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• How to find ground states 
on quantum simulators?

• Simulated adiabatic 
demagnetization protocol

• Cooling trivial and 
topological excitations
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Ground	States	on	Quantum	Computers	
Q: How to prepare the ground state of a given 
Hamiltonian on a quantum simulator?

• Variational Quantum Eigensolvers: prepare a wavefunction 
|𝜓 𝜆!, … , 𝜆"- ⟩, minimize ⟨𝜓|𝐻|𝜓⟩ over 𝜆!, … , 𝜆"-

Noisy Intermediate-Scale Quantum (NISQ) era Preskill,	2018

• Adiabatic Preparation 𝐻 𝑡 = 1 −
𝑡
𝜏 𝐻. +

𝑡
𝜏 𝐻/

𝐻.: “Simple” Hamiltonian
e.g. 𝑯𝟏 = −𝒉∑𝒋𝝈𝒋𝒛

𝐻/: Hamiltonian of interest

E

÷ ÷.

Variational	Quantum	Eigensolver review:	Tilly	et	al.	(2021)
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Decrease B(t) adiabatically ⟹ decrease T 
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We propose a simple, robust protocol to prepare a low-energy state of an arbitrary Hamiltonian on a quantum
computer or programmable quantum simulator. The protocol is inspired by the adiabatic demagnetization
technique, used to cool solid-state systems to extremely low temperatures. A fraction of the qubits (or spins) is
used to model a spin bath that is coupled to the system. By an adiabatic ramp down of a simulated Zeeman field
acting on the bath spins, energy and entropy are extracted from the system. The bath spins are then measured
and reset to the polarized state, and the process is repeated until convergence to a low-energy steady state is
achieved. We demonstrate the protocol via application to the quantum Ising model. We study the protocol’s
performance in the presence of noise and show how the information from the measurement of the bath spins
can be used to monitor the cooling process. The performance of the algorithm depends on the nature of the
excitations of the system; systems with non-local (topological) excitations are more difficult to cool than those
with local excitations. We explore the possible mitigation of this problem by trapping topological excitations.

Ground state preparation on quantum simulators and com-
puters is very important for the characterization of ground
state properties in quantum chemistry and material science [1–
4]. More generally, it can also be utilized for a variety of quan-
tum information problems [5–7]. On a quantum computer, the
Hamiltonian can be digitally implemented using a sequence
of unitary gates. Many approaches of ground state preparation
have been proposed, including variational quantum simulation
[8–12] and adiabatic state preparation [13–16]. Each of these
approaches has its own challenges. For example, the perfor-
mance of variational quantum simulation highly depends on
the quality of the variational ansatz [12, 17]. At the same
time, adiabatic state preparation is sensitive to the trajectory
in Hamiltonian space connecting the initial and final Hamil-
tonians. It tends to fail when a phase transition separates the
initial and final states. Furthermore, errors that occur during
adiabatic state preparation are not intrinsically corrected and
may be difficult to detect.

Recently, algorithms that mimic cooling by coupling to a
simulated low-entropy bath [18–24] have been proposed as al-
ternative routes that may overcome some of these challenges.
The key advantages of such cooling algorithms are that they
can be run cyclically without any special requirements on
initial states and do not require prior knowledge of the tar-
get ground state. Simulated cooling schemes also do not re-
quire the target state to be adiabatically connected to a prod-
uct state. The cyclic operation provides inherent robustness
to weak noise by automatically correcting some errors and re-
moving unwanted excitations on subsequent cycles. Further-
more, in simulated cooling on a quantum computer, monitor-
ing the bath spins during the cooling protocol can provide in-
formation on the process of approaching the system’s ground
state without observing the system directly and may be used
to identify the presence of errors.

Here, we define a simple, scalable protocol for low-energy
state preparation of an arbitrary gapped Hamiltonian on a
quantum computer or programmable quantum simulator. We
draw an analogy between our protocol and adiabatic demag-
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FIG. 1. Schematic illustration of the proposed setup. (a) Each
system spin si (light blue) is coupled to a bath spin �i (dark blue)
by switching on the coupling g(t). System spins may be generically
coupled, as illustrated here by J . At the beginning of the protocol,
the bath is polarized and subjected to a large simulated magnetic field
B(t), while the system may begin in a random state. Panel (b) shoes
the time dependence of the parameters, and panel (c) illustrates the
cooling cycle. A magnetic field B(t) is applied to the bath spins, and
linearly decreased from B0 to Bf until time t2 = 3T/4, after which
it is held constant until time T , the total duration of the sweep. The
system-bath coupling g(t) is slowly switch on until t1 = T/4, kept
constant at g(t) = g0 until time t2, and then switched off. At the end
of each sweep, the bath spins are measured and reset.

netization [25, 26], known from solid-state systems. For ex-
ample, with nuclear adiabatic demagnetization, one can reach
temperatures in the µK range [27, 28] by coupling the system
to nuclear moments polarized in a large magnetic field and
adiabatically ramping down the field.

Fig. 1 illustrates the cooling scheme. We consider a generic
system comprised of N qubits (light blue), coupled to an ad-
ditional set of Nbath “bath” qubits (dark blue). We take the
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netization [25, 26], known from solid-state systems. For ex-
ample, with nuclear adiabatic demagnetization, one can reach
temperatures in the µK range [27, 28] by coupling the system
to nuclear moments polarized in a large magnetic field and
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system comprised of N qubits (light blue), coupled to an ad-
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We propose a simple, robust protocol to prepare a low-energy state of an arbitrary Hamiltonian on a quantum
computer or programmable quantum simulator. The protocol is inspired by the adiabatic demagnetization
technique, used to cool solid-state systems to extremely low temperatures. A fraction of the qubits (or spins) is
used to model a spin bath that is coupled to the system. By an adiabatic ramp down of a simulated Zeeman field
acting on the bath spins, energy and entropy are extracted from the system. The bath spins are then measured
and reset to the polarized state, and the process is repeated until convergence to a low-energy steady state is
achieved. We demonstrate the protocol via application to the quantum Ising model. We study the protocol’s
performance in the presence of noise and show how the information from the measurement of the bath spins
can be used to monitor the cooling process. The performance of the algorithm depends on the nature of the
excitations of the system; systems with non-local (topological) excitations are more difficult to cool than those
with local excitations. We explore the possible mitigation of this problem by trapping topological excitations.

Ground state preparation on quantum simulators and com-
puters is very important for the characterization of ground
state properties in quantum chemistry and material science [1–
4]. More generally, it can also be utilized for a variety of quan-
tum information problems [5–7]. On a quantum computer, the
Hamiltonian can be digitally implemented using a sequence
of unitary gates. Many approaches of ground state preparation
have been proposed, including variational quantum simulation
[8–12] and adiabatic state preparation [13–16]. Each of these
approaches has its own challenges. For example, the perfor-
mance of variational quantum simulation highly depends on
the quality of the variational ansatz [12, 17]. At the same
time, adiabatic state preparation is sensitive to the trajectory
in Hamiltonian space connecting the initial and final Hamil-
tonians. It tends to fail when a phase transition separates the
initial and final states. Furthermore, errors that occur during
adiabatic state preparation are not intrinsically corrected and
may be difficult to detect.

Recently, algorithms that mimic cooling by coupling to a
simulated low-entropy bath [18–24] have been proposed as al-
ternative routes that may overcome some of these challenges.
The key advantages of such cooling algorithms are that they
can be run cyclically without any special requirements on
initial states and do not require prior knowledge of the tar-
get ground state. Simulated cooling schemes also do not re-
quire the target state to be adiabatically connected to a prod-
uct state. The cyclic operation provides inherent robustness
to weak noise by automatically correcting some errors and re-
moving unwanted excitations on subsequent cycles. Further-
more, in simulated cooling on a quantum computer, monitor-
ing the bath spins during the cooling protocol can provide in-
formation on the process of approaching the system’s ground
state without observing the system directly and may be used
to identify the presence of errors.

Here, we define a simple, scalable protocol for low-energy
state preparation of an arbitrary gapped Hamiltonian on a
quantum computer or programmable quantum simulator. We
draw an analogy between our protocol and adiabatic demag-
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FIG. 1. Schematic illustration of the proposed setup. (a) Each
system spin si (light blue) is coupled to a bath spin �i (dark blue)
by switching on the coupling g(t). System spins may be generically
coupled, as illustrated here by J . At the beginning of the protocol,
the bath is polarized and subjected to a large simulated magnetic field
B(t), while the system may begin in a random state. Panel (b) shoes
the time dependence of the parameters, and panel (c) illustrates the
cooling cycle. A magnetic field B(t) is applied to the bath spins, and
linearly decreased from B0 to Bf until time t2 = 3T/4, after which
it is held constant until time T , the total duration of the sweep. The
system-bath coupling g(t) is slowly switch on until t1 = T/4, kept
constant at g(t) = g0 until time t2, and then switched off. At the end
of each sweep, the bath spins are measured and reset.

netization [25, 26], known from solid-state systems. For ex-
ample, with nuclear adiabatic demagnetization, one can reach
temperatures in the µK range [27, 28] by coupling the system
to nuclear moments polarized in a large magnetic field and
adiabatically ramping down the field.

Fig. 1 illustrates the cooling scheme. We consider a generic
system comprised of N qubits (light blue), coupled to an ad-
ditional set of Nbath “bath” qubits (dark blue). We take the
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more, in simulated cooling on a quantum computer, monitor-
ing the bath spins during the cooling protocol can provide in-
formation on the process of approaching the system’s ground
state without observing the system directly and may be used
to identify the presence of errors.

Here, we define a simple, scalable protocol for low-energy
state preparation of an arbitrary gapped Hamiltonian on a
quantum computer or programmable quantum simulator. We
draw an analogy between our protocol and adiabatic demag-

U�V
bvbi2K

#�i?

g

J J J J J J J

g g g g g g g g

in 
polarized

state
measurement

& reset

cooling cycle

bath bath

system system

(b) (c)

FIG. 1. Schematic illustration of the proposed setup. (a) Each
system spin si (light blue) is coupled to a bath spin �i (dark blue)
by switching on the coupling g(t). System spins may be generically
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temperatures in the µK range [27, 28] by coupling the system
to nuclear moments polarized in a large magnetic field and
adiabatically ramping down the field.

Fig. 1 illustrates the cooling scheme. We consider a generic
system comprised of N qubits (light blue), coupled to an ad-
ditional set of Nbath “bath” qubits (dark blue). We take the
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averaged over i, with �s,i(t) = i✓(t)h[Âs

i
(t), Âs
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(0)]i. Both

nB(!) and �s,i are evaluated for a thermal state at the effec-
tive temperature of the system.

Equation (3) shows that energy is mainly extracted via reso-
nant processes, which occur when the bath spins’ energy split-
ting 2B(t) matches an excitation energy in the system. Thus,
as B(t) is ramped down during each sweep, high-energy and
then lower-energy excitations are removed from the system.
The total energy extracted in one sweep,

R
T

0 dt�c, can be
evaluated by replacing the time integral with an integral over
the ramping field B(t),

R
dt =

R
dB

Ḃ
. Thus, the extracted en-

ergy is is proportional to g
2
/Ḃ / g

2
T , for large sweep dura-

tions T . In deriving Eq. (3), we assumed that the sweep time
T is long compared with the self-thermalization time of the
system and that the coupling is weak such that less than one
spin flip occurs per spin per field sweep. In the supplementary
material [29], we furthermore show that one can efficiently
extract energy even for relatively fast sweep rates (or, equiv-
alently, short time scales T ) set by the bandwidth and gap of
the system.

Numerical analysis: We exemplify our protocol via an ap-
plication to the one-dimensional quantum Ising model:
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with an exchange coupling J , transverse field hx and longi-
tudinal field hz . The latter can be used to make the model
non-integrable. We use periodic boundary conditions unless
specified otherwise. Each bath spin �i is coupled to the local
degree of freedom of the system Â

s

i
= s

y

i
.

To simulate the cooling protocol in the presence of noise,
we use the stochastic Schrödinger equation. The time-
evolution operator is approximated using the 2nd order
Suzuki-Trotter decomposition U =

Q
n
Un, where n labels

the Trotter time step (of duration �⌧ ), and

Un = e
�i

�⌧
2 HZ(tn)e

�i�⌧HY (tn)e
�i�⌧HX(tn)e

�i
�⌧
2 HZ(tn).

(5)

Here HX,Y,Z are the terms in the Hamiltonian that contain
the X , Y , or Z components of both the system spins and
the bath spins. For each spin, we randomly apply one of the
Pauli operators after the first unitary U(HZ) and the third uni-
tary U(HY ) of each Trotter step with probability perr, thus
realizing depolarizing noise. For our implementation, we
choose �⌧ = 0.06 to approximate a continuous time evolu-
tion, which can be realized experimentally, e.g., on a quantum
simulator based on Rydberg atoms. For implementation on
a digital quantum computer, one would instead choose larger
�⌧ to reduce the number of gate operations.

After the end of a sweep, consisting of N⌧ Suzuki-Trotter
steps, a projective measurement of all bath spins is performed,
leaving the system in a pure state. The bath spins are then reset
back to the fully polarized state. The measurement results are
useful for monitoring the cooling progress, see below.

In Fig. 2, we show the expectation value of the system en-
ergy relative to its ground state energy value E0, E �E0, and
the ground state fidelity of the system at the end of each cycle
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FIG. 2. Single run of the protocol for the non-integrable (J = 1,
hx = 1, hz = 0.2, Ns = 8, N⌧ = 101, T = 6, Bi = 5, Bf = 0.7,
g0 = 0.5) case up to 100 protocol cycles. (a) No external noise is ap-
plied, i.e., only adiabatic and Trotter errors occur. (b) External noise
of 2 · 10�2 per sweep and spin is applied. The top panels show the
system ground state fidelity (blue). Vertical grey lines denote cycles
when a flipped spin is observed in the bath at the end of a cycle. The
bottom panels show the difference between the expectation value of
the system’s energy at the end of each cycle and its ground state en-
ergy (red). The energy gap of the system is indicated by the dashed
grey line. At the noise level used in panel (b), the system energy re-
mains below the gap, on average.

for a single trajectory, as a function of the cycle index, both
(a) without and (b) with noise. In the upper panel, we display
a vertical gray line to mark the cycles where, after measur-
ing the bath spins, at least one spin is found to have flipped.
The system and bath include N = 8 spins each. All other
parameters are specified in the caption of Fig. 2.

Without noise (perr = 0), Fig. 2a, E � E0 drops below
the energy gap of the system (horizontal dashed line) already
after 3-4 cycles. The fidelity takes about 20 cycles to satu-
rate to a value close to 1. Occasionally, the fidelity suddenly
decreases due to the combination of Trotter and/or adiabatic
errors and the inherent randomness coming from the measure-
ment of the bath spins. Each of these jumps is accompanied
by at least one flipped bath spin (vertical lines); the observa-
tion of flipped bath spins thus heralds the presence of errors
and can be used to increase the fidelity of the prepared state
via (post) selection.

The outcomes of the bath spin measurements can be used
both as an effective thermometer for the system and as a stop-
ping criterion of the protocol. The bath spins should remain
fully polarized at the end of each sweep once the system has
reached the ground state for a perfect adiabatic process and in
an ideal setting without errors. Therefore, if the bath spins re-
main fully polarized over several consecutive cycles, we can
conclude that the system’s ground state has been reached with
high confidence. In the presence of noise, we can still enhance
the protocol’s performance by using a similar criterion.

To demonstrate the protocol’s robustness to errors, in
Fig. 2b we show results for a trajectory with an imposed er-
ror rate of perr = 10�4 per spin (corresponding to an average
number ⌘e = 2 · 10�2 of errors per sweep per spin). Al-
though jumps of energy and ground state fidelity occur more
frequently than in the case without errors, the cooling proto-
col is still able to recover after noise events, with the average

𝑯𝑺: Quantum Ising model

Measured bath state:

| ↑↑↑↓↑↑ ⋯ ⟩| ↑↑↑↑↑↑ ⋯ ⟩
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We propose a simple, robust protocol to prepare a low-energy state of an arbitrary Hamiltonian on a quantum
computer or programmable quantum simulator. The protocol is inspired by the adiabatic demagnetization
technique, used to cool solid-state systems to extremely low temperatures. A fraction of the qubits (or spins) is
used to model a spin bath that is coupled to the system. By an adiabatic ramp down of a simulated Zeeman field
acting on the bath spins, energy and entropy are extracted from the system. The bath spins are then measured
and reset to the polarized state, and the process is repeated until convergence to a low-energy steady state is
achieved. We demonstrate the protocol via application to the quantum Ising model. We study the protocol’s
performance in the presence of noise and show how the information from the measurement of the bath spins
can be used to monitor the cooling process. The performance of the algorithm depends on the nature of the
excitations of the system; systems with non-local (topological) excitations are more difficult to cool than those
with local excitations. We explore the possible mitigation of this problem by trapping topological excitations.

Ground state preparation on quantum simulators and com-
puters is very important for the characterization of ground
state properties in quantum chemistry and material science [1–
4]. More generally, it can also be utilized for a variety of quan-
tum information problems [5–7]. On a quantum computer, the
Hamiltonian can be digitally implemented using a sequence
of unitary gates. Many approaches of ground state preparation
have been proposed, including variational quantum simulation
[8–12] and adiabatic state preparation [13–16]. Each of these
approaches has its own challenges. For example, the perfor-
mance of variational quantum simulation highly depends on
the quality of the variational ansatz [12, 17]. At the same
time, adiabatic state preparation is sensitive to the trajectory
in Hamiltonian space connecting the initial and final Hamil-
tonians. It tends to fail when a phase transition separates the
initial and final states. Furthermore, errors that occur during
adiabatic state preparation are not intrinsically corrected and
may be difficult to detect.

Recently, algorithms that mimic cooling by coupling to a
simulated low-entropy bath [18–24] have been proposed as al-
ternative routes that may overcome some of these challenges.
The key advantages of such cooling algorithms are that they
can be run cyclically without any special requirements on
initial states and do not require prior knowledge of the tar-
get ground state. Simulated cooling schemes also do not re-
quire the target state to be adiabatically connected to a prod-
uct state. The cyclic operation provides inherent robustness
to weak noise by automatically correcting some errors and re-
moving unwanted excitations on subsequent cycles. Further-
more, in simulated cooling on a quantum computer, monitor-
ing the bath spins during the cooling protocol can provide in-
formation on the process of approaching the system’s ground
state without observing the system directly and may be used
to identify the presence of errors.

Here, we define a simple, scalable protocol for low-energy
state preparation of an arbitrary gapped Hamiltonian on a
quantum computer or programmable quantum simulator. We
draw an analogy between our protocol and adiabatic demag-
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FIG. 1. Schematic illustration of the proposed setup. (a) Each
system spin si (light blue) is coupled to a bath spin �i (dark blue)
by switching on the coupling g(t). System spins may be generically
coupled, as illustrated here by J . At the beginning of the protocol,
the bath is polarized and subjected to a large simulated magnetic field
B(t), while the system may begin in a random state. Panel (b) shoes
the time dependence of the parameters, and panel (c) illustrates the
cooling cycle. A magnetic field B(t) is applied to the bath spins, and
linearly decreased from B0 to Bf until time t2 = 3T/4, after which
it is held constant until time T , the total duration of the sweep. The
system-bath coupling g(t) is slowly switch on until t1 = T/4, kept
constant at g(t) = g0 until time t2, and then switched off. At the end
of each sweep, the bath spins are measured and reset.

netization [25, 26], known from solid-state systems. For ex-
ample, with nuclear adiabatic demagnetization, one can reach
temperatures in the µK range [27, 28] by coupling the system
to nuclear moments polarized in a large magnetic field and
adiabatically ramping down the field.

Fig. 1 illustrates the cooling scheme. We consider a generic
system comprised of N qubits (light blue), coupled to an ad-
ditional set of Nbath “bath” qubits (dark blue). We take the



Noise

System

Bath

Heat (rate C)

Steady state H𝜌 with 𝐸 = !𝐻0 = Tr H𝜌 !𝐻0 > 𝐸6

Random errors (rate 𝜼𝒆)

Energy density of steady state: 89
8:
= .

;
8 <=(
8:

= −𝐶 𝑒 − 𝑒6 + 𝜂9 = 0

“Thermalizing” Hamiltonain: 
𝜌 → 𝜌9> ∝ 𝑒?

<=(/A for 𝐶, 𝜂9 → 0 with fixed B
C)

𝑒 − 𝑒* ∝ 𝜂+



Noise

3

averaged over i, with �s,i(t) = i✓(t)h[Âs

i
(t), Âs

i
(0)]i. Both

nB(!) and �s,i are evaluated for a thermal state at the effec-
tive temperature of the system.

Equation (3) shows that energy is mainly extracted via reso-
nant processes, which occur when the bath spins’ energy split-
ting 2B(t) matches an excitation energy in the system. Thus,
as B(t) is ramped down during each sweep, high-energy and
then lower-energy excitations are removed from the system.
The total energy extracted in one sweep,

R
T

0 dt�c, can be
evaluated by replacing the time integral with an integral over
the ramping field B(t),

R
dt =

R
dB

Ḃ
. Thus, the extracted en-

ergy is is proportional to g
2
/Ḃ / g

2
T , for large sweep dura-

tions T . In deriving Eq. (3), we assumed that the sweep time
T is long compared with the self-thermalization time of the
system and that the coupling is weak such that less than one
spin flip occurs per spin per field sweep. In the supplementary
material [29], we furthermore show that one can efficiently
extract energy even for relatively fast sweep rates (or, equiv-
alently, short time scales T ) set by the bandwidth and gap of
the system.

Numerical analysis: We exemplify our protocol via an ap-
plication to the one-dimensional quantum Ising model:
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with an exchange coupling J , transverse field hx and longi-
tudinal field hz . The latter can be used to make the model
non-integrable. We use periodic boundary conditions unless
specified otherwise. Each bath spin �i is coupled to the local
degree of freedom of the system Â

s

i
= s

y

i
.

To simulate the cooling protocol in the presence of noise,
we use the stochastic Schrödinger equation. The time-
evolution operator is approximated using the 2nd order
Suzuki-Trotter decomposition U =

Q
n
Un, where n labels

the Trotter time step (of duration �⌧ ), and

Un = e
�i

�⌧
2 HZ(tn)e

�i�⌧HY (tn)e
�i�⌧HX(tn)e

�i
�⌧
2 HZ(tn).

(5)

Here HX,Y,Z are the terms in the Hamiltonian that contain
the X , Y , or Z components of both the system spins and
the bath spins. For each spin, we randomly apply one of the
Pauli operators after the first unitary U(HZ) and the third uni-
tary U(HY ) of each Trotter step with probability perr, thus
realizing depolarizing noise. For our implementation, we
choose �⌧ = 0.06 to approximate a continuous time evolu-
tion, which can be realized experimentally, e.g., on a quantum
simulator based on Rydberg atoms. For implementation on
a digital quantum computer, one would instead choose larger
�⌧ to reduce the number of gate operations.

After the end of a sweep, consisting of N⌧ Suzuki-Trotter
steps, a projective measurement of all bath spins is performed,
leaving the system in a pure state. The bath spins are then reset
back to the fully polarized state. The measurement results are
useful for monitoring the cooling progress, see below.

In Fig. 2, we show the expectation value of the system en-
ergy relative to its ground state energy value E0, E �E0, and
the ground state fidelity of the system at the end of each cycle
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FIG. 2. Single run of the protocol for the non-integrable (J = 1,
hx = 1, hz = 0.2, Ns = 8, N⌧ = 101, T = 6, Bi = 5, Bf = 0.7,
g0 = 0.5) case up to 100 protocol cycles. (a) No external noise is ap-
plied, i.e., only adiabatic and Trotter errors occur. (b) External noise
of 2 · 10�2 per sweep and spin is applied. The top panels show the
system ground state fidelity (blue). Vertical grey lines denote cycles
when a flipped spin is observed in the bath at the end of a cycle. The
bottom panels show the difference between the expectation value of
the system’s energy at the end of each cycle and its ground state en-
ergy (red). The energy gap of the system is indicated by the dashed
grey line. At the noise level used in panel (b), the system energy re-
mains below the gap, on average.

for a single trajectory, as a function of the cycle index, both
(a) without and (b) with noise. In the upper panel, we display
a vertical gray line to mark the cycles where, after measur-
ing the bath spins, at least one spin is found to have flipped.
The system and bath include N = 8 spins each. All other
parameters are specified in the caption of Fig. 2.

Without noise (perr = 0), Fig. 2a, E � E0 drops below
the energy gap of the system (horizontal dashed line) already
after 3-4 cycles. The fidelity takes about 20 cycles to satu-
rate to a value close to 1. Occasionally, the fidelity suddenly
decreases due to the combination of Trotter and/or adiabatic
errors and the inherent randomness coming from the measure-
ment of the bath spins. Each of these jumps is accompanied
by at least one flipped bath spin (vertical lines); the observa-
tion of flipped bath spins thus heralds the presence of errors
and can be used to increase the fidelity of the prepared state
via (post) selection.

The outcomes of the bath spin measurements can be used
both as an effective thermometer for the system and as a stop-
ping criterion of the protocol. The bath spins should remain
fully polarized at the end of each sweep once the system has
reached the ground state for a perfect adiabatic process and in
an ideal setting without errors. Therefore, if the bath spins re-
main fully polarized over several consecutive cycles, we can
conclude that the system’s ground state has been reached with
high confidence. In the presence of noise, we can still enhance
the protocol’s performance by using a similar criterion.

To demonstrate the protocol’s robustness to errors, in
Fig. 2b we show results for a trajectory with an imposed er-
ror rate of perr = 10�4 per spin (corresponding to an average
number ⌘e = 2 · 10�2 of errors per sweep per spin). Al-
though jumps of energy and ground state fidelity occur more
frequently than in the case without errors, the cooling proto-
col is still able to recover after noise events, with the average

Improve energy by post selection: 
Measure system only when bath measurement outcome is | ↑↑↑↑↑↑ ⋯ ⟩

| ↑↑↑↓↑↑ ⋯ ⟩| ↑↑↑↑↑↑ ⋯ ⟩
Measured bath state:

Depolarizing noise rate 𝜼𝒆 = 𝟐 ⋅ 𝟏𝟎?𝟐
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FIG. 3. (E �E0)/E0 as a function of the average number of errors
⌘e: (a) The ferromagnetic case (J = 1, hx = 0.5, hz = 0) is shown
in red squares, the paramagnetic case (J = 0.5, hx = 1, hz = 0) in
blue dots. Within the grey shaded area, the energy is below the lowest
excitation gap �. (b) For small noise levels, post-selection (empty
red squares: FM, empty blue circles: PM) improves the outcome of
the protocol, i.e. it lowers the energy of the system. See text a the
description of the post-selection protocol. (Parameters: Ns = 8,
N⌧ = 101, Nc = 100, Ninit = 1000, T = 6, Bi = 5, Bf = 0.7,
g0 = 0.5).

number of excitations remaining below 1 in the steady state.
To explore how our cooling protocol performs on systems

with and without topological excitations (domain walls), in
Fig. 3, we plot the energy density e = (E�E0)/E0 averaged
over Ninit = 1000 trajectories, as a function of the noise rate
in the ferromagnetic (red squares) and paramagnetic (blue cir-
cles) regimes. For small noise levels, e in the steady state is
linear in the noise rate with a slight offset due to finite sweep
rates and Trotter errors. As shown in the zoom-in in panel (b),
for noise levels below 0.02 and 0.05 for the ferro- and param-
agnetic cases, respectively, less than one excitation remains in
our 8-site system. We also show that in this regime, e can be
further reduced by about 20%-50% by post-selection (empty
symbols): the cooling protocol was stopped if, in 5 consecu-
tive sweeps, no spin-flip of bath spins was measured.

While our numerical simulations are limited to small sys-
tems, we can obtain a qualitative characterization of the per-
formance of cooling protocols in the presence of noise from a
simple rate equation for the density of excitations n = Nex/V

(where Nex is the number of excitations, and V is the system’s
volume),

@tn = �noise � �cn
M
. (6)

The first term on the right-hand side describes the creation of
excitations with a rate �noise, which is linear in the error rate.
The second term encodes cooling via a mechanism where M

adjacent excitations are removed simultaneously. Crucially,
while certain types of local excitations can be removed one at
a time (M = 1), topological excitations can only be removed
as pairs or higher-order clusters (M > 1). We note that values
of M > 1 may also characterize topologically-trivial excita-
tions: for example, the annihilation of particle and hole exci-
tations in a semiconductor is an M = 2 process, while bound
excitons can be removed individually, M = 1. In the steady
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FIG. 4. Energy density (E � E0)/E0 as a function system size
for (a) the paramagnetic case and (b) the ferromagnetic case and for
an average number of errors ⌘e = 0, 2 · 10�3, 10�2 and 2 · 10�2

per sweep and spin (light to dark). In the shaded grey area the av-
erage energy is below the system’s gap. In the paramagnetic phase,
the energy density grows with ⌘e but not with system size, whereas
in the ferromagnetic phase the energy density grows approximately
linearly with system size. The slope of the energy density vs. system
size increases with increasing ⌘e. The observed behavior is consis-
tent with the prediction of the rate equation model, Eqs. (6) and (8).
Parameters are the same as in Fig. 3.

state, the excitation density is thus given by

n = (�noise/�c)
1/M

. (7)

Cooling is most effective when single excitations can be
removed by the coupling to the bath, i.e., M = 1. M = 1 is
the case in the paramagnetic phase. In contrast, the excitations
in the ferromagnetic phase are domain walls, which are non-
local objects and can only be removed in pairs, i.e., M = 2.

The model in Eq. (6) describes the cooling process in the
thermodynamic limit. In a finite size, d-dimensional system
with very small n, the probability that M excitations are close
to each other is proportional to 1/V M�1, where V is the
volume of the system. Thus in the limit �noise ! 0, when
n . M/V , we expect

n ⇠ �noise

�c
V

M�1
. (8)

We test this within our model by comparing it with results for
the transverse field Ising model at dual points in the ferromag-
netic and paramagnetic phases. The elementary excitations of
the ferromagnet are domain walls which, for periodic bound-
ary conditions, can only be created and annihilated in pairs,
M = 2, while M = 1 for the paramagnet. Therefore, we
choose a parameter set where the numerical values of J and
hx are exchanged. Using the self-duality of the transverse
field Ising model ensures that the dispersion of the elementary
excitations is identical in the two cases. Using the heuristic
that in a gapped system the energy density is roughly linear in
the number of excitations, we estimate n by e. Fig. 3b demon-
strates that the energy density e is linear in the noise rate in the
limit of small noise for both cases. In Fig. 4, we show that the
dependence of e on the system size is consistent with Eq. (8):
the excitation density in the paramagnetic phase (M = 1) is
nearly independent of system size, while for the ferromagnetic
phase (M = 2), e grows linearly with system size.

Noise

Ferromagnet
Paramagnet

𝜂+: average number of depolarizing errors (phase/bit flip)
per spin per cycle
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FIG. 3. (E �E0)/E0 as a function of the average number of errors
⌘e: (a) The ferromagnetic case (J = 1, hx = 0.5, hz = 0) is shown
in red squares, the paramagnetic case (J = 0.5, hx = 1, hz = 0) in
blue dots. Within the grey shaded area, the energy is below the lowest
excitation gap �. (b) For small noise levels, post-selection (empty
red squares: FM, empty blue circles: PM) improves the outcome of
the protocol, i.e. it lowers the energy of the system. See text a the
description of the post-selection protocol. (Parameters: Ns = 8,
N⌧ = 101, Nc = 100, Ninit = 1000, T = 6, Bi = 5, Bf = 0.7,
g0 = 0.5).

number of excitations remaining below 1 in the steady state.
To explore how our cooling protocol performs on systems

with and without topological excitations (domain walls), in
Fig. 3, we plot the energy density e = (E�E0)/E0 averaged
over Ninit = 1000 trajectories, as a function of the noise rate
in the ferromagnetic (red squares) and paramagnetic (blue cir-
cles) regimes. For small noise levels, e in the steady state is
linear in the noise rate with a slight offset due to finite sweep
rates and Trotter errors. As shown in the zoom-in in panel (b),
for noise levels below 0.02 and 0.05 for the ferro- and param-
agnetic cases, respectively, less than one excitation remains in
our 8-site system. We also show that in this regime, e can be
further reduced by about 20%-50% by post-selection (empty
symbols): the cooling protocol was stopped if, in 5 consecu-
tive sweeps, no spin-flip of bath spins was measured.

While our numerical simulations are limited to small sys-
tems, we can obtain a qualitative characterization of the per-
formance of cooling protocols in the presence of noise from a
simple rate equation for the density of excitations n = Nex/V

(where Nex is the number of excitations, and V is the system’s
volume),

@tn = �noise � �cn
M
. (6)

The first term on the right-hand side describes the creation of
excitations with a rate �noise, which is linear in the error rate.
The second term encodes cooling via a mechanism where M

adjacent excitations are removed simultaneously. Crucially,
while certain types of local excitations can be removed one at
a time (M = 1), topological excitations can only be removed
as pairs or higher-order clusters (M > 1). We note that values
of M > 1 may also characterize topologically-trivial excita-
tions: for example, the annihilation of particle and hole exci-
tations in a semiconductor is an M = 2 process, while bound
excitons can be removed individually, M = 1. In the steady
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for (a) the paramagnetic case and (b) the ferromagnetic case and for
an average number of errors ⌘e = 0, 2 · 10�3, 10�2 and 2 · 10�2

per sweep and spin (light to dark). In the shaded grey area the av-
erage energy is below the system’s gap. In the paramagnetic phase,
the energy density grows with ⌘e but not with system size, whereas
in the ferromagnetic phase the energy density grows approximately
linearly with system size. The slope of the energy density vs. system
size increases with increasing ⌘e. The observed behavior is consis-
tent with the prediction of the rate equation model, Eqs. (6) and (8).
Parameters are the same as in Fig. 3.

state, the excitation density is thus given by

n = (�noise/�c)
1/M

. (7)

Cooling is most effective when single excitations can be
removed by the coupling to the bath, i.e., M = 1. M = 1 is
the case in the paramagnetic phase. In contrast, the excitations
in the ferromagnetic phase are domain walls, which are non-
local objects and can only be removed in pairs, i.e., M = 2.

The model in Eq. (6) describes the cooling process in the
thermodynamic limit. In a finite size, d-dimensional system
with very small n, the probability that M excitations are close
to each other is proportional to 1/V M�1, where V is the
volume of the system. Thus in the limit �noise ! 0, when
n . M/V , we expect

n ⇠ �noise

�c
V

M�1
. (8)

We test this within our model by comparing it with results for
the transverse field Ising model at dual points in the ferromag-
netic and paramagnetic phases. The elementary excitations of
the ferromagnet are domain walls which, for periodic bound-
ary conditions, can only be created and annihilated in pairs,
M = 2, while M = 1 for the paramagnet. Therefore, we
choose a parameter set where the numerical values of J and
hx are exchanged. Using the self-duality of the transverse
field Ising model ensures that the dispersion of the elementary
excitations is identical in the two cases. Using the heuristic
that in a gapped system the energy density is roughly linear in
the number of excitations, we estimate n by e. Fig. 3b demon-
strates that the energy density e is linear in the noise rate in the
limit of small noise for both cases. In Fig. 4, we show that the
dependence of e on the system size is consistent with Eq. (8):
the excitation density in the paramagnetic phase (M = 1) is
nearly independent of system size, while for the ferromagnetic
phase (M = 2), e grows linearly with system size.
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number of excitations remaining below 1 in the steady state.
To explore how our cooling protocol performs on systems

with and without topological excitations (domain walls), in
Fig. 3, we plot the energy density e = (E�E0)/E0 averaged
over Ninit = 1000 trajectories, as a function of the noise rate
in the ferromagnetic (red squares) and paramagnetic (blue cir-
cles) regimes. For small noise levels, e in the steady state is
linear in the noise rate with a slight offset due to finite sweep
rates and Trotter errors. As shown in the zoom-in in panel (b),
for noise levels below 0.02 and 0.05 for the ferro- and param-
agnetic cases, respectively, less than one excitation remains in
our 8-site system. We also show that in this regime, e can be
further reduced by about 20%-50% by post-selection (empty
symbols): the cooling protocol was stopped if, in 5 consecu-
tive sweeps, no spin-flip of bath spins was measured.

While our numerical simulations are limited to small sys-
tems, we can obtain a qualitative characterization of the per-
formance of cooling protocols in the presence of noise from a
simple rate equation for the density of excitations n = Nex/V

(where Nex is the number of excitations, and V is the system’s
volume),

@tn = �noise � �cn
M
. (6)

The first term on the right-hand side describes the creation of
excitations with a rate �noise, which is linear in the error rate.
The second term encodes cooling via a mechanism where M

adjacent excitations are removed simultaneously. Crucially,
while certain types of local excitations can be removed one at
a time (M = 1), topological excitations can only be removed
as pairs or higher-order clusters (M > 1). We note that values
of M > 1 may also characterize topologically-trivial excita-
tions: for example, the annihilation of particle and hole exci-
tations in a semiconductor is an M = 2 process, while bound
excitons can be removed individually, M = 1. In the steady
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per sweep and spin (light to dark). In the shaded grey area the av-
erage energy is below the system’s gap. In the paramagnetic phase,
the energy density grows with ⌘e but not with system size, whereas
in the ferromagnetic phase the energy density grows approximately
linearly with system size. The slope of the energy density vs. system
size increases with increasing ⌘e. The observed behavior is consis-
tent with the prediction of the rate equation model, Eqs. (6) and (8).
Parameters are the same as in Fig. 3.

state, the excitation density is thus given by

n = (�noise/�c)
1/M

. (7)

Cooling is most effective when single excitations can be
removed by the coupling to the bath, i.e., M = 1. M = 1 is
the case in the paramagnetic phase. In contrast, the excitations
in the ferromagnetic phase are domain walls, which are non-
local objects and can only be removed in pairs, i.e., M = 2.

The model in Eq. (6) describes the cooling process in the
thermodynamic limit. In a finite size, d-dimensional system
with very small n, the probability that M excitations are close
to each other is proportional to 1/V M�1, where V is the
volume of the system. Thus in the limit �noise ! 0, when
n . M/V , we expect

n ⇠ �noise

�c
V

M�1
. (8)

We test this within our model by comparing it with results for
the transverse field Ising model at dual points in the ferromag-
netic and paramagnetic phases. The elementary excitations of
the ferromagnet are domain walls which, for periodic bound-
ary conditions, can only be created and annihilated in pairs,
M = 2, while M = 1 for the paramagnet. Therefore, we
choose a parameter set where the numerical values of J and
hx are exchanged. Using the self-duality of the transverse
field Ising model ensures that the dispersion of the elementary
excitations is identical in the two cases. Using the heuristic
that in a gapped system the energy density is roughly linear in
the number of excitations, we estimate n by e. Fig. 3b demon-
strates that the energy density e is linear in the noise rate in the
limit of small noise for both cases. In Fig. 4, we show that the
dependence of e on the system size is consistent with Eq. (8):
the excitation density in the paramagnetic phase (M = 1) is
nearly independent of system size, while for the ferromagnetic
phase (M = 2), e grows linearly with system size.
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FIG. 5. Bond correlation function hszi szi+1i for the ferromagnetic
case (J = 1, hx = 0.5, hz = 0) with open boundary conditions
with no noise (left) and an average number of errors of ⌘e = 2 ·10�2

per sweep and spin (right). There is no trap for data in panel (a) and
(b). For panel (c) and (d) the trap is implemented by an decreased J
coupling Jtrap = 0.33J between the 4th and 5th spin. Parameters:
Ns = 8, N⌧ = 101, Nc = 100, Ninit = 1000, T = 6, Bi = 5,
Bf = 0.7, g0 = 0.5.

Our results highlight the fact that it is generally difficult
to remove topological excitations. We now discuss a way to
partially mitigate this problem. Instead of removing the topo-
logical excitations, they can be localized in specially designed
“traps,” thus reducing the number of free (mobile) excitations.
For trapping, one has to transfer a mobile high-energy excita-
tion to a low-energy state at a trapping site. As the number
of topological excitations is not changed in this process, this
can be accomplished by our cooling protocol, transferring the
excess energy to the bath spins.

In the ferromagnetic case, a domain wall can be bound to
a specific bond by setting the exchange coupling on that bond
to Jtrap < J . In Fig. 5, we show the effect of such a trap
on a system with open boundary conditions. The left panels
show the expectation value hsz

i
s
z

i+1i for each bond at the end
of each cycle. Initially, the system is in a highly excited state.
After a few cycles, hsz

i
s
z

i+1i ⇡ 1 on all bonds. If there is
no trap, the value of hsz

i
s
z

i+1i is reduced for the noisy system
[Fig. 5(b)] compared with its value for the noiseless system
[Fig. 5(a)]. The smooth profile of hsz

i
s
z

i+1i in space indicates
that domain walls are delocalized across the chain. As shown
in Figs. 5(c) and (d), when we create a trap in the middle of
the chain, a domain wall tends to be localized at that spot.

To further characterize the steady states reached by our pro-
tocol, in Fig. 6, we plot the populations of the system’s en-
ergy levels for several values of the noise rate. Here, periodic
boundary conditions are used. While our protocol produces
non-equilibrium states, in the paramagnetic phase, we observe
a roughly thermal distribution (i.e., the probability decreases
exponentially with energy), even when the unperturbed sys-
tem is integrable. In the ferromagnetic phase, however, there
is a striking deviation from a thermal distribution: Fig. 6c
shows jumps in the distribution function. The difficulty of
eliminating domain walls can explain these jumps: the system
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FIG. 6. Occupation of system energy eigenstates for noise rates
⌘e = 0, 0.02, 0.2, 2 per sweep and spin (dark to light) for (a) the
paramagnetic (J = 0.5, hx = 1, hz = 0), (b) the non-integrable
(J = 1, hx = 1, hz = 0.2) and (c) the ferromagnetic case (J = 1,
hx = 0.5, hz = 0). Parameters: Ns = 8, N⌧ = 101, Ninit =
1000, T = 6, Bi = 5, Bf = 0.7, g0 = 0.5.

equilibrates in distinct sectors with 0, 2, and 4 domain walls
present.

Conclusion: We have presented a scalable protocol to pre-
pare low-energy states of an arbitrary Hamiltonian on a quan-
tum computer or programmable analog quantum simulator.
The protocol produces a steady state that approaches the
ground state in the low noise limit, assuming that adiabatic
and Trotter errors can be controlled. The protocol involves
measuring and resetting the bath spins at each cycle. This
non-unitary element of the cooling protocol is crucial as it ef-
fectively extracts entropy, disentangles bath and system, and
allows to repeat the cycle again and again. While the algo-
rithm also works if one replaces the combination of measure-
ment and reset by only a reset of bath spins, one can use the
measurement results to gain information about the state of
the system without collapsing it. Cooling is successful when
fewer and fewer bath spins are flipped on successive cycles.
Furthermore, by conditioning the termination of the protocol
on measurement outcomes, one can improve the fidelity of the
prepared state.

Systems with topological excitations are inherently more
difficult to cool, as such excitations can only be removed when
more than one excitation is present near a given position. In-
terestingly, this property offers a possibility to identify the
presence of topological order within our protocol. In general,
topological order is notoriously difficult to detect. Within our
algorithm, one can measure the efficiency of the cooling pro-
cess; if the number of excitations is non-linear in the noise
level [M � 2 in Eq. (7)], this indicates that excitations cannot
be created and destroyed locally. Thus, one may use measure-
ments of “coolability” in a quantum simulation experiment to
detect topological phases.

Due to its relative robustness to errors, our cooling pro-
tocol can be implemented, tested, and optimized directly
on present-day quantum hardware consisting of only a few
qubits. Therefore, we expect that our cooling protocol will
prove useful in future quantum computers which can simu-
late complex Hamiltonians with unknown ground states and
excitations.
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FIG. 5. Bond correlation function hszi szi+1i for the ferromagnetic
case (J = 1, hx = 0.5, hz = 0) with open boundary conditions
with no noise (left) and an average number of errors of ⌘e = 2 ·10�2

per sweep and spin (right). There is no trap for data in panel (a) and
(b). For panel (c) and (d) the trap is implemented by an decreased J
coupling Jtrap = 0.33J between the 4th and 5th spin. Parameters:
Ns = 8, N⌧ = 101, Nc = 100, Ninit = 1000, T = 6, Bi = 5,
Bf = 0.7, g0 = 0.5.

Our results highlight the fact that it is generally difficult
to remove topological excitations. We now discuss a way to
partially mitigate this problem. Instead of removing the topo-
logical excitations, they can be localized in specially designed
“traps,” thus reducing the number of free (mobile) excitations.
For trapping, one has to transfer a mobile high-energy excita-
tion to a low-energy state at a trapping site. As the number
of topological excitations is not changed in this process, this
can be accomplished by our cooling protocol, transferring the
excess energy to the bath spins.

In the ferromagnetic case, a domain wall can be bound to
a specific bond by setting the exchange coupling on that bond
to Jtrap < J . In Fig. 5, we show the effect of such a trap
on a system with open boundary conditions. The left panels
show the expectation value hsz

i
s
z

i+1i for each bond at the end
of each cycle. Initially, the system is in a highly excited state.
After a few cycles, hsz

i
s
z

i+1i ⇡ 1 on all bonds. If there is
no trap, the value of hsz

i
s
z

i+1i is reduced for the noisy system
[Fig. 5(b)] compared with its value for the noiseless system
[Fig. 5(a)]. The smooth profile of hsz

i
s
z

i+1i in space indicates
that domain walls are delocalized across the chain. As shown
in Figs. 5(c) and (d), when we create a trap in the middle of
the chain, a domain wall tends to be localized at that spot.

To further characterize the steady states reached by our pro-
tocol, in Fig. 6, we plot the populations of the system’s en-
ergy levels for several values of the noise rate. Here, periodic
boundary conditions are used. While our protocol produces
non-equilibrium states, in the paramagnetic phase, we observe
a roughly thermal distribution (i.e., the probability decreases
exponentially with energy), even when the unperturbed sys-
tem is integrable. In the ferromagnetic phase, however, there
is a striking deviation from a thermal distribution: Fig. 6c
shows jumps in the distribution function. The difficulty of
eliminating domain walls can explain these jumps: the system
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hx = 0.5, hz = 0). Parameters: Ns = 8, N⌧ = 101, Ninit =
1000, T = 6, Bi = 5, Bf = 0.7, g0 = 0.5.

equilibrates in distinct sectors with 0, 2, and 4 domain walls
present.

Conclusion: We have presented a scalable protocol to pre-
pare low-energy states of an arbitrary Hamiltonian on a quan-
tum computer or programmable analog quantum simulator.
The protocol produces a steady state that approaches the
ground state in the low noise limit, assuming that adiabatic
and Trotter errors can be controlled. The protocol involves
measuring and resetting the bath spins at each cycle. This
non-unitary element of the cooling protocol is crucial as it ef-
fectively extracts entropy, disentangles bath and system, and
allows to repeat the cycle again and again. While the algo-
rithm also works if one replaces the combination of measure-
ment and reset by only a reset of bath spins, one can use the
measurement results to gain information about the state of
the system without collapsing it. Cooling is successful when
fewer and fewer bath spins are flipped on successive cycles.
Furthermore, by conditioning the termination of the protocol
on measurement outcomes, one can improve the fidelity of the
prepared state.

Systems with topological excitations are inherently more
difficult to cool, as such excitations can only be removed when
more than one excitation is present near a given position. In-
terestingly, this property offers a possibility to identify the
presence of topological order within our protocol. In general,
topological order is notoriously difficult to detect. Within our
algorithm, one can measure the efficiency of the cooling pro-
cess; if the number of excitations is non-linear in the noise
level [M � 2 in Eq. (7)], this indicates that excitations cannot
be created and destroyed locally. Thus, one may use measure-
ments of “coolability” in a quantum simulation experiment to
detect topological phases.

Due to its relative robustness to errors, our cooling pro-
tocol can be implemented, tested, and optimized directly
on present-day quantum hardware consisting of only a few
qubits. Therefore, we expect that our cooling protocol will
prove useful in future quantum computers which can simu-
late complex Hamiltonians with unknown ground states and
excitations.
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FIG. 5. Bond correlation function hszi szi+1i for the ferromagnetic
case (J = 1, hx = 0.5, hz = 0) with open boundary conditions
with no noise (left) and an average number of errors of ⌘e = 2 ·10�2

per sweep and spin (right). There is no trap for data in panel (a) and
(b). For panel (c) and (d) the trap is implemented by an decreased J
coupling Jtrap = 0.33J between the 4th and 5th spin. Parameters:
Ns = 8, N⌧ = 101, Nc = 100, Ninit = 1000, T = 6, Bi = 5,
Bf = 0.7, g0 = 0.5.

Our results highlight the fact that it is generally difficult
to remove topological excitations. We now discuss a way to
partially mitigate this problem. Instead of removing the topo-
logical excitations, they can be localized in specially designed
“traps,” thus reducing the number of free (mobile) excitations.
For trapping, one has to transfer a mobile high-energy excita-
tion to a low-energy state at a trapping site. As the number
of topological excitations is not changed in this process, this
can be accomplished by our cooling protocol, transferring the
excess energy to the bath spins.

In the ferromagnetic case, a domain wall can be bound to
a specific bond by setting the exchange coupling on that bond
to Jtrap < J . In Fig. 5, we show the effect of such a trap
on a system with open boundary conditions. The left panels
show the expectation value hsz

i
s
z

i+1i for each bond at the end
of each cycle. Initially, the system is in a highly excited state.
After a few cycles, hsz

i
s
z

i+1i ⇡ 1 on all bonds. If there is
no trap, the value of hsz

i
s
z

i+1i is reduced for the noisy system
[Fig. 5(b)] compared with its value for the noiseless system
[Fig. 5(a)]. The smooth profile of hsz

i
s
z

i+1i in space indicates
that domain walls are delocalized across the chain. As shown
in Figs. 5(c) and (d), when we create a trap in the middle of
the chain, a domain wall tends to be localized at that spot.

To further characterize the steady states reached by our pro-
tocol, in Fig. 6, we plot the populations of the system’s en-
ergy levels for several values of the noise rate. Here, periodic
boundary conditions are used. While our protocol produces
non-equilibrium states, in the paramagnetic phase, we observe
a roughly thermal distribution (i.e., the probability decreases
exponentially with energy), even when the unperturbed sys-
tem is integrable. In the ferromagnetic phase, however, there
is a striking deviation from a thermal distribution: Fig. 6c
shows jumps in the distribution function. The difficulty of
eliminating domain walls can explain these jumps: the system
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1000, T = 6, Bi = 5, Bf = 0.7, g0 = 0.5.

equilibrates in distinct sectors with 0, 2, and 4 domain walls
present.

Conclusion: We have presented a scalable protocol to pre-
pare low-energy states of an arbitrary Hamiltonian on a quan-
tum computer or programmable analog quantum simulator.
The protocol produces a steady state that approaches the
ground state in the low noise limit, assuming that adiabatic
and Trotter errors can be controlled. The protocol involves
measuring and resetting the bath spins at each cycle. This
non-unitary element of the cooling protocol is crucial as it ef-
fectively extracts entropy, disentangles bath and system, and
allows to repeat the cycle again and again. While the algo-
rithm also works if one replaces the combination of measure-
ment and reset by only a reset of bath spins, one can use the
measurement results to gain information about the state of
the system without collapsing it. Cooling is successful when
fewer and fewer bath spins are flipped on successive cycles.
Furthermore, by conditioning the termination of the protocol
on measurement outcomes, one can improve the fidelity of the
prepared state.

Systems with topological excitations are inherently more
difficult to cool, as such excitations can only be removed when
more than one excitation is present near a given position. In-
terestingly, this property offers a possibility to identify the
presence of topological order within our protocol. In general,
topological order is notoriously difficult to detect. Within our
algorithm, one can measure the efficiency of the cooling pro-
cess; if the number of excitations is non-linear in the noise
level [M � 2 in Eq. (7)], this indicates that excitations cannot
be created and destroyed locally. Thus, one may use measure-
ments of “coolability” in a quantum simulation experiment to
detect topological phases.

Due to its relative robustness to errors, our cooling pro-
tocol can be implemented, tested, and optimized directly
on present-day quantum hardware consisting of only a few
qubits. Therefore, we expect that our cooling protocol will
prove useful in future quantum computers which can simu-
late complex Hamiltonians with unknown ground states and
excitations.
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FIG. 5. Bond correlation function hszi szi+1i for the ferromagnetic
case (J = 1, hx = 0.5, hz = 0) with open boundary conditions
with no noise (left) and an average number of errors of ⌘e = 2 ·10�2

per sweep and spin (right). There is no trap for data in panel (a) and
(b). For panel (c) and (d) the trap is implemented by an decreased J
coupling Jtrap = 0.33J between the 4th and 5th spin. Parameters:
Ns = 8, N⌧ = 101, Nc = 100, Ninit = 1000, T = 6, Bi = 5,
Bf = 0.7, g0 = 0.5.

Our results highlight the fact that it is generally difficult
to remove topological excitations. We now discuss a way to
partially mitigate this problem. Instead of removing the topo-
logical excitations, they can be localized in specially designed
“traps,” thus reducing the number of free (mobile) excitations.
For trapping, one has to transfer a mobile high-energy excita-
tion to a low-energy state at a trapping site. As the number
of topological excitations is not changed in this process, this
can be accomplished by our cooling protocol, transferring the
excess energy to the bath spins.

In the ferromagnetic case, a domain wall can be bound to
a specific bond by setting the exchange coupling on that bond
to Jtrap < J . In Fig. 5, we show the effect of such a trap
on a system with open boundary conditions. The left panels
show the expectation value hsz

i
s
z

i+1i for each bond at the end
of each cycle. Initially, the system is in a highly excited state.
After a few cycles, hsz

i
s
z

i+1i ⇡ 1 on all bonds. If there is
no trap, the value of hsz

i
s
z

i+1i is reduced for the noisy system
[Fig. 5(b)] compared with its value for the noiseless system
[Fig. 5(a)]. The smooth profile of hsz

i
s
z

i+1i in space indicates
that domain walls are delocalized across the chain. As shown
in Figs. 5(c) and (d), when we create a trap in the middle of
the chain, a domain wall tends to be localized at that spot.

To further characterize the steady states reached by our pro-
tocol, in Fig. 6, we plot the populations of the system’s en-
ergy levels for several values of the noise rate. Here, periodic
boundary conditions are used. While our protocol produces
non-equilibrium states, in the paramagnetic phase, we observe
a roughly thermal distribution (i.e., the probability decreases
exponentially with energy), even when the unperturbed sys-
tem is integrable. In the ferromagnetic phase, however, there
is a striking deviation from a thermal distribution: Fig. 6c
shows jumps in the distribution function. The difficulty of
eliminating domain walls can explain these jumps: the system
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FIG. 6. Occupation of system energy eigenstates for noise rates
⌘e = 0, 0.02, 0.2, 2 per sweep and spin (dark to light) for (a) the
paramagnetic (J = 0.5, hx = 1, hz = 0), (b) the non-integrable
(J = 1, hx = 1, hz = 0.2) and (c) the ferromagnetic case (J = 1,
hx = 0.5, hz = 0). Parameters: Ns = 8, N⌧ = 101, Ninit =
1000, T = 6, Bi = 5, Bf = 0.7, g0 = 0.5.

equilibrates in distinct sectors with 0, 2, and 4 domain walls
present.

Conclusion: We have presented a scalable protocol to pre-
pare low-energy states of an arbitrary Hamiltonian on a quan-
tum computer or programmable analog quantum simulator.
The protocol produces a steady state that approaches the
ground state in the low noise limit, assuming that adiabatic
and Trotter errors can be controlled. The protocol involves
measuring and resetting the bath spins at each cycle. This
non-unitary element of the cooling protocol is crucial as it ef-
fectively extracts entropy, disentangles bath and system, and
allows to repeat the cycle again and again. While the algo-
rithm also works if one replaces the combination of measure-
ment and reset by only a reset of bath spins, one can use the
measurement results to gain information about the state of
the system without collapsing it. Cooling is successful when
fewer and fewer bath spins are flipped on successive cycles.
Furthermore, by conditioning the termination of the protocol
on measurement outcomes, one can improve the fidelity of the
prepared state.

Systems with topological excitations are inherently more
difficult to cool, as such excitations can only be removed when
more than one excitation is present near a given position. In-
terestingly, this property offers a possibility to identify the
presence of topological order within our protocol. In general,
topological order is notoriously difficult to detect. Within our
algorithm, one can measure the efficiency of the cooling pro-
cess; if the number of excitations is non-linear in the noise
level [M � 2 in Eq. (7)], this indicates that excitations cannot
be created and destroyed locally. Thus, one may use measure-
ments of “coolability” in a quantum simulation experiment to
detect topological phases.

Due to its relative robustness to errors, our cooling pro-
tocol can be implemented, tested, and optimized directly
on present-day quantum hardware consisting of only a few
qubits. Therefore, we expect that our cooling protocol will
prove useful in future quantum computers which can simu-
late complex Hamiltonians with unknown ground states and
excitations.
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FIG. 5. Bond correlation function hszi szi+1i for the ferromagnetic
case (J = 1, hx = 0.5, hz = 0) with open boundary conditions
with no noise (left) and an average number of errors of ⌘e = 2 ·10�2

per sweep and spin (right). There is no trap for data in panel (a) and
(b). For panel (c) and (d) the trap is implemented by an decreased J
coupling Jtrap = 0.33J between the 4th and 5th spin. Parameters:
Ns = 8, N⌧ = 101, Nc = 100, Ninit = 1000, T = 6, Bi = 5,
Bf = 0.7, g0 = 0.5.

Our results highlight the fact that it is generally difficult
to remove topological excitations. We now discuss a way to
partially mitigate this problem. Instead of removing the topo-
logical excitations, they can be localized in specially designed
“traps,” thus reducing the number of free (mobile) excitations.
For trapping, one has to transfer a mobile high-energy excita-
tion to a low-energy state at a trapping site. As the number
of topological excitations is not changed in this process, this
can be accomplished by our cooling protocol, transferring the
excess energy to the bath spins.

In the ferromagnetic case, a domain wall can be bound to
a specific bond by setting the exchange coupling on that bond
to Jtrap < J . In Fig. 5, we show the effect of such a trap
on a system with open boundary conditions. The left panels
show the expectation value hsz

i
s
z

i+1i for each bond at the end
of each cycle. Initially, the system is in a highly excited state.
After a few cycles, hsz

i
s
z

i+1i ⇡ 1 on all bonds. If there is
no trap, the value of hsz

i
s
z

i+1i is reduced for the noisy system
[Fig. 5(b)] compared with its value for the noiseless system
[Fig. 5(a)]. The smooth profile of hsz

i
s
z

i+1i in space indicates
that domain walls are delocalized across the chain. As shown
in Figs. 5(c) and (d), when we create a trap in the middle of
the chain, a domain wall tends to be localized at that spot.

To further characterize the steady states reached by our pro-
tocol, in Fig. 6, we plot the populations of the system’s en-
ergy levels for several values of the noise rate. Here, periodic
boundary conditions are used. While our protocol produces
non-equilibrium states, in the paramagnetic phase, we observe
a roughly thermal distribution (i.e., the probability decreases
exponentially with energy), even when the unperturbed sys-
tem is integrable. In the ferromagnetic phase, however, there
is a striking deviation from a thermal distribution: Fig. 6c
shows jumps in the distribution function. The difficulty of
eliminating domain walls can explain these jumps: the system
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paramagnetic (J = 0.5, hx = 1, hz = 0), (b) the non-integrable
(J = 1, hx = 1, hz = 0.2) and (c) the ferromagnetic case (J = 1,
hx = 0.5, hz = 0). Parameters: Ns = 8, N⌧ = 101, Ninit =
1000, T = 6, Bi = 5, Bf = 0.7, g0 = 0.5.

equilibrates in distinct sectors with 0, 2, and 4 domain walls
present.

