Programmable adiabatic demagnetization: State preparation by simulated cooling

Erez Berg

Anne Matthies

University of Cologne

Achim Rosch

University of Cologne

Mark Rudner

University of Washington

arXiv:2210.17256

Simulating Physics on Computers

N-particle QM

$$i\hbar\partial_t\psi(\boldsymbol{r}_1,\ldots,\boldsymbol{r}_N,t) = \left[-\frac{\hbar^2}{2m}\nabla_1^2 - \cdots - \frac{\hbar^2}{2m}\nabla_N^2 + V(\boldsymbol{r}_1,\ldots,\boldsymbol{r}_N)\right]\psi(\boldsymbol{r}_1,\ldots,\boldsymbol{r}_N,t)$$

"Curse of dimensionality"

$$\widehat{H}_{spins} = \sum_{i,\alpha=x,y,z} h_i^{\alpