

Understanding chiral crossings with local and global symmetry constraints

Moritz M. Hirschmann

Max Planck Institute for Solid State Research, Germany November 10, 2022

Topological band crossings

Implications of band crossings

- Top. invariants Chern number, chirality
- Surface states
- Effects on transport properties

Two-fold screw rotation \tilde{C}_2^z

Symmetries relate Weyl points

Symmetry D on chirality $\nu_{\mathbf{k}}$

- Rotations and time reversal: $\nu_{\mathbf{k}} = \nu_{D\mathbf{k}}$
- Mirror and Inversion: $\nu_{\mathbf{k}} = -\nu_{D\mathbf{k}}$

Yet, time reversal \Rightarrow four Weyl points.

Hirschmann, M. M., Leonhardt, A., Kilic, B., Fabini, D. H., Schnyder, A. P. (2021). Physical Review Materials, 5(5), 054202.

Outline

1. Local constraint

Relation between rotation eigenvalues and the chirality

2. Global constraint

Enforced band exchange by (non)symmorphic symmetry

3. Applications of global and global constraints Double Weyl points in TaAs Quasi-symmetry-protected quadruple Weyl points Fourfold crossing with Chern number $\nu = 5$ Topological nodal planes Chiral nodal lines

Local constraint I

Consider Weyl points:

- rotation symmetry C_n
- eigenvalues $C_n \ket{E_b} = \lambda_b \ket{E_b}$ for band index b
- crossing between rotation eigenvalues λ_b^+ and λ_b^-

Goal: Determine the Chern number ν using $\Delta \varphi_b = \varphi_b^+ - \varphi_b^-$ with $\varphi_b^\pm = \arg \lambda_b^\pm$.

- $\bullet \ \ \text{Chern number } \nu = \text{Integral of Berry curvature}$
- **2** Rotation symmetry C_n simplifies the integration.

Local constraint II

- Apply Stokes theorem
- Symmetry-related paths partially cancel
- (5) At the north and south pole the phase $\Phi({\pmb k})$ reduces to φ^\pm

$$\begin{split} \nu &= \frac{n}{2\pi} \int_{S_W} \mathrm{d}\boldsymbol{n} \cdot \boldsymbol{\Omega}(\boldsymbol{k}) \\ &= \frac{n}{2\pi} \left(\int_{\partial S^1_W} \mathrm{d}\boldsymbol{s} \cdot \boldsymbol{A}(\boldsymbol{k}) + \int_{\partial S^2_W} \mathrm{d}\boldsymbol{s} \cdot \boldsymbol{A}(\boldsymbol{k}) \right) \ \mathrm{mod} \ n \\ &= \frac{n}{2\pi} \int_{\partial S^2_W} \mathrm{d}\boldsymbol{s} \cdot \nabla \Phi(\boldsymbol{k}) \qquad \mathrm{mod} \ n \\ &= \frac{n}{2\pi} \Delta \varphi \qquad \mathrm{mod} \ n \end{split}$$

summarizes tables given in:

Fang et al. PRL 108, 266802 (2011), Tsirkin et al., PRB 96, 045102 (2017)

Outline

1. Local constraint

Relation between rotation eigenvalues and the chirality

2. Global constraint

Enforced band exchange by (non)symmorphic symmetry

3. Applications of global and global constraints Double Weyl points in TaAs Quasi-symmetry-protected quadruple Weyl points Fourfold crossing with Chern number $\nu = 5$ Topological nodal planes Chiral nodal lines

Global constraint I

$$(C_n^z(x, y, \frac{m}{n}))^n = \pm T(0, 0, m) = \pm \exp(imk_z)$$
$$\implies \lambda_{C_n} = (\pm 1)^{1/n} \exp\left(i\frac{2\pi p + mk_z}{n}\right)$$
$$\equiv \exp(i\phi(k_z))$$

with band crossings at
$$\{k_c\}$$
 $\varphi_b(k_z) = \phi(k_z) + \sum_{k_c \le k_z} \Delta \varphi_{b,c}$
BZ periodicity $\varphi_b(-\pi) = \varphi_b(\pi) \Rightarrow \sum \Delta \varphi_{b,c_b} + 2\pi \frac{m}{n} = 0 \mod$

 c_b

 2π

Global constraint II

If all c_b are two-band crossings:

$$\begin{split} b &= 1 & \sum_{c_1} \Delta \varphi_{1,c_1} = -2\pi \frac{m}{n} \mod 2\pi \\ b &= 2 & \sum_{c_2} \Delta \varphi_{2,c_2} - \sum_{c_1} \Delta \varphi_{1,c_1} = -2\pi \frac{m}{n} \mod 2\pi \\ \Leftrightarrow \sum_{c_2} \Delta \varphi_{2,c_2} = -2 \cdot 2\pi \frac{m}{n} \mod 2\pi \\ \vdots & \vdots \\ any \ b & \sum_{c_b} \Delta \varphi_{b,c_b} = -b \cdot 2\pi \frac{m}{n} \mod 2\pi. \end{split}$$

Outline

1. Local constraint

Relation between rotation eigenvalues and the chirality

2. Global constraint

Enforced band exchange by (non)symmorphic symmetry

3. Applications of global and global constraints Double Weyl points in TaAs Quasi-symmetry-protected quadruple Weyl points Fourfold crossing with Chern number $\nu = 5$ Topological nodal planes Chiral nodal lines

Application to band structures I

Chern number ν of a band crossing $\nu=\Delta \varphi \frac{n}{2\pi} \mod n$

Eigenvalues and Weyl points for SG 144 (P3₁) (simplest arrangement)

Y.H. Chan, B. Kilic, M.M.H., C.K. Chiu, L.M. Schoop, D.G. Joshi, A.P. Schnyder, (2019). Physical Review Materials, 3(12), 124204.

Application to band structures II

For $C_2^y(0, \frac{1}{2}, \frac{1}{2})$ the global constraint is:

$$\sum_{c_b} \Delta \varphi_{b,c_b} = b \cdot \pi \mod 2\pi$$

every second band exhibits an odd number of Weyl points

M.A. Wilde, M. Dodenhöft, A. Niedermayr, A. Bauer, M.M.H., K. Alpin, A.P. Schnyder, C. Pfleiderer (2021). Nature, 594(7863), 374-379.

Double Weyl points in TaO₂

Oxygen deficient NbO $_2$ and (proposed) TaO $_2$

- SG 80 *I*4₁
- $C_4^z T$ creates Kramers pairs at P
- At P the only symmetry is C_2^z
- $\Delta \varphi = 0, \nu = 0 \mod 2$: double Weyl point

Quadruple Weyl

Twofold quadruple Weyl points $u = \pm 4$ in cubic point groups

T. Zhang, R. Takahashi, C. Fang, S. Murakami, Physical Review B, 102, 125148 (2020)

$$H(\mathbf{k}) = \left(d_0 + d_1(k_x^2 + k_y^2 + k_z^2)\right)\sigma_0 + a_0k_xk_yk_z\sigma_z + \begin{pmatrix} 0 & a_1(k_x^2 + k_y^2 e^{-i2\pi/3} + k_z^2 e^{-i4\pi/3}) \\ H.C. & 0 \end{pmatrix}$$

for $a_0, a_1 \in \mathbb{R} \Rightarrow H(\mathbf{k})$ belongs to point group 432.

Symmetry eigenvalues:

 λ_{C_4} do not exchange: $u = 0 \mod 4$

 λ_{C_3} exchange: $\nu = \pm 1 \mod 3$

Lowest possible Chern number: $\nu = \pm 4$ (Quadruple Weyl)

Quasi-symmetric quadruple Weyl

What happens in a cubic point group without fourfold rotation? One finds the same Hamiltonian:

$$\begin{aligned} H(\mathbf{k}) &= \left(d_0 + d_1 (k_x^2 + k_y^2 + k_z^2) \right) \sigma_0 \\ &+ a_0 k_x k_y k_z \sigma_z + \begin{pmatrix} 0 & a_1 (k_x^2 + k_y^2 \mathrm{e}^{-i2\pi/3} + k_z^2 \mathrm{e}^{-i4\pi/3}) \\ H.C. & 0 \end{pmatrix} \end{aligned}$$

now with $a_1 \in \mathbb{C}$.

