymbol{\Omega}_{n} \cdot \mathrm{~d} \boldsymbol{S} \in \mathbb{Z}$ over sphere S around Weyl point $\neq 0 \Longrightarrow$ Weyl point stable against perturbations
- Can only be removed by annihilation with WP of opposite charge

Physical implications: Anomalous Hall effect, Fermi arc-states, nonlinear optic responses, quantum oscillation

Other kinds of topological crossings are possible:

- Multi-fold crossings (crossings of >2 bands)
- Higher dimensional crossings (crossings on lines or planes in the BZ)

Today: Multi-fold crossings. Goal: Classify (compute ν_{n}) all multi-fold crossings in all space groups
Space groups: collection of symmetries of lattices (example: rotations C_{n})

Irreducible representations

Multi-fold crossings at high-symmetry points possible (where $g k=k$). Example: R Need build local Hamiltonian to compute $\boldsymbol{\Omega}$ and ν

Low-energy Hamiltonian must be symmetric in the little group G

$$
\begin{equation*}
\forall g \in G: H(g \boldsymbol{k})=D(g) H(\boldsymbol{k}) D\left(g^{-1}\right) \tag{1}
\end{equation*}
$$

Representation $D(g)$ simple example of C_{2} with two orbitals (no lattice)

Exchange of orbitals: σ_{x} in orbital position space

Project rotated orbital onto original basis: $\exp (-i \phi \boldsymbol{J})$ rotation with angular momentum operator
So: $D(g)=\sigma_{x} \otimes \exp (-i \pi J)$

Irreducible representations

Multi-fold crossings at high-symmetry points possible (where $g k=k$). Example: R Need build local Hamiltonian to compute $\boldsymbol{\Omega}$ and ν

Low-energy Hamiltonian must be symmetric in the little group G

$$
\forall g \in G: H(g \boldsymbol{k})=D(g) H(\boldsymbol{k}) D\left(g^{-1}\right)
$$

(1) from [Setyawan et al. 2010]

Simultaneous block-diagonalization of all $D(g)$ in little group G :
Representations $D(g)$ can be decomposed into irreducible representations (irreps) $D(g)=D_{1}(g) \oplus D_{2}(g) \ldots$
d_{g} is the dimension of an irrep $D_{n}(g)$
mass terms are not allowed by $D_{n}(g)$
$\Longrightarrow H$ is d_{g} degenerate
Look up irreps in all space groups (BILBAO [Aroyo et al. 2006]), search for all $d_{g}>2$ (multi-fold degeneracy)
General low-energy Hamiltonian at high-symmetry points (expansion in k) $n, m \leq d_{g}$:

$$
\begin{equation*}
H_{n m}(\boldsymbol{k})=\sum_{h p_{1}} \alpha_{h, 1} H_{h p_{1} n m}^{1} k_{p_{1}}+\sum_{h p_{1} p_{2}} \alpha_{h, 2} H_{h p_{1} p_{2} n m}^{2} k_{p_{1}} k_{p_{2}}+\mathcal{O}\left(k^{3}\right) \tag{2}
\end{equation*}
$$

The algorithm: generation of symmetric Hamiltonians

We only look at linear k terms H^{1}
Input: Space group, Irrep
Output: All possible terms of a general low-energy Hamiltonian

- Start by generating some number (30) random hermitian matrices $\tilde{H}_{h p n m}^{1}(0 \leq h<30)$
- Symmetrize with [Gresch et al. 2018]

$$
\begin{equation*}
H_{h v i j}^{1}=\frac{1}{|G|} \sum_{g \in G} g_{v p}^{-1} D(g)_{i n} \tilde{H}_{h p n m}^{1} D\left(g^{-1}\right)_{m j} \tag{3}
\end{equation*}
$$

- Find all linearly independent terms via Gram-Schmidt orthogonalization

Discard all other terms

- Problem: H^{1} is ugly. Random numerical values.

Solution: New terms from superpositions of old terms. Matrix of all nonzero entries in H_{h}^{1} per $h M_{h q}$ with $q=(v, i, j)$. Reduce q entries such that M is invertible and quadratic. Build up new H terms

$$
\begin{equation*}
H_{h^{\prime} p n m}^{1}=\sum_{h} M_{h^{\prime} h}^{-1} H_{h p n m}^{1} \tag{4}
\end{equation*}
$$

(redefinition $\alpha_{h}=\sum_{h^{\prime}} \alpha_{h^{\prime}} M_{h^{\prime} h}^{-1}$)

We only look at linear k terms H^{1}
Input: Space group, Irrep
Output: All possible terms of a general low-energy Hamiltonian

