SPTO in Open Quantum Systems

Caroline de Groot¹, Norbert Schuch², <u>Alex Turzillo^{1,3}</u>.

¹Max Planck Institute of Quantum Optics ²University of Vienna ³Perimeter Institute for Theoretical Physics

arXiv: 2112.04483

November 8, 2022

イロト イヨト イヨト イ

What are the topological phases of open systems? Of mixed states?

In particular, which closed topological phases are robust against dissipation?

イロト イロト イヨト イ

In closed systems...

paths in the space of gapped Hamiltonians... or equivalently...

fast, local Hamiltonian evolution $\psi \xrightarrow{H} \psi'$

• ... approximated by low depth circuits of local gates (e.g. polylog(L) depth of constant size gates)

• In open systems... Coser & Pérez-García [1810.05092] propose using

fast, local Lindbladian evolutions $\rho \xrightarrow{\mathcal{L}_1} \rho'$ and $\rho' \xrightarrow{\mathcal{L}_2} \rho$

• motivation: local observables are analytic within phases.

Defining phase equivalence for SPT phases

• In closed systems...

paths in the space of symmetric gapped Hamiltonians

fast, local, symmetric Hamiltonian evolution

• ... approximated by low depth circuits of local symmetric gates

• In open systems...?

Not obvious what symmetry condition to impose on Lindbladian evolutions.

Two natural guesses...

- weak symmetry: $\mathcal{U}_g \circ \mathcal{L} \circ \mathcal{U}_g^\dagger = \mathcal{L}$.
- strong symmetry: $\mathcal{L}^{\dagger}(U_g) = 0$.

Key idea

• A "good" definition of phase equivalence is one for which order parameters are constant within phases...

dynamical definition = static definition

• For SPT orders in 1D... we consider string order parameters.

... more on these later

Proposed SPT phase equivalence

Main claim

SPT order, as defined by string order parameters,

is preserved by a fast, local Lindbladian evolution ${\cal L}$

if and only if \mathcal{L} satisfies a strong symmetry condition.

Interpretations

- 1. Simply a rule for determining whether or not SPT order is robust against certain couplings to the environment.
- 2. A "good" definition of SPT phase equivalence in open systems.
 - Two mixed states belong to the same SPT phase if they are related by...

fast, local, strongly symmetric Lindbladian evolutions $\rho \xrightarrow{\mathcal{L}_1} \rho'$ and $\rho' \xrightarrow{\mathcal{L}_2} \rho$.

ALOY LUCTURE
AIEX TUIZINO

Weak and Strong Symmetry Conditions

Alex Turzillo

SPTO in Open Quantum Systems

November 8, 2022 7 / 25

・ロト ・回 ト ・ ヨト ・

Weakly symmetric noise destroys 1D SPT order

• C&PG constructs a fast, local Lindbladian evolution that does

 $|\psi
angle \longrightarrow |\mathsf{product}
angle$

to any 1D state $|\psi\rangle$.

This evolution destroys SPT order.

- Solution ...? Maybe this Lindbladian is not symmetric.
- However it satisfies

$$\mathcal{U}_g \circ \mathcal{L} \circ \mathcal{U}_g^{\dagger} = \mathcal{L}$$
 . (weak symmetry)

 \bullet Is there a stronger symmetry condition on ${\cal L}$ that protects SPT order?

Weak symmetry allows interference between trajectories

- Work with channels \mathcal{E} . Have in mind Lindbladian evolutions $\mathcal{E}_t = e^{t\mathcal{L}}$.
- \mathcal{L} is weakly symmetric precisely when \mathcal{E}_t satisfies, at all times t,

$$\mathcal{U}_g \circ \mathcal{E}_t \circ \mathcal{U}_g^{\dagger} = \mathcal{E}_t$$
 . (weak symmetry)

• Weak symmetry (WS) in terms of Kraus operators:

$$\sum (U_g K_i U_g^{\dagger}) \rho (U_g K_i U_g^{\dagger})^{\dagger} = \sum K_i \rho K_i^{\dagger} , \quad \forall g$$

 \Rightarrow For each g, there is a basis of Kraus operators K_i^g where

$$U_g K_i^g U_g^\dagger = e^{i\theta_i(g)} K_i^g$$
, $\forall i$.

• Different phases $\theta_i \neq \theta_j$ give rise to interference between trajectories.

• Strong symmetry (SS): trajectories transform with *the same* phase:

$$U_g K_i U_g^{\dagger} = e^{i \theta(g)} K_i , \quad \forall i, g .$$

- This condition is basis-independent, so the superscript g can be dropped.
- Neglect the weak invariant $\theta(g)$. It vanishes for $\mathcal{E} = e^{t\mathcal{L}}$.

• Comment: WS and SS are the same for reversible channels $\rho \mapsto W \rho W^{\dagger}$.

イロト イポト イヨト イヨ

• Using the relation between the K_i and the jump operators L_i , we see that...

...families $\mathcal{E}_t = e^{t\mathcal{L}}$ of SS channels are generated by SS Lindbladians:

$$U_g H = H U_g$$
, $U_g L_i = L_i U_g$, $\forall i, g$.

 \bullet The SS condition on ${\cal L}$ has appeared previously. [Buča , Prosen 12] [Albert , Jiang 13]

< □ > < 同 > < 三 > <

Strong symmetry in the Heisenberg picture

- The Heisenberg picture is convenient for studying the evolution of observables: $Tr[\mathcal{E}(\rho)\mathcal{O}] = Tr[\rho \mathcal{E}^{\dagger}(\mathcal{O})] .$
- \bullet Strong symmetry of ${\cal E}$ means that ${\cal E}^{\dagger}$ fixes the symmetry operators:

$$U_g K_i U_g^{\dagger} = K_i , \quad \forall i, g \qquad \Longleftrightarrow \qquad \mathcal{E}^{\dagger}(U_g) = U_g , \quad \forall g$$

- ... in other words, charge is conserved in the system alone.
- In terms of the Lindbladian, strong symmetry means...

$$\mathcal{L}^{\dagger}(U_g) = 0 \; , \quad \forall \, g \; .$$

• The SPT-destroying Lindbladian of C&PG fails this condition.

	_	
Alex	IIIrzi	llo.
/ 110/1		

イロト イポト イヨト イヨ

Strong symmetry in terms of purifications

• Purification: unitary W on $\mathcal{H} \otimes A$ such that $K_i = \langle e_i | W | a \rangle$.

$$K_{1}^{1}-i = \begin{bmatrix} \mathbf{I} & \mathbf{I} \\ \mathbf{W} \\ \mathbf{I} & \mathbf{I} \end{bmatrix}_{i}^{i}, \quad \mathcal{E}(\rho) = \begin{bmatrix} K^{\dagger} \\ \mathbf{P} \\ \mathbf{P} \\ \mathbf{K} \end{bmatrix} = \begin{bmatrix} \mathbf{W}^{\dagger} \\ \mathbf{P} \\ \mathbf{P} \\ \mathbf{R} \end{bmatrix}_{i}^{i}$$

• Claim: If \exists a W symmetric with respect to some $U_g \otimes U_g^A$, the channel \mathcal{E} is WS.

$$\begin{array}{c} U_g^{\dagger}(U_g^A)^{\dagger} \\ 1 \\ W \\ 1 \\ U_g \\ U_g^A \end{array} = e^{i\theta(g)} \begin{array}{c} 1 \\ W \\ 1 \\ 1 \\ U_g \end{array} \Longrightarrow WS \begin{array}{c} U_g^{\dagger} \\ W \\ 1 \\ U_g \end{array} = e^{i\theta(g)} \begin{array}{c} 1 \\ W \\ 1 \\ U_g \end{array} \Longleftrightarrow SS$$

- Claim: The channel is SS if and only if there exists a W with $U_g^A = 1$.
- Strong symmetry means the system and bath couple by symmetric terms:

$$\mathcal{N} = e^{-itH/\hbar}$$
, $H = \sum_{i} H_{i}^{S} \otimes H_{i}^{E} \qquad \stackrel{SS}{\Longrightarrow} \qquad U_{g}H_{i}^{S} = H_{i}^{S}U_{g}$, $\forall i, g$.

Review: String Order for SPT Phases

Alex Turzillo

SPTO in Open Quantum Systems

November 8, 2022 14 / 25

・ロト ・回 ト ・ ヨト ・

Symmetry fractionalization in one dimension

• SPT phases are characterized by patterns of symmetry fractionalization on the edge.

• Boundary action V_g may be projective

$$V_g V_h = \omega(g,h) V_{gh}$$
, $\omega: G \times G \to U(1)$

[Chen, Gu, Wen 10] [Schuch, Perez-Garcia, Cirac 11] [Else, Nayak 14]

[Pollmann, Turner, Berg, Oshikawa 10]

- ω satisfies a cocycle condition and is defined up to coboundaries
 - \implies patterns of symmetry fractionalization are classified by group cohomology

$$[\omega]\in H^2(G,U(1))$$

•

イロト イヨト イヨト イ

Fractionalization in MPS

• Symmetry means $U_g^N |\psi\rangle = |\psi\rangle$. Represent each side as an MPS.

• Tensors A^i and $(U_g)^{ij}A_j$ define the same state \Rightarrow related by a gauge trans.:

$$U_g^{ij}A_j=e^{i\phi_g}V_gA_iV_g^{\dagger}$$

イロト イヨト イヨト イ

String operators

• For simplicity... assume the symmetry G is a finite abelian group.

• Expectation values on MPS display a selection rule, aka "pattern of zeros"

$$\langle s(g, O_{lpha})
angle = 0$$
 unless $\chi_{lpha}(h) = rac{\omega(h, g)}{\omega(g, h)}$ for all h .

• The pattern determines the ratios ω/ω and therefore the class $[\omega]$.