But this is not enough to break the C_4 symmetry, needs k^n with $n > 3 \rightarrow C_4$ is a quasi-symmetry of the low-energy model.

$$U(C_4^z) = \begin{pmatrix} 0 & e^{i(\arg(a_1) + 2\pi/3)} \\ e^{-i(\arg(a_1) + 2\pi/3)} & 0 \end{pmatrix},$$
$$U(C_4^z)^{\dagger} H(k_x, k_y, k_z) U(C_4^z) = H(k_y, -k_y, k_z).$$
As before: $\lambda_{U(C_4^z)}$: $\nu = 0 \mod 4 \to \nu = \pm 4$

Crossing with chirality $\nu = 5$ Cubic point group PG 23 • $C_3: \nu = 1 \mod 3$ $v_2 = -1$ $v_2 = 1$ $\rightarrow \nu \in \{\ldots, -5, -2, 1, 4, \ldots\}$ $\sqrt{\alpha_0^2 + \alpha_1^2}$ • $C_2: \nu = 1 \mod 2$ $\rightarrow \nu \in \{\ldots, -5, -3, -1, 1, 3, 5 \ldots\}$ \rightarrow Lowest possible chiralities $\nu = 1, -5$ **BaAsPt** 0.75 -0.50 0.25 E – E_f [eV] 0.00 -0.25 -0.50 XIM R M X R 0 {3, -5, 5, -3} {-2, 2} {21,-21} {3,-3} ×

Nodal planes

- two-fold screw rotation $ilde{C}_2^x$
- time reversal $\theta = i\sigma_y \mathcal{K}$

Kramers theorem applies to $heta ilde C_2^x$ because

- $(\theta \tilde{C}_2^x)^2 = +T_{(1,0,0)} = e^{ik_x} \underset{k_x=\pi}{=} -1$
- invariant planes: $k_x = 0$ and $k_x = \pi$

 $(heta ilde C_2^x)^2 = -1$ \Rightarrow two-fold degenerate plane $k_x = \pi$

M.A. Wilde, M. Dodenhöft, A. Niedermayr, A. Bauer, M.M.H., K. Alpin, A.P. Schnyder, C. Pfleiderer (2021). Nature, 594(7863), 374-379.

Trio of topological nodal planes

Necessary symmetries: Yu, Z. M., et al. (2019). Physical Review B, 100(4), 041118.

• $\theta \tilde{C}_2^x$, $\theta \tilde{C}_2^y$, $\theta \tilde{C}_2^z$

 \Longrightarrow three intersecting nodal planes

- $heta^2 = -1$, single Kramers-Weyl point at Γ with $u_{\mathrm{Weyl}} = \pm 1$
- Multiplicity of any other Weyl point > 1. \implies nodal planes compensate the Weyl point at Γ with $\nu_{NP} = \mp 1$.

Properties of nodal plane trios:

- No surface states
- Vanishing anomalous Hall effect

Topological nodal plane duo

Symmetries:

- $heta ilde C_2^x$, $heta ilde C_2^z$ \Rightarrow two nodal planes
- Time-reversal symmetry θ is broken.
- Two-fold screw rotation \tilde{C}_2^y

 $ilde{C}_2^y$ representation:

• \tilde{C}_2^y -invariant lines: rotation axes

•
$$(\tilde{C}_2^y)^2 = T_{(0,1,0)}(i\sigma_y)^2 = -e^{ik_y}$$

 \Rightarrow symmetry eigenvalues $\pm i e^{i k_y/2}$

⇒ uncompensated, odd number of Weyl points

\Longrightarrow The nodal plane must be topological.

M.A. Wilde, M. Dodenhöff, A. Niedermayr, A. Bauer, M.M.H., K. Alpin, A.P. Schnyder, C. Pfleiderer (2021). Nature, 594(7863), 374-379.

Topological nodal plane duo

M.A. Wilde, M. Dodenhöft, A. Niedermayr, A. Bauer, M.M.H., K. Alpin, A.P. Schnyder, C. Pfleiderer (2021). Nature, 594(7863), 374-379.