Conclusion: We have presented a scalable protocol to pre-
pare low-energy states of an arbitrary Hamiltonian on a quan-
tum computer or programmable analog quantum simulator.
The protocol produces a steady state that approaches the
ground state in the low noise limit, assuming that adiabatic
and Trotter errors can be controlled. The protocol involves
measuring and resetting the bath spins at each cycle. This
non-unitary element of the cooling protocol is crucial as it ef-
fectively extracts entropy, disentangles bath and system, and
allows to repeat the cycle again and again. While the algo-
rithm also works if one replaces the combination of measure-
ment and reset by only a reset of bath spins, one can use the
measurement results to gain information about the state of
the system without collapsing it. Cooling is successful when
fewer and fewer bath spins are flipped on successive cycles.
Furthermore, by conditioning the termination of the protocol
on measurement outcomes, one can improve the fidelity of the
prepared state.

Systems with topological excitations are inherently more
difficult to cool, as such excitations can only be removed when
more than one excitation is present near a given position. In-
terestingly, this property offers a possibility to identify the
presence of topological order within our protocol. In general,
topological order is notoriously difficult to detect. Within our
algorithm, one can measure the efficiency of the cooling pro-
cess; if the number of excitations is non-linear in the noise
level [M � 2 in Eq. (7)], this indicates that excitations cannot
be created and destroyed locally. Thus, one may use measure-
ments of “coolability” in a quantum simulation experiment to
detect topological phases.

Due to its relative robustness to errors, our cooling pro-
tocol can be implemented, tested, and optimized directly
on present-day quantum hardware consisting of only a few
qubits. Therefore, we expect that our cooling protocol will
prove useful in future quantum computers which can simu-
late complex Hamiltonians with unknown ground states and
excitations.
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FIG. 5. Bond correlation function hszi szi+1i for the ferromagnetic
case (J = 1, hx = 0.5, hz = 0) with open boundary conditions
with no noise (left) and an average number of errors of ⌘e = 2 ·10�2

per sweep and spin (right). There is no trap for data in panel (a) and
(b). For panel (c) and (d) the trap is implemented by an decreased J
coupling Jtrap = 0.33J between the 4th and 5th spin. Parameters:
Ns = 8, N⌧ = 101, Nc = 100, Ninit = 1000, T = 6, Bi = 5,
Bf = 0.7, g0 = 0.5.

Our results highlight the fact that it is generally difficult
to remove topological excitations. We now discuss a way to
partially mitigate this problem. Instead of removing the topo-
logical excitations, they can be localized in specially designed
“traps,” thus reducing the number of free (mobile) excitations.
For trapping, one has to transfer a mobile high-energy excita-
tion to a low-energy state at a trapping site. As the number
of topological excitations is not changed in this process, this
can be accomplished by our cooling protocol, transferring the
excess energy to the bath spins.

In the ferromagnetic case, a domain wall can be bound to
a specific bond by setting the exchange coupling on that bond
to Jtrap < J . In Fig. 5, we show the effect of such a trap
on a system with open boundary conditions. The left panels
show the expectation value hsz

i
s
z

i+1i for each bond at the end
of each cycle. Initially, the system is in a highly excited state.
After a few cycles, hsz

i
s
z

i+1i ⇡ 1 on all bonds. If there is
no trap, the value of hsz

i
s
z

i+1i is reduced for the noisy system
[Fig. 5(b)] compared with its value for the noiseless system
[Fig. 5(a)]. The smooth profile of hsz

i
s
z

i+1i in space indicates
that domain walls are delocalized across the chain. As shown
in Figs. 5(c) and (d), when we create a trap in the middle of
the chain, a domain wall tends to be localized at that spot.

To further characterize the steady states reached by our pro-
tocol, in Fig. 6, we plot the populations of the system’s en-
ergy levels for several values of the noise rate. Here, periodic
boundary conditions are used. While our protocol produces
non-equilibrium states, in the paramagnetic phase, we observe
a roughly thermal distribution (i.e., the probability decreases
exponentially with energy), even when the unperturbed sys-
tem is integrable. In the ferromagnetic phase, however, there
is a striking deviation from a thermal distribution: Fig. 6c
shows jumps in the distribution function. The difficulty of
eliminating domain walls can explain these jumps: the system
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FIG. 6. Occupation of system energy eigenstates for noise rates
⌘e = 0, 0.02, 0.2, 2 per sweep and spin (dark to light) for (a) the
paramagnetic (J = 0.5, hx = 1, hz = 0), (b) the non-integrable
(J = 1, hx = 1, hz = 0.2) and (c) the ferromagnetic case (J = 1,
hx = 0.5, hz = 0). Parameters: Ns = 8, N⌧ = 101, Ninit =
1000, T = 6, Bi = 5, Bf = 0.7, g0 = 0.5.

equilibrates in distinct sectors with 0, 2, and 4 domain walls
present.

Conclusion: We have presented a scalable protocol to pre-
pare low-energy states of an arbitrary Hamiltonian on a quan-
tum computer or programmable analog quantum simulator.
The protocol produces a steady state that approaches the
ground state in the low noise limit, assuming that adiabatic
and Trotter errors can be controlled. The protocol involves
measuring and resetting the bath spins at each cycle. This
non-unitary element of the cooling protocol is crucial as it ef-
fectively extracts entropy, disentangles bath and system, and
allows to repeat the cycle again and again. While the algo-
rithm also works if one replaces the combination of measure-
ment and reset by only a reset of bath spins, one can use the
measurement results to gain information about the state of
the system without collapsing it. Cooling is successful when
fewer and fewer bath spins are flipped on successive cycles.
Furthermore, by conditioning the termination of the protocol
on measurement outcomes, one can improve the fidelity of the
prepared state.

Systems with topological excitations are inherently more
difficult to cool, as such excitations can only be removed when
more than one excitation is present near a given position. In-
terestingly, this property offers a possibility to identify the
presence of topological order within our protocol. In general,
topological order is notoriously difficult to detect. Within our
algorithm, one can measure the efficiency of the cooling pro-
cess; if the number of excitations is non-linear in the noise
level [M � 2 in Eq. (7)], this indicates that excitations cannot
be created and destroyed locally. Thus, one may use measure-
ments of “coolability” in a quantum simulation experiment to
detect topological phases.

Due to its relative robustness to errors, our cooling pro-
tocol can be implemented, tested, and optimized directly
on present-day quantum hardware consisting of only a few
qubits. Therefore, we expect that our cooling protocol will
prove useful in future quantum computers which can simu-
late complex Hamiltonians with unknown ground states and
excitations.
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FIG. 5. Bond correlation function hszi szi+1i for the ferromagnetic
case (J = 1, hx = 0.5, hz = 0) with open boundary conditions
with no noise (left) and an average number of errors of ⌘e = 2 ·10�2

per sweep and spin (right). There is no trap for data in panel (a) and
(b). For panel (c) and (d) the trap is implemented by an decreased J
coupling Jtrap = 0.33J between the 4th and 5th spin. Parameters:
Ns = 8, N⌧ = 101, Nc = 100, Ninit = 1000, T = 6, Bi = 5,
Bf = 0.7, g0 = 0.5.

Our results highlight the fact that it is generally difficult
to remove topological excitations. We now discuss a way to
partially mitigate this problem. Instead of removing the topo-
logical excitations, they can be localized in specially designed
“traps,” thus reducing the number of free (mobile) excitations.
For trapping, one has to transfer a mobile high-energy excita-
tion to a low-energy state at a trapping site. As the number
of topological excitations is not changed in this process, this
can be accomplished by our cooling protocol, transferring the
excess energy to the bath spins.

In the ferromagnetic case, a domain wall can be bound to
a specific bond by setting the exchange coupling on that bond
to Jtrap < J . In Fig. 5, we show the effect of such a trap
on a system with open boundary conditions. The left panels
show the expectation value hsz

i
s
z

i+1i for each bond at the end
of each cycle. Initially, the system is in a highly excited state.
After a few cycles, hsz

i
s
z

i+1i ⇡ 1 on all bonds. If there is
no trap, the value of hsz

i
s
z

i+1i is reduced for the noisy system
[Fig. 5(b)] compared with its value for the noiseless system
[Fig. 5(a)]. The smooth profile of hsz

i
s
z

i+1i in space indicates
that domain walls are delocalized across the chain. As shown
in Figs. 5(c) and (d), when we create a trap in the middle of
the chain, a domain wall tends to be localized at that spot.

To further characterize the steady states reached by our pro-
tocol, in Fig. 6, we plot the populations of the system’s en-
ergy levels for several values of the noise rate. Here, periodic
boundary conditions are used. While our protocol produces
non-equilibrium states, in the paramagnetic phase, we observe
a roughly thermal distribution (i.e., the probability decreases
exponentially with energy), even when the unperturbed sys-
tem is integrable. In the ferromagnetic phase, however, there
is a striking deviation from a thermal distribution: Fig. 6c
shows jumps in the distribution function. The difficulty of
eliminating domain walls can explain these jumps: the system
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⌘e = 0, 0.02, 0.2, 2 per sweep and spin (dark to light) for (a) the
paramagnetic (J = 0.5, hx = 1, hz = 0), (b) the non-integrable
(J = 1, hx = 1, hz = 0.2) and (c) the ferromagnetic case (J = 1,
hx = 0.5, hz = 0). Parameters: Ns = 8, N⌧ = 101, Ninit =
1000, T = 6, Bi = 5, Bf = 0.7, g0 = 0.5.

equilibrates in distinct sectors with 0, 2, and 4 domain walls
present.

Conclusion: We have presented a scalable protocol to pre-
pare low-energy states of an arbitrary Hamiltonian on a quan-
tum computer or programmable analog quantum simulator.
The protocol produces a steady state that approaches the
ground state in the low noise limit, assuming that adiabatic
and Trotter errors can be controlled. The protocol involves
measuring and resetting the bath spins at each cycle. This
non-unitary element of the cooling protocol is crucial as it ef-
fectively extracts entropy, disentangles bath and system, and
allows to repeat the cycle again and again. While the algo-
rithm also works if one replaces the combination of measure-
ment and reset by only a reset of bath spins, one can use the
measurement results to gain information about the state of
the system without collapsing it. Cooling is successful when
fewer and fewer bath spins are flipped on successive cycles.
Furthermore, by conditioning the termination of the protocol
on measurement outcomes, one can improve the fidelity of the
prepared state.

