Ground state degeneracy on torus in topologically

 ordered phases

 ordered phases}

Haruki Watanabe（U Tokyo）
Collaborators：Yohei Fuji（U Tokyo），Meng Cheng（Yale）
Ref：HW，M．Cheng，Y．Fuji，arXiv：2211．00299

この絵を黒板に書く \rightarrow オンラインの人はメモ？

Introduction

Defining properties of phases (textbook)

Symmetry-protected topological/trivial phases

1. Unique GS with excitation gap.
2. Stable against symmetry-preserving perturbations.
3. Can be connected to product states by local unitaries if symmetries are broken. (Exceptions: 1D Kitaev chain, integer Quantum Hall systems, ...)
4. Trivial excitations in the bulk.

Anomalous states on symmetry-preserving boundaries.

Topologically-ordered phases

1. Degenerate GS with excitation gap.

Degeneracy does not originate from spontaneous breaking of symmetries.
2. Stable against any local perturbations.
3. Cannot be connected to product state by any local unitaries. Topological entanglement entropy.
4. Fractionalized (anyonic) excitations in the bulk. Anyons must appear in pairs.

Features of our model

- Our model contains a parameter $N \geq 2$ and $a=1,2, \cdots, N$.

N level spin
- Here we consider the case where N is a prime and a is chosen properly.
(primitive root modulo N)
- Ground state degeneracy (GSD) $N_{\text {deg }}$:
- $N_{\text {deg }}=N^{2}$ when both L_{1} and L_{2} are multiples of $N-1$.
- $N_{\text {deg }}=1$ when L_{1} or L_{2} is not a multiple of $N-1$.
- e.g. $N=11$ and $a=2$.

To observe $N_{\text {deg }}>1$, both L_{1} and L_{2} need to be multiples of 10 . Minimum system size is 10×10; total Hilbert space dimension $=11^{200}$. \rightarrow Nearly impossible to realize in any numerical study.

- Topological entanglement entropy (TEE): $S_{\text {top }}=-\log N$.
- Anyons: N^{2} species characterized by the electric charge $q_{e}=1,2, \cdots, N$ and the magnetic charge $q_{m}=1,2, \cdots, N$.

Defining properties of phases (updated)

Symmetry-protected topological/trivial phases

1. Unique GS with excitation gap
2. Stable against symmetry-preserving perturbations.
3. Can be connected to product states by local unitaries if symmetries are broken.
4. Trivial excitations in the bulk. Anomalous states on symmetry-preserving boundaries.

Topologically-ordered phases

1. Degenerate GS with excitation gap Degeneracy does not originate from spontaneous breaking of symmetries.
2. Stable against any local perturbations.
3. Cannot be connected to product state by any local unitaries. Topological entanglement entropy.
4. Fractionalized (anyonic) excitations in the bulk. Anyons must appear in pairs.

Defining properties of phases (updated)

Symmetry-protected topological/trivial phases

1. Unique GS with excitation gap for any sequence of L_{1} and L_{2}.
2. Stable against symmetry-preserving perturbations.
3. Can be connected to product states by local unitaries if symmetries are broken.
4. Trivial excitations in the bulk. Anomalous states on symmetry-preserving boundaries.

Topologically-ordered phases

1. Degenerate GS with excitation gap for a sequence of L_{1} and L_{2}. Degeneracy does not originate from spontaneous breaking of symmetries.
2. Stable against any local perturbations.
3. Cannot be connected to product state by any local unitaries. Topological entanglement entropy.
4. Fractionalized (anyonic) excitations in the bulk.Anyons-must appear-in pairs...

Definition \& basic properties of our model

NTIEMESSBIS

- Generalization of Pauli matrices to $N \geq 2$ level spins

$$
X=\left(\begin{array}{lllll}
1 & & & \\
& 1 & & \\
& & \ddots & \\
& & & 1
\end{array}\right) \quad Z=\left(\begin{array}{lllll}
1 & & & & \\
& \omega & & & \\
& & \omega^{2} & & \\
& & & \ddots & \\
& & & & \omega^{N-1}
\end{array}\right)
$$