Space gr	OU	CS	wi	h	no	da	lр	lar	nes
p p	ossible to	pologica	l nodal pl	ane		enforc	ed topol	ogical no	dal plane
Paramagnets	4.8 [t] 36.173 113.268 186.204	17.8 [t] 76.8 [t] 114.276 198.10 [T]	18.17 [t] 78.20 [t] 169.114 [t] 212.60 [T]	19.26 [T] 90.96 [t] 170.118 [t] 213.64 [T]	20.32 [t] 91.104 [t] 173.130 [t]	26.67 92.112 [T] 178.156 [t]	29.100 94.128 [T] 179.162 [t]	31.124 95.136 [t] 182.180 [t]	33.145 96.144 [T] 185.198
~Ferromagnets	4.9 [t] 26.69 51.294 55.358 59.410 63.464 96.146 [T] 128.405 137.510 178.158 [t] 103.258	11.54 29.101 51.296 56.369 60.422 64.475 96.147 [T] 129.414 137.513 179.163 [t] 102.250	14.79 29.102 52.310 56.370 60.423 64.476 113.269 129.417 138.522 179.164 [t]	17.10 [t] 31.125 52.311 57.382 60.424 90.98 [t] 113.271 [t] 130.426 138.525 182.181 [t] 104.266	18.18 [t] 31.126 53.327 57.383 61.436 90.99 [t] Nd5Si4 169.115 182.182 [t]	18.19 [t] 57.384 62.446 92.114 [T] 114.279 [t] 135.486 170.119 [t] 185.199	19.27 [T] 33.147 54.342 58.397 62.447 92.115 [T] 127.390 135.489 173.131 t] 185.200	20.34 [t] 36.174 54.344 58.398 62.448 94.130 [T] 127.393 136.498 176.147 186.205	26.68 36.175 55.357 59.409 63.463 94.131 [t] 128.402 136.501 178.157 [t] 186.206
~Antiferromagnets	3.5 [t] 17.15 [T] 21.44 [t] 27.86 30.119 33.149 37.184 81.38 [t] 92.117 [t] 96.119 [t] 103.200 111.257 115.288 171.124 [t] 208.47 [T]	3.6 [t] 18.20 [t] 25.61 225.91 23.150 37.186 89.92 [t] 93.124 [t] 99.168 103.202 111.258 115.290 172.128 [t] 215.73	4.10 [t] 18.21 [T] ND ₃ S ₆ 30.122 33.154 75.4 [t] 99.125 [T] 99.170 104.208 112.264 116.296 177.154 [t] 218.84	16.4 (t) 18.22 [T] 25.65 28.96 31.128 34.161 75.6 [t] 93.126 [T] 93.126 [T] 100.176 112.265 116.298 180.172 [t]	16.5 [t] 18.24 [t] 26.71 28.98 31.129 34.162 76.11 [t] 90.100 [T] 94.132 [T] 100.178 105.216 117.304 181.178 [t]	16.6 [T] 19.28 [T] 26.72 29.104 31.133 34.164 77.16 [t] 90.102 [t] 94.134 [t] 101.184 105.218 113.272 117.306 183.190	17.11 [t] 19.29 [t] 26.76 29.105 32.139 35.169 77.18 [t] 95.141 [T] 101.186 106.224 113.274 118.312 184.196	17.13 [t] 20.36 [t] 27.82 29.109 32.142 35.171 78.28 [t] 91.110 [T] 95.142 [T] 102.192 106.226 114.280 118.314 195.3 [T]	17.14 [T] 21.42 [t] 27.85 30.118 32.143 36.178 81.36 [t] 92.116 [T] 96.148 [T] 102.194 111.256 114.282 168.112 [t] 207.43 [T]

4

M.A. Wilde, M. Dodenhöft, A. Niedermayr, A. Bauer, M.M.H., K. Alpin, A.P. Schnyder, C. Pfleiderer (2021). Nature, 594(7863), 374-379.

Nodal plane duo in SG 94

SG 94 $P4_22_12$ with spin-orbit coupling

- Two nodal planes at $k_x = k_y = \pi$
- Along Z-Γ-Ζ: hour-glass crossing
- rotation 4_2 : n = 4, m = 2

Consider the lowest band b = 1 on the fourfold rotation axis:

global constraint:
$$\sum_{c_1} \Delta \varphi_{1,c_1} = -m \frac{2\pi}{n} \mod 2\pi$$

Total chirality $\nu_{Z-\Gamma-Z}$ on the fourfold rotation axis:

add local constraint:
$$\nu_{Z-\Gamma-Z} \equiv \sum_{c_1} \nu_{c_1} = \sum_{c_1} \frac{n}{2\pi} \Delta \varphi_{1,c_1} = -m \mod 4$$

 $\nu_{Z-\Gamma-Z} = 2 \mod 4$ cannot be compensated by generic Weyl points \Rightarrow The nodal plane duo exhibits a charge of $\nu_{nodal \ plane} = -\nu_{Z-\Gamma-Z} \neq 0$.