Systems with topological excitations are inherently more
difficult to cool, as such excitations can only be removed when
more than one excitation is present near a given position. In-
terestingly, this property offers a possibility to identify the
presence of topological order within our protocol. In general,
topological order is notoriously difficult to detect. Within our
algorithm, one can measure the efficiency of the cooling pro-
cess; if the number of excitations is non-linear in the noise
level [M � 2 in Eq. (7)], this indicates that excitations cannot
be created and destroyed locally. Thus, one may use measure-
ments of “coolability” in a quantum simulation experiment to
detect topological phases.

Due to its relative robustness to errors, our cooling pro-
tocol can be implemented, tested, and optimized directly
on present-day quantum hardware consisting of only a few
qubits. Therefore, we expect that our cooling protocol will
prove useful in future quantum computers which can simu-
late complex Hamiltonians with unknown ground states and
excitations.
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Summary

• Simulated adiabatic cooling:
Robust method to find low-energy 
states of generic Hamiltonians.

• Reduce # of mobile topological
excitations by trapping

• Topological excitations are harder 
to cool: 

𝒆 − 𝒆𝟎 ∝ 𝜼𝒆
𝟏/𝑴

𝑴: # of excitations that can be 
removed locally

Thank you.
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FIG. 3. (E �E0)/E0 as a function of the average number of errors
⌘e: (a) The ferromagnetic case (J = 1, hx = 0.5, hz = 0) is shown
in red squares, the paramagnetic case (J = 0.5, hx = 1, hz = 0) in
blue dots. Within the grey shaded area, the energy is below the lowest
excitation gap �. (b) For small noise levels, post-selection (empty
red squares: FM, empty blue circles: PM) improves the outcome of
the protocol, i.e. it lowers the energy of the system. See text a the
description of the post-selection protocol. (Parameters: Ns = 8,
N⌧ = 101, Nc = 100, Ninit = 1000, T = 6, Bi = 5, Bf = 0.7,
g0 = 0.5).

number of excitations remaining below 1 in the steady state.
To explore how our cooling protocol performs on systems

with and without topological excitations (domain walls), in
Fig. 3, we plot the energy density e = (E�E0)/E0 averaged
over Ninit = 1000 trajectories, as a function of the noise rate
in the ferromagnetic (red squares) and paramagnetic (blue cir-
cles) regimes. For small noise levels, e in the steady state is
linear in the noise rate with a slight offset due to finite sweep
rates and Trotter errors. As shown in the zoom-in in panel (b),
for noise levels below 0.02 and 0.05 for the ferro- and param-
agnetic cases, respectively, less than one excitation remains in
our 8-site system. We also show that in this regime, e can be
further reduced by about 20%-50% by post-selection (empty
symbols): the cooling protocol was stopped if, in 5 consecu-
tive sweeps, no spin-flip of bath spins was measured.

While our numerical simulations are limited to small sys-
tems, we can obtain a qualitative characterization of the per-
formance of cooling protocols in the presence of noise from a
simple rate equation for the density of excitations n = Nex/V

(where Nex is the number of excitations, and V is the system’s
volume),

@tn = �noise � �cn
M
. (6)

The first term on the right-hand side describes the creation of
excitations with a rate �noise, which is linear in the error rate.
The second term encodes cooling via a mechanism where M

adjacent excitations are removed simultaneously. Crucially,
while certain types of local excitations can be removed one at
a time (M = 1), topological excitations can only be removed
as pairs or higher-order clusters (M > 1). We note that values
of M > 1 may also characterize topologically-trivial excita-
tions: for example, the annihilation of particle and hole exci-
tations in a semiconductor is an M = 2 process, while bound
excitons can be removed individually, M = 1. In the steady
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FIG. 4. Energy density (E � E0)/E0 as a function system size
for (a) the paramagnetic case and (b) the ferromagnetic case and for
an average number of errors ⌘e = 0, 2 · 10�3, 10�2 and 2 · 10�2

per sweep and spin (light to dark). In the shaded grey area the av-
erage energy is below the system’s gap. In the paramagnetic phase,
the energy density grows with ⌘e but not with system size, whereas
in the ferromagnetic phase the energy density grows approximately
linearly with system size. The slope of the energy density vs. system
size increases with increasing ⌘e. The observed behavior is consis-
tent with the prediction of the rate equation model, Eqs. (6) and (8).
Parameters are the same as in Fig. 3.

state, the excitation density is thus given by

n = (�noise/�c)
1/M

. (7)

Cooling is most effective when single excitations can be
removed by the coupling to the bath, i.e., M = 1. M = 1 is
the case in the paramagnetic phase. In contrast, the excitations
in the ferromagnetic phase are domain walls, which are non-
local objects and can only be removed in pairs, i.e., M = 2.

The model in Eq. (6) describes the cooling process in the
thermodynamic limit. In a finite size, d-dimensional system
with very small n, the probability that M excitations are close
to each other is proportional to 1/V M�1, where V is the
volume of the system. Thus in the limit �noise ! 0, when
n . M/V , we expect

n ⇠ �noise

�c
V

M�1
. (8)

We test this within our model by comparing it with results for
the transverse field Ising model at dual points in the ferromag-
netic and paramagnetic phases. The elementary excitations of
the ferromagnet are domain walls which, for periodic bound-
ary conditions, can only be created and annihilated in pairs,
M = 2, while M = 1 for the paramagnet. Therefore, we
choose a parameter set where the numerical values of J and
hx are exchanged. Using the self-duality of the transverse
field Ising model ensures that the dispersion of the elementary
excitations is identical in the two cases. Using the heuristic
that in a gapped system the energy density is roughly linear in
the number of excitations, we estimate n by e. Fig. 3b demon-
strates that the energy density e is linear in the noise rate in the
limit of small noise for both cases. In Fig. 4, we show that the
dependence of e on the system size is consistent with Eq. (8):
the excitation density in the paramagnetic phase (M = 1) is
nearly independent of system size, while for the ferromagnetic
phase (M = 2), e grows linearly with system size.
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We propose a simple, robust protocol to prepare a low-energy state of an arbitrary Hamiltonian on a quantum
computer or programmable quantum simulator. The protocol is inspired by the adiabatic demagnetization
technique, used to cool solid-state systems to extremely low temperatures. A fraction of the qubits (or spins) is
used to model a spin bath that is coupled to the system. By an adiabatic ramp down of a simulated Zeeman field
acting on the bath spins, energy and entropy are extracted from the system. The bath spins are then measured
and reset to the polarized state, and the process is repeated until convergence to a low-energy steady state is
achieved. We demonstrate the protocol via application to the quantum Ising model. We study the protocol’s
performance in the presence of noise and show how the information from the measurement of the bath spins
can be used to monitor the cooling process. The performance of the algorithm depends on the nature of the
excitations of the system; systems with non-local (topological) excitations are more difficult to cool than those
with local excitations. We explore the possible mitigation of this problem by trapping topological excitations.

Ground state preparation on quantum simulators and com-
puters is very important for the characterization of ground
state properties in quantum chemistry and material science [1–
4]. More generally, it can also be utilized for a variety of quan-
tum information problems [5–7]. On a quantum computer, the
Hamiltonian can be digitally implemented using a sequence
of unitary gates. Many approaches of ground state preparation
have been proposed, including variational quantum simulation
[8–12] and adiabatic state preparation [13–16]. Each of these
approaches has its own challenges. For example, the perfor-
mance of variational quantum simulation highly depends on
the quality of the variational ansatz [12, 17]. At the same
time, adiabatic state preparation is sensitive to the trajectory
in Hamiltonian space connecting the initial and final Hamil-
tonians. It tends to fail when a phase transition separates the
initial and final states. Furthermore, errors that occur during
adiabatic state preparation are not intrinsically corrected and
may be difficult to detect.

Recently, algorithms that mimic cooling by coupling to a
simulated low-entropy bath [18–24] have been proposed as al-
ternative routes that may overcome some of these challenges.
The key advantages of such cooling algorithms are that they
can be run cyclically without any special requirements on
initial states and do not require prior knowledge of the tar-
get ground state. Simulated cooling schemes also do not re-
quire the target state to be adiabatically connected to a prod-
uct state. The cyclic operation provides inherent robustness
to weak noise by automatically correcting some errors and re-
moving unwanted excitations on subsequent cycles. Further-
more, in simulated cooling on a quantum computer, monitor-
ing the bath spins during the cooling protocol can provide in-
formation on the process of approaching the system’s ground
state without observing the system directly and may be used
to identify the presence of errors.

Here, we define a simple, scalable protocol for low-energy
state preparation of an arbitrary gapped Hamiltonian on a
quantum computer or programmable quantum simulator. We
draw an analogy between our protocol and adiabatic demag-
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FIG. 1. Schematic illustration of the proposed setup. (a) Each
system spin si (light blue) is coupled to a bath spin �i (dark blue)
by switching on the coupling g(t). System spins may be generically
coupled, as illustrated here by J . At the beginning of the protocol,
the bath is polarized and subjected to a large simulated magnetic field
B(t), while the system may begin in a random state. Panel (b) shoes
the time dependence of the parameters, and panel (c) illustrates the
cooling cycle. A magnetic field B(t) is applied to the bath spins, and
linearly decreased from B0 to Bf until time t2 = 3T/4, after which
it is held constant until time T , the total duration of the sweep. The
system-bath coupling g(t) is slowly switch on until t1 = T/4, kept
constant at g(t) = g0 until time t2, and then switched off. At the end
of each sweep, the bath spins are measured and reset.

netization [25, 26], known from solid-state systems. For ex-
ample, with nuclear adiabatic demagnetization, one can reach
temperatures in the µK range [27, 28] by coupling the system
to nuclear moments polarized in a large magnetic field and
adiabatically ramping down the field.

Fig. 1 illustrates the cooling scheme. We consider a generic
system comprised of N qubits (light blue), coupled to an ad-
ditional set of Nbath “bath” qubits (dark blue). We take the