- $\mathbb{Z}_{N} \times \mathbb{Z}_{N}$ group with phase $\omega=e^{\frac{2 \pi i}{N}}$

$$
Z X=\omega X Z=\left(\begin{array}{llll}
\omega & & & \\
& \omega^{2} & & \\
& & \ddots & \\
& & & \omega^{N-1}
\end{array}\right)
$$

- A N level spin is placed on every bond. They satisfy $\hat{Z}_{\boldsymbol{r}} \hat{X}_{\boldsymbol{r}^{\prime}}=\omega^{\delta_{r, r^{\prime}}} \hat{X}_{\boldsymbol{r}^{\prime}} \hat{Z}_{\boldsymbol{r}}$ and $\hat{Z}_{\boldsymbol{r}}^{N}=\hat{X}_{\boldsymbol{r}}^{N}=1$.
- Periodic boundary condition (PBC) with system size L_{1} and $L_{2} \rightarrow$ System is put on torus.
- Total Hilbert space dimension is $N^{2 L_{1} L_{2}}$.

\mathbb{Z}_{N} toric code

- Vertex and plaquette terms (all commute regardless of a)
$\hat{A}_{\left(m_{1}, m_{2}\right)}=\hat{X}_{\left(m_{1}+\frac{1}{2}, m_{2}\right)}^{-a} \hat{X}_{\left(m_{1}, m_{2}+\frac{1}{2}\right)}^{-a} \hat{X}_{\left(m_{1}-\frac{1}{2}, m_{2}\right)} \hat{X}_{\left(m_{1}, m_{2}-\frac{1}{2}\right)}$
$\hat{B}_{\left(m_{1}+\frac{1}{2}, m_{2}+\frac{1}{2}\right)}=\hat{Z}_{\left(m_{1}+1, m_{2}+\frac{1}{2}\right)} \hat{Z}_{\left(m_{1}+\frac{1}{2}, m_{2}+1\right)}^{-1} \hat{Z}_{\left(m_{1}, m_{2}+\frac{1}{2}\right)}^{-a} \hat{Z}_{\left(m_{1}+\frac{1}{2}, m_{2}\right)}^{a}$
- $a=1,2, \cdots, N$ is a very important parameter.
- Hamiltonian is sum of stabilizers:

$$
\begin{aligned}
\hat{H}=- & \sum_{v \in \mathscr{V}} \frac{1}{2}\left(\hat{A}_{v}+\text { h.c. }\right)-\sum_{p \in \mathscr{P}} \frac{1}{2}\left(\hat{B}_{p}+\text { h.c. }\right) \\
\mathscr{V} & =\left\{\left(m_{1}, m_{2}\right) \mid m_{i}=0,1, \cdots, L_{i}-1\right\} \\
\mathscr{P} & =\left\{\left.\left(m_{1}+\frac{1}{2}, m_{2}+\frac{1}{2}\right) \right\rvert\, m_{i}=0,1, \cdots, L_{i}-1\right\}
\end{aligned}
$$

- Translation symmetry: $\hat{T}_{i} \hat{X}_{\boldsymbol{r}} \hat{T}_{i}^{\dagger}=\hat{X}_{r+e_{i}}$ and $\hat{T}_{i} \hat{Z}_{\boldsymbol{r}} \hat{T}_{i}^{\dagger}=\hat{Z}_{\boldsymbol{r}+\boldsymbol{e}_{i}}$

A ground state

- Since $\hat{A}_{v}^{N}=\hat{B}_{p}^{N}=1$, the eigenvalues of \hat{A}_{v} and \hat{B}_{p} are N-fold: $1, \omega, \cdots, \omega^{N-1}$.
- Any state with eigenvalues +1 for all vertices and plaquettes is a ground state.
- A ground state can be constructed by
(i) starting from the ferromagnetic state $\hat{Z}_{r}\left|\phi_{0}\right\rangle=\left|\phi_{0}\right\rangle \quad(\forall r \in \Lambda)$
(ii) applying the projector $\hat{P}=\frac{1}{N^{L_{1} L_{2}}} \prod_{v \in \mathscr{V}} \sum_{\ell=0}^{N-1} \hat{A}_{v}^{\ell}$ with the following properties.

Then $\left|\Phi_{0}\right\rangle \propto \hat{P}\left|\phi_{0}\right\rangle$ has eigenvalues +1 for all vertices and plaquettes.

- $\hat{P}^{2}=\hat{P}$
- $\hat{A}_{v} \hat{P}=\hat{P} \hat{A}_{v}=\hat{P}$
- $\hat{B}_{p} \hat{P}=\hat{P} \hat{B}_{p}$
- $\hat{T}_{i} \hat{P}=\hat{P} \hat{T}_{i}$

Simple case 1: $a=1$

- This case is basically the same as the original toric code. Global constraints $\prod_{v \in \mathscr{V}} \hat{A}_{v}=\prod_{p \in \mathscr{P}} \hat{B}_{p}=1$.
X loops: $\hat{X}^{(1)}=\prod_{\ell=0}^{L_{1}-1} \hat{X}_{\left(\ell, L_{2}-\frac{1}{2}\right)}, \hat{X}^{(2)}=\prod_{\ell=0}^{L_{2}-1} \hat{X}_{\left(L_{1}-\frac{1}{2}, \ell\right)}$. - Z loops: $\hat{Z}^{(1)}=\prod_{\ell=0}^{L_{1}-1} \hat{Z}_{\left(\ell+\frac{1}{2}, 0\right)}, \hat{Z}^{(2)}=\prod_{\ell=0}^{L_{2}-1} \hat{Z}_{\left(0, \ell+\frac{1}{2}\right)}$.
- $\hat{Z}^{(1)} \hat{X}^{(2)}=\omega \hat{X}^{(2)} \hat{Z}^{(1)}$.
- $\hat{Z}^{(2)} \hat{X}^{(1)}=\omega \hat{X}^{(1)} \hat{Z}^{(2)}$.
- $\left[\hat{Z}^{(1)}, \hat{Z}^{(2)}\right]=\left[\hat{X}^{(1)}, \hat{X}^{(2)}\right]=0$.
- $\left[\hat{Z}^{(1)}, \hat{X}^{(1)}\right]=\left[\hat{X}^{(2)}, \hat{Z}^{(2)}\right]=0$.

- GSD: $N_{\text {deg }}=N^{2}$. TEE: $S_{\text {top }}=-\log N \cdot N^{2}$ species of anyons.

Open string operators Control the eigenvalues of

- $\hat{A}_{v}\left(v \in \mathscr{V}, v \neq v_{0}\right)$
- $\hat{B}_{p}\left(p \in \mathscr{P}, p \neq p_{0}\right)$
$\hat{Z}_{r} \hat{X}_{r^{\prime}}=\omega^{\delta_{r, r}} \hat{X}_{r^{\prime}} \hat{Z}_{r}$
$\hat{A}_{v_{0}}$ and $\hat{B}_{p_{0}}$ are fixed by global constraints.

Closed string operators $\hat{\hat{X}}^{(2)}$ and $\hat{Z}^{(2)}$
Control the eigenvalues of - $\hat{X}^{(1)}$ and $\hat{Z}^{(1)}$
$\hat{Z}^{(2)} \hat{X}^{(1)}=\omega \hat{X}^{(1)} \hat{Z}^{(2)}$
$\hat{Z}^{(1)} \hat{X}^{(2)}=\omega \hat{X}^{(2)} \hat{Z}^{(1)}$

Simple case 2: $a=N$

. $\hat{H}=\sum_{r \in \mathcal{A}} \hat{h}_{\text {with }}$

$$
\hat{h}_{\left(m_{1}, m_{2}\right)}^{r \in \Lambda}=\frac{1}{2}\left(\hat{X}_{\left(m_{1}-\frac{1}{2}, m_{2}\right)} \hat{X}_{\left(m_{1}, m_{2}-\frac{1}{2}\right)}+\text { h.c. }\right)-\frac{1}{2}\left(\hat{Z}_{\left(m_{1}, m_{2}-\frac{1}{2}\right)} \hat{Z}_{\left(m_{1}-\frac{1}{2}, m_{2}\right)}^{-1}+\text { h.c. }\right)
$$

- Completely decoupled \rightarrow product state.
- GSD: $N_{\mathrm{deg}}=1$. TEE: $S_{\mathrm{top}}=0$. No anyons.

More general cases

Excited states

- Applying open strings of \hat{X} and \hat{Z} creates a pair of electric and magnetic particles.
- Translation permutes anyons (i.e. changes the charges of e and m particles).