A ID > A ID > A

Patterns of zeros of MPS states

 To evaluate the string order parameter (s(g, α)), sandwich the string operator between (ψ) and |ψ), then apply some relations (injectivity) of the MPS tensor:

- Each end evaluates to $Tr[N_g O_{\alpha}]$.
- O_{α} transforms as α , while N_g transforms as ω/ω .
- Vanishes unless these representations are equal:

$$\langle s(g, O_{lpha})
angle = 0$$
 unless $\chi_{lpha}(h) = rac{\omega(h, g)}{\omega(g, h)}$ for all h .

• If they are equal, generically $Tr[N_g O_\alpha] \neq 0$.

Alex Turzillo

Ng =

Reconstructing the SPT invariant

- Represent the pattern as an array with columns g, rows $\alpha.$
- For each g, there is a unique α with $\langle s(g, O_{\alpha}) \rangle \neq 0$.

- Knowledge of all values $\langle s(g, O_{\alpha}) \rangle$ determines the ratios ω/ω .
- The ratios ω/ω completely determine the cohomology class $[\omega]$.
 - Follows from Schur's lemma.

• Comment: If G is non-abelian, other nonlocal order parameters may be needed to fully reconstruct [ω]. [Pollmann, Turner 12]

イロト イヨト イヨト イ

Strong Symmetry and String Order

(three slides of technical argument)

Alex Turzillo

SPTO in Open Quantum Systems

November 8, 2022 20 / 25

・ロト ・回 ト ・ ヨト ・

Strongly symmetric uncorrelated noise on string operators

• Consider uncorrelated noise

$$\mathcal{E} = \mathcal{E}_1 \otimes \cdots \otimes \mathcal{E}_L$$
.

- \mathcal{E} is strongly symmetric if and only if the \mathcal{E}_s are.
- The labels (g, α) of the string operator are preserved

$$\mathcal{E}^{\dagger}(s(g, O_{lpha})) = s(g, O_{lpha}')$$

since the bulk and end parts of the string transform as

$$\mathcal{E}^{\dagger}_{s}(U_{g}) = U_{g} , \qquad U^{\dagger}_{g}\mathcal{E}^{\dagger}_{s}(O_{\alpha})U_{g} = \chi_{\alpha}(g)\mathcal{E}^{\dagger}_{s}(O_{\alpha}) .$$

• Conversely, if a channel preserves all string operators, it must be SS.

• Next... what about the expectation values of these string operators?

Alex	Turzillo	

イロト イポト イヨト イヨト

Strong symmetry of \mathcal{L} is necessary and sufficient

Fix any SPT phase, as defined by its string order.

A semigroup preserves the phase at all finite times if and only if it is generated by a strongly symmetric Lindbladian.

'If' direction

- Does SS protect the pattern of zeros in the expectation values $(s(g, O_{\alpha}))$?
- Yes. String operators $s(g, O_{\alpha})$ and $\mathcal{E}^{\dagger}(s(g, O_{\alpha}))$ have the same labels, so they have the same pattern for generic choices of end operators...

...i.e. if O_{α} is not annihilated and is orthogonal to neither N_g nor $\mathcal{E}(N_g)$.

• Note: at $t o \infty$, \mathcal{E}_t may annihilate some end operators and spoil the pattern.

Transfer matrix argument

- Conversely... suppose string order is preserved and show strong symmetry.
- String order vanishes unless the following transfer matrix has $\lambda_{max} = 1$.

• $\lambda_{\max}=1$ implies the insertion is a symmetry. [Bridgeman, Chubb 17]

$$\Rightarrow \quad \mathcal{E}^{\dagger}(U_g) = U_{\sigma(g)} \; ,$$

- The family \mathcal{E}_t defines a continuous path σ_t from 1 to σ .
- For finite G, this implies that $\sigma = 1$, which is the strong symmetry condition:

$$\mathcal{E}_t^\dagger(U_g) = U_g \,\,,\,orall\,t,g \qquad \Longrightarrow \qquad \mathcal{L} ext{ is SS}$$

• Beyond finite $G_{\dots} \sigma$ is an inner automorphism, and so \mathcal{L} can also involve rotation by a generator of a continuous symmetry under which ω is invariant.

Interpretation and Related Results

Alex Turzillo

SPTO in Open Quantum Systems

November 8, 2022 24 / 25

・ロト ・回 ト ・ ヨト ・

• Ma & Wang [2209.02723] consider "Average SPT order" (ASPTO).

- Systems evolve with subgroup H "exact symmetry" (strong symmetry) and G/H "average symmetry" (weak symmetry).
- Nevertheless, some SPT order is robust.
- Lee, You, Xu [2210.16323] and Zhang, Qi, Bi [2210.17485] detect ASPTO with strange correlators.

- How can non-SS evolutions preserve SPTO?
- Resolution: these channels destroy *string order* but are nevertheless preserve SPTO in some other sense.

		_		
- A	ex.	1.00	rzil	lo.
	6.75			

イロト イポト イヨト イヨ