- Start by generating some number (30) random hermitian matrices $\tilde{H}_{h p n m}^{1}(0 \leq h<30)$
- Symmetrize with [Gresch et al. 2018]

$$
\begin{equation*}
H_{h v i j}^{1}=\frac{1}{|G|} \sum_{g \in G} g_{v p}^{-1} D(g)_{i n} \tilde{H}_{h p n m}^{1} D\left(g^{-1}\right)_{m j} \tag{3}
\end{equation*}
$$

- Find all linearly independent terms via Gram-Schmidt orthogonalization

Discard all other terms
Example

$$
H=\begin{array}{cc}
\alpha_{0}\left(0.41 k_{x} \sigma_{x}+0.2 k_{y} \sigma_{z}\right)+ \\
& \alpha_{1}\left(-0.2 k_{x} \sigma_{x}+0.41 k_{y} \sigma_{z}\right)
\end{array} \Longrightarrow M=\left[\begin{array}{cc}
0.41 & 0.2 \\
-0.2 & 0.41
\end{array}\right] \Longrightarrow \begin{array}{cc}
M^{-1} M= \\
{\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]}
\end{array} \Longrightarrow \begin{gathered}
H=\alpha_{0} k_{x} \sigma_{x}+ \\
\alpha_{1} k_{y} \sigma_{z}
\end{gathered}
$$

Input to the algorithm

Example: Irrep $\bar{\Gamma}_{6} \bar{\Gamma}_{7}$ with dimension 4 of space group 198
Input (from BILBAO [Aroyo et al. 2006]):

	$\{2001 \mid 1 / 2,0,1 / 2\}$	$\{2010 \mid 0,1 / 2,1 / 2\}$
$\bar{\Gamma}_{6} \bar{\Gamma}_{7}$	$\left(\begin{array}{rrrr}-i & 0 & 0 & 0 \\ 0 & i & 0 & 0 \\ 0 & 0 & i & 0 \\ 0 & 0 & 0 & -i\end{array}\right)$	$\left(\begin{array}{rrrr}0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0\end{array}\right)$

	$\left\{3_{111}^{+} \mid 0,0,0\right\}$	Time-reversal \mathcal{T}		
$\bar{\Gamma}_{6} \bar{\Gamma}_{7}$	$\left(\begin{array}{rrrr}e^{i 5 \pi / 12} & e^{-i \pi / 12} & 0 & 0 \\ e^{i 5 \pi / 12} & e^{i 11 \pi / 12} & 0 & 0 \\ 0 & 0 & e^{-i 5 \pi / 12} & e^{i \pi / 12} \\ 0 & 0 & e^{-i 5 \pi / 12} & e^{-i 11 \pi / 12}\end{array}\right)$	$\left(\begin{array}{rrrr}0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right)$		

Output of the algorithm

Example: Irrep $\bar{\Gamma}_{6} \bar{\Gamma}_{7}$ with dimension 4 of space group 198
α_{n} are parameters
σ and τ are Pauli matrices

$$
\begin{aligned}
H= & \alpha_{0}\left[2 k_{x} \sigma_{x} \tau_{z}+k_{y}\left(-\sqrt{3} \sigma_{x} \tau_{0}-\sigma_{y} \tau_{0}\right)+\right. \\
& \left.k_{z}\left(\sigma_{x} \tau_{x}+\sqrt{3} \sigma_{y} \tau_{x}\right)\right]+ \\
& \alpha_{1}\left[-2 k_{x} \sigma_{y} \tau_{z}+k_{y}\left(-\sigma_{x} \tau_{0}+\sqrt{3} \sigma_{y} \tau_{0}\right)+\right. \\
& \left.k_{z}\left(\sqrt{3} \sigma_{x} \tau_{x}-\sigma_{y} \tau_{x}\right)\right]+ \\
& 2 \alpha_{2}\left[k_{x} \sigma_{z} \tau_{x}+k_{y} \sigma_{0} \tau_{y}+k_{z} \sigma_{z} \tau_{z}\right]
\end{aligned}
$$

Topological classification

What now? Find an analytical mapping from parameters α to topological invariant $\nu: \alpha_{0}, \ldots, \alpha_{N} \rightarrow \nu \Longrightarrow$ topological phase diagram

Problems:

- Classification must be done manually :(
- Can not analytically integrate $\nu=\frac{1}{2 \pi} \int_{S} \Omega(k, H) \cdot \mathrm{d} S$ in general

Strategy:

- Need to only find points in parameter space with H gapless away form $\boldsymbol{k}=0$ analytically. Only places where topological phase transition can happen.
- Color spaces in between with computed Chern number at one single point

Topological classification

What now? Find an analytical mapping from parameters α to topological invariant $\nu: \alpha_{0}, \ldots, \alpha_{N} \rightarrow \nu \Longrightarrow$ topological phase diagram