$\hat{X}_{\left(m_{1}-\frac{1}{2}, m_{2}+\frac{1}{2}\right),\left(m_{1}^{\prime}+\frac{1}{2}, m_{2}+\frac{1}{2}\right)}^{(1)}=\prod_{\ell=0}^{m_{1}^{\prime}-m_{1}} \hat{X}_{\left(m_{1}+\ell, m_{2}+\frac{1}{2}\right)}^{a^{\ell}}$

$$
\hat{Z}_{\left(m_{1}, m_{2}\right),\left(m_{1}, m_{2}^{\prime}+1\right)}^{(2)}=\prod_{\ell=0}^{m_{2}^{\prime}-m_{2}} \hat{Z}_{\left(m_{1}, m_{2}+\ell+\frac{1}{2}\right)}^{a^{m_{2}^{\prime}-m_{2}-\ell}}
$$

GOBAR COMStratis

- Then GSD is given by $N_{\text {deg }}=N_{C}^{2}$ (proof is given later),
- where N_{C} is the number of global constraints: $\left.\prod_{v \in \mathscr{V}} \hat{A}_{v}^{\ell_{v}}=1\left(0 \leq \ell_{v} \leq N-1\right)\right)$.
- There will be an equal number of constraints: $\prod_{p \in \mathscr{P}} \hat{B}_{p}^{\ell_{p}}=1\left(0 \leq \ell_{p} \leq N-1\right)$.
- Trial global constraints:

- Consider their n-th power. We need $\left(a^{L_{1}}-1\right) n=\left(a^{L_{2}}-1\right) n=0 \bmod N$.

Loops

- $\hat{X}^{(i)} \hat{B}_{p_{0}}=\omega^{a^{L_{i-1}}} \hat{B}_{p_{0}} \hat{X}^{(i)}$ and $\hat{Z}^{(i)} \hat{A}_{v_{0}}=\omega^{\underline{1-a^{L_{i}}}} \hat{A}_{v_{0}} \hat{Z}^{(i)}$.
- Closed loops are not really closed. Create an anyon without forming a pair.

$$
\hat{Z}^{(2)}=\prod_{\ell=0}^{L_{2}-1} \hat{Z}_{\left(0, \ell+\frac{1}{2}\right)}^{a^{L_{2}-1-\ell}}
$$

Math definitions

- Multiplicative order of a modulo n
- Suppose n and a are coprime.
- $M_{n}(a)$ is the smallest positive integer ℓ such that $a^{\ell}=1(\bmod n)$.
- $M_{n}(a)=1$ if and only if $a=1(\bmod n)$.
-When $n \geq 3, M_{n}(a)=2$ if $a=n-1(\bmod n)$.
- Euler's totient function $\varphi(n)$
- The number of positive integers smaller than n that are relatively prime to n. e.g., $\varphi(n)=n-1$ when n is a prime.
- Primitive root modulo n
- a is a primitive root modulo n if $M_{n}(a)=\varphi(n)$.
- The primitive roots exist if and only if n is either $2,4, p^{k}$, or $2 p^{k}$ (p is an odd prime \& k is a positive integer).

Nese

- When N is a prime, $\left(a^{L_{i}}-1\right) n=0(\bmod N) \Leftrightarrow a^{L_{i}}=1(\bmod N) \Leftrightarrow L_{i}=0\left(\bmod M_{N}(a)\right)$.
- If $L_{i} \neq 0\left(\bmod M_{N}(a)\right), a^{L_{i}}-1$ is coprime to N. Eigenvalues of $\hat{A}_{v_{0}}$ and $\hat{B}_{p_{0}}$ can be freely controlled by using $\hat{X}^{(i)} \hat{B}_{p_{0}}=\omega^{a^{L_{i}-1}} \hat{B}_{p_{0}} \hat{X}^{(i)}$ and $\hat{X}^{(i)} \hat{A}_{p_{0}}=\omega^{1-a^{L_{i}}} \hat{A}_{p_{0}} \hat{X}^{(i)}$.
This argument can be extended to all $v \in \mathscr{V}$ and $p \in \mathscr{P} \rightarrow$ Absence of global constraints.
- GSD $N_{\text {deg }}$ depends on L_{1} and L_{2} :

Example: $N=11$
a $a^{\ell}(\bmod N)$ 1 1 2 $2,4,8,5,10,9,7,3,6,1$ 3 $3,9,5,4,1$ 4 $4,5,9,3,1$ 5 $5,3,4,9,1$ 6 $6,3,7,9,10,5,8,4,2,1$ 7 $7,5,2,3,10,4,6,9,8,1$ 8 $8,9,6,4,10,3,2,5,7,1$ 9 $9,4,3,5,1$ 10 10,1

Primitive roots are $a=2,6,7,8$.