Application: Chiral nodal lines I

Question: Are chiral nodal lines possible?

- Line protected by mirror symmetry $\rightarrow \nu = 0$
- Can there be a stable line with $\nu \neq n\mathbb{Z}$ enclosing a C_n rotation axis?

AgF₃ - González-Hernández, R., et al PRM 4, 124203 (2020)

Application: Chiral nodal lines IISurface including line:Surface excluding line: $\nu_{\text{line}} + \nu_{\text{axis}} = \Delta \varphi \frac{n}{2\pi} \mod n$ $\nu_{\text{axis}} = \Delta \varphi \frac{n}{2\pi} \mod n$ $\Rightarrow \nu_{\text{line}} = 0 \mod n$, thus it cannot be protected by rotation symmetry.Model of a chiral nodal line:

Summary

- Local constraint
 - $\nu = \Delta \varphi \, \tfrac{n}{2\pi} \mod n$
- Global constraint

$$\sum_{c_b} \Delta \varphi_{b,c_b} = -b \cdot 2\pi \frac{m}{n} \mod 2\pi$$

• Applications

Double Weyl points in TaAs Quasi-symmetry-protected quadruple Weyl points Crossings with Chern number $\nu = 5$ Topological nodal planes Chiral nodal lines

Summary - Thank you!

- Local constraint
 - $\nu = \Delta \varphi \, \tfrac{n}{2\pi} \mod n$
- Global constraint

$$\sum_{c_b} \Delta \varphi_{b,c_b} = -b \cdot 2\pi \frac{m}{n} \mod 2\pi$$

Applications

Double Weyl points in TaAs Quasi-symmetry-protected quadruple Weyl points Crossings with Chern number $\nu = 5$ Topological nodal planes Chiral nodal lines

Topology in a Weyl semimetal

- Chern number ν : Obstruction to a smooth gauge for eigenstates.
- Wilson loop : Its eigenvalues are the Wannier charge centers.

Band structure of MnSi

Topological nodal planes in ferromagnetic MnSi (mSG 19.27 $P2_1^\prime 2_1 2_1^\prime)$

- Several twofold (WP) and fourfold (FP) Weyl points
- Band degeneracy protected at the Fermi surface: Topological protectorate (TP)

M.A. Wilde, M. Dodenhöft, A. Niedermayr, A. Bauer, M.M.H., K. Alpin, A.P. Schnyder, C. Pfleiderer (2021). Nature, 594(7863), 374-379.

Symmetry eigenvalues in MnSi Does the picture of the eigenvalue winding argument hold?

M.A. Wilde, M. Dodenhöft, A. Niedermayr, A. Bauer, M.M.H., K. Alpin, A.P. Schnyder, C. Pfleiderer (2021). Nature, 594(7863), 374-379.

Topological nodal planes in MnSi

Ferromagnetic MnSi (mSG 19.27 $P2'_12_12'_1$)

de Haas-van Alphen spectroscopy provides evidence for two gapless nodal planes

M.A. Wilde, M. Dodenhöft, A. Niedermayr, A. Bauer, M.M.H., K. Alpin, A.P. Schnyder, C. Pfleiderer (2021). Nature, 594(7863), 374-379.

Surface states from DFT for MnSi

- Generic tight-binding model: Characteristic surface states
- ferromagnetic MnSi: Several overlapping bands, many Weyl points
- \Rightarrow Need for simpler systems to study topological nodal planes.

M.A. Wilde, M. Dodenhöft, A. Niedermayr, A. Bauer, M.M.H., K. Alpin, A.P. Schnyder, C. Pfleiderer (2021). Nature, 594(7863), 374-379.

De Haas-van Alphen data

- Oscillations measured using magnetic torque
- Several orbits passing the nodal plane
- Focus on the single frequency M₁.

M.A. Wilde, M. Dodenhöft, A. Niedermayr, A. Bauer, M.M.H., K. Alpin, A.P. Schnyder, C. Pfleiderer (2021). Nature, 594(7863), 374-379.

Angle-resolved spectrum

Band structure for rotated fields

Berry curvature of the generic model