Problems:

- Classification must be done manually :(
- Can not analytically integrate $\nu=\frac{1}{2 \pi} \int_{S} \Omega(k, H) \cdot \mathrm{d} S$ in general

Strategy:

- Need to only find points in parameter space with H gapless away form $\boldsymbol{k}=0$ analytically. Only places where topological phase transition can happen.
- Color spaces in between with computed Chern number at one single point

Topological classification

What now? Find an analytical mapping from parameters α to topological invariant $\nu: \alpha_{0}, \ldots, \alpha_{N} \rightarrow \nu \Longrightarrow$ topological phase diagram

Problems:

- Classification must be done manually :(
- Can not analytically integrate $\nu=\frac{1}{2 \pi} \int_{S} \Omega(k, H) \cdot \mathrm{d} S$ in general

Strategy:

- Need to only find points in parameter space with H gapless away form $\boldsymbol{k}=0$ analytically. Only places where topological phase transition can happen.
- Color spaces in between with computed Chern number at one single point

3-fold crossings: points are all equivalent in all space groups.
Hamiltonian consistent with [Bradlyn et al. 2016]. $\nu= \pm 2$

Topological classification of all multi-fold crossings

3-fold crossings: points are all equivalent in all space groups.
Hamiltonian consistent with [Bradlyn et al. 2016]. $\nu= \pm 2$

CAUTION

 RADIATION
 AREA KEEP OUT

https://www.safetyemporium.com/01614

Topological classification of all multi-fold crossings

3-fold crossings: points are all equivalent in all space groups.
Hamiltonian consistent with [Bradlyn et al. 2016]. $\nu= \pm 2$

CAUTION

 AREA KEEP OUT

https://www.safetyemporium.com/01614

Topological classification of all multi-fold crossings

6-fold crossings: all crossings are equivalent. Hamiltonian consistent with [Bradlyn et al. 2016]. $\nu_{12}= \pm 4$

Topological classification of all multi-fold crossings

4-fold crossings: many different models.
Without SOC:

Space group	Irrep	ν_{1}	ν_{2}	ν_{12}	Model	Transformation
19	$R_{1} R_{1}$	-	-	± 2	9	-
92	$A_{1} A_{2}$	-	-	± 2	7	$k_{x} \rightarrow k_{y}, k_{y} \rightarrow-k_{x}, \alpha_{2}=0, \alpha_{3}=0$
96	$A_{1} A_{2}$	-	-	± 2	7	$k_{y} \rightarrow-k_{y}, \alpha_{2}=0, \alpha_{3}=0$
198	$R_{1} R_{3} / R_{2} R_{2}$	-	-	± 2	5	-
$212 / 213$	$R_{1} R_{2}$	-	-	± 2	5	-
$212 / 213$	R_{3}	-	-	± 2	6	-

Topological classification of all multi-fold crossings

4-fold crossings: many different models.
With SOC:

Space group	Irrep	ν_{1}	ν_{2}	ν_{12}	Model	Transformation
18	$\bar{S}_{5} \bar{S}_{5} / \bar{R}_{5} \bar{R}_{5}$	-	-	± 2	3	-
19	$\bar{S}_{5} \bar{S}_{5}$	-	-	± 2	3	-
19	$\bar{T}_{5} \bar{T}_{5}$	-	-	± 2	3	$k_{x} \rightarrow k_{y}, k_{y} \rightarrow k_{z}, k_{z} \rightarrow k_{x}$
19	$\bar{U}_{5} \bar{U}_{5}$	-	-	± 2	3	$k_{y} \rightarrow k_{z}, k_{z} \rightarrow k_{y}$
90	$\bar{A}_{6} \bar{A}_{7} / \bar{M}_{6} \bar{M}_{7}$	-	-	± 2	7	-
$92 / 94 / 96$	$\bar{M}_{6} \bar{M}_{7}$	-	-	± 2	7	-
$92 / 96$	$\bar{R}_{5} \bar{R}_{5}$	-	-	± 2	3	$k_{x} \rightarrow k_{y}, k_{y} \rightarrow k_{z}, k_{z} \rightarrow k_{x}$
$92 / 96$	$\bar{A}_{7} \bar{A}_{7}$	-	-	± 4	8	-
94	$\bar{A}_{6} \bar{A}_{7}$	-	-	± 2	7	$k_{x} \leftrightarrow k_{y}$
$195 / 196 / 197 / 198 / 199$	$\bar{\Gamma}_{6} \bar{\Gamma}_{7}$	± 3	$\pm 1, \mp 5$	$\pm 4, \mp 2$	1	-
195	$\bar{R}_{6} \bar{R}_{7}$	± 3	$\pm 1, \mp 5$	$\pm 4, \mp 2$	1	-
197	$\bar{H}_{6} \bar{H}_{7}$	± 3	$\pm 1, \mp 5$	$\pm 4, \mp 2$	1	-
198	$\bar{M}_{5} \bar{M}_{5}$	-	-	± 2	3	-
199	$\bar{H}_{6} \bar{H}_{7}$	± 3	$\pm 1, \mp 5$	$\pm 4, \mp 2$	1	$U=\sigma_{z} \tau_{x}$
$207 / 208 / 209 / 210$	$\bar{\Gamma}_{8}$	± 3	$\pm 1, \mp 5$	$\pm 4, \mp 2$	2	-
$211 / 212 / 213 / 214$						
$207 / 208$	\bar{R}_{8}	± 3	$\pm 1, \mp 5$	$\pm 4, \mp 2$	2	-
211	\bar{H}_{8}	± 3	$\pm 1, \mp 5$	$\pm 4, \mp 2$	2	-
212	$\bar{M}_{6} \bar{M}_{7}$	-	-	± 2	4	-
213	$\bar{M}_{6} \bar{M}_{7}$	-	-	± 2	4	$k_{y} \rightarrow-k_{y}$
214	\bar{H}_{8}	± 3	$\pm 1, \mp 5$	$\pm 4, \mp 2$	2	$U=\sigma_{0} \tau_{x}, \gamma \rightarrow-\gamma$