Calculation of TEE

- Kitaev-Preskill prescription
- $S_{\text {topo }}=\left(S_{\mathrm{A}}+S_{\mathrm{B}}+S_{\mathrm{C}}\right)-\left(S_{\mathrm{AB}}+S_{\mathrm{BC}}+S_{\mathrm{CA}}\right)+S_{\mathrm{ABC}}$
- $S_{\mathrm{R}}=-\operatorname{tr}\left[\hat{\rho}_{\mathrm{R}} \log \hat{\rho}_{\mathrm{R}}\right]$
- Useful formula: $S_{\mathrm{R}}=n_{\mathrm{R}} \log N-\log \left|G_{\mathrm{R}}\right|$

- n_{R} is the number of N-level spins in R .
- G_{R} is the subgroup of G supported in R .
- G is the multiplicative group generated by all \hat{A}_{v} 's $(v \in \mathscr{V}), \hat{B}_{p}$'s $(p \in \mathscr{P})$, and possible closed string operators for which $\left|\Phi_{0}\right\rangle$ has the eigenvalue +1 .
- When N and a are coprime: $S_{\mathrm{R}}=\left(n_{\mathrm{R}}-m_{\mathrm{R}}\right) \log N$
- m_{R} is the number of generators of G supported in R .

Generel cese

Prime factorization $N=\prod_{j=1}^{n} p_{j}^{r_{j}}=p_{1}^{r_{1}} p_{2}^{r_{2}} \cdots p_{n}^{r_{n}}$.
Radical of $N: \operatorname{rad}(N)=\prod_{j=1}^{n} p_{j}=p_{1} p_{2} \cdots p_{n}$.

- $N_{a}=$ the largest divisor of N that is coprime to a.
- $N_{a} \neq 1$ if a is not a multiple of $\operatorname{rad}(N) \rightarrow$ Topologically-ordered phases
- $N_{a}=1$ if a is a multiple of $\operatorname{rad}(N) \rightarrow$ SPT phases
- GSD $N_{\mathrm{deg}}=d_{a}^{2}$ with $d_{a}=\operatorname{gcd}\left(a^{L_{1}}-1, a^{L_{2}}-1, N_{a}\right)$.
- N_{a}^{2} anyon species characterized by the electric charge $q_{e}=1,2, \cdots, N_{a}$ and the magnetic charge $q_{m}=1,2, \cdots, N_{a}$.

Justification

- Trial global constraints:
- $\prod_{m_{1}=0}^{L_{1}-1} \prod_{m_{2}=0}^{L_{2}-1} \hat{A}_{\left(m_{1}, m_{2}\right)}^{a^{m_{1}+m_{2}}}=\prod_{m_{1}=0}^{L_{1}-1} \hat{X}_{\left(m_{1},-\frac{1}{2}\right)}^{-a^{m_{1}}\left(a^{\left.L_{2}-1\right)}\right.} \prod_{m_{2}=0}^{L_{2}-1} \hat{X}_{\left(-\frac{1}{2}, m_{2}\right)}^{-a^{m_{2}}\left(a_{1}^{L_{1}}-1\right)}$.
$-\prod_{m_{1}=0}^{L_{1}-1} \prod_{m_{2}=0}^{L_{2}-1} \hat{B}_{\left(m_{1}+\frac{1}{2}, m_{2}+\frac{1}{2}\right)}^{a^{\left(L_{1}-1-m_{1}\right)+\left(L_{2}-1-m_{2}\right)}}=\prod_{m_{1}=0}^{L_{1}-1} \hat{Z}_{\left(m_{1}+\frac{1}{2}, 0\right)}^{a^{\left(L_{1}-1-m_{1}\right)}\left(a^{\left.L_{2}-1\right)}\right.} \prod_{m_{2}=0}^{L_{2}-1} \hat{Z}_{\left(0, m_{2}+\frac{1}{2}\right)}^{-a^{\left(L_{2}-1-m_{2}\right)}\left(a^{\left.L_{1}-1\right)}\right.}$.
- Consider their n-th power. We need $\left(a^{L_{1}}-1\right) n=\left(a^{L_{2}}-1\right) n=0 \bmod N$. Solution: $n=\frac{N}{d_{a}}$ with $d_{a}=\operatorname{gcd}\left(a^{L_{1}}-1, a^{L_{2}}-1, N_{a}\right)$.
- Similarly, $\left[\hat{X}^{(i)}\right]^{n_{i, a}}$ commutes with $\hat{B}_{p_{0}}$ if $\left(a^{L_{i}}-1\right) n_{i, a}=0(\bmod N)$.