Finding topological phase transitions

Example: Irrep $\bar{\Gamma}_{6} \bar{\Gamma}_{7}$ with dimension 4 of space group 198
Main points of derivation:

- Characteristic polynomial of H is $\chi(E)=E^{4}+a E^{2}+\operatorname{det}(H) \Longrightarrow$ spectrum is particle-hole symmetric

- \Longrightarrow can become gapless when $E_{2}=E_{3}=-E_{2}=0$ or $E_{1}=E_{2}$
- Happens when $\operatorname{det}(H)=E_{1} E_{2}\left(-E_{1}\right)\left(-E_{2}\right)=E_{1}^{2} E_{2}^{2}=0$ or $\mathcal{Q}=a^{2}-4 \operatorname{det}(H)=0$
- $\chi(E)$ is rotationally invariant in phase space around the α_{2} axis \Longrightarrow topological phase diagram is rotationally invariant
- $\operatorname{det}(H) \geq 0 \Longrightarrow$ Don't find $\operatorname{det}(H)=0$. Easier, find minimum with $\nabla_{\alpha} \operatorname{det}(H)=0$
- Same can be shown for \mathcal{Q}
- Use scale-invariance of H in α and \boldsymbol{k} (H is linear)

Topological phase diagram of $\bar{\Gamma}_{6} \bar{\Gamma}_{7}$

Example: Irrep $\bar{\Gamma}_{6} \bar{\Gamma}_{7}$ with dimension 4 of space group 198. $\nu_{2} \in\{-5,-1,1,5\}$

Topological phase diagram of $\bar{\Gamma}_{6} \bar{\Gamma}_{7}$

Example: Irrep $\bar{\Gamma}_{6} \bar{\Gamma}_{7}$ with dimension 4 of space group 198. $\nu_{2} \in\{-5,-1,1,5\}$

Weyl point production via phase transitions

Creation of total of 26 WPs

$\nu=5$ phase material search

Material search was performed to find $\nu=5$ phase near $E_{\text {fermi }}$

BaAsPt in SG 198

Full topological classification of BaAsPt with $\bar{\Gamma}_{6} \bar{\Gamma}_{7}$ in $\nu=5$ phase

$\nu=5$ phase material search

Material search was performed to find $\nu=5$ phase near $E_{\text {fermi }}$

BaAsPt in SG 198

Surface DOS with Fermi arcs and projected charges

- Automatic generation of low-energy Hamiltonian at multi-fold crossings
- Analytical tools for topological phase diagrams
- Applied to all space groups
- Found unusually high Chern number of $\nu=5$
- Material BaAsPt

Huber et al. (2022). "Network of topological nodal planes, multifold degeneracies, and Weyl points in CoSi". In: Physical Review Letters 129.2, 026401.
Setyawan and Curtarolo (2010). "High-throughput electronic band structure calculations: Challenges and tools".
In: Computational materials science 49.2, 299-312.
Aroyo et al. (2006). "Bilbao Crystallographic Server. II. Representations of crystallographic point groups and space groups". In: Acta Crystallographica Section A: Foundations of Crystallography 62.2, 115-128.
Gresch et al. (2018). "Automated construction of symmetrized Wannier-like tight-binding models from ab initio calculations". In: Physical Review Materials 2.10, 103805.
Bradlyn et al. (2016). "Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals". In: Science 353.6299.