Solution: $n_{i, a}=\frac{N}{\operatorname{gcd}\left(a^{L_{i}}-1, N_{a}\right)}$.

Open string operators
Control the eigenvalues of

- $\hat{A}_{v}\left(v \in \mathscr{V}, v \neq v_{0}\right)$
- $\hat{B}_{p}\left(p \in \mathscr{P}, p \neq p_{0}\right)$
$\left[\hat{A}_{v_{0}}\right]^{\frac{N}{d_{a}}}$ and $\left[\hat{B}_{p_{0}}\right]^{\frac{N}{d_{a}}}$ are fixed by global constraints.

Closed string operators $\hat{X}^{(i)}$ and $\hat{Z}^{(i)}$ Control the eigenvalues of

- Residual part of $\hat{A}_{v_{0}}$ and $\hat{B}_{p_{0}}$.
- Closed strings: $\left[\hat{X}^{(1)}\right]^{n_{1, a}}$ and $\left[\hat{Z}^{(1)}\right]^{n_{1, a}}$.

Case 4: $a^{2}=N$

- Rotate the model by 45 degree.
- Subsystem symmetries for each row
- $\hat{X}_{\bar{m}_{2}}=\prod_{\bar{m}_{1}=0}^{\bar{L}_{1}-1} \hat{X}_{\left(\bar{m}_{1}, \bar{m}_{2}\right)}$
- $\hat{Z}_{\bar{m}_{2}}=\prod_{\bar{m}_{1}=0}^{\bar{L}_{1}-1} \hat{Z}_{\left(\bar{m}_{1}, \bar{m}_{2}\right)}^{\left(-1 \overline{\bar{m}}_{1}\right.}$

- Subsystem-Protected Topological (SSPT)
- Charge pumping
- Zero energy edge states

Summary 1

- We introduced a family of \mathbb{Z}_{N} toric code with an integer parameter a.
- $N_{a}=$ the largest divisor of N that is coprime to a.
- $N_{a} \neq 1$ if a is not a multiple of $\operatorname{rad}(N) \rightarrow$ Topologically-ordered phases
- $N_{a}=1$ if a is a multiple of $\operatorname{rad}(N) \rightarrow(\mathrm{S})$ SPT phases
- GSD $N_{\mathrm{deg}}=d_{a}^{2}$ with $d_{a}=\operatorname{gcd}\left(a^{L_{1}}-1, a^{L_{2}}-1, N_{a}\right)$.
- N_{a}^{2} anyon species characterized by the electric charge $q_{e}=1,2, \cdots, N_{a}$ and the magnetic charge $q_{m}=1,2, \cdots, N_{a}$.

Summary 2

Symmetry-protected topological/trivial phases

1. Unique GS with excitation gap for any sequence of L_{1} and L_{2}.
2. Stable against symmetry-preserving perturbations.
3. Can be connected to product states by local unitaries if symmetries are broken.
4. Trivial excitations in the bulk. Anomalous states on symmetry-preserving boundaries.

Topologically-ordered phases

1. Degenerate GS with excitation gap for a sequence of L_{1} and L_{2}. Degeneracy does not originate from spontaneous breaking of symmetries.
2. Stable against any local perturbations.
3. Cannot be connected to product state by any local unitaries. Topological entanglement entropy.
4. Fractionalized (anyonic) excitations in the bulk.Anyons-must appear-in pairs...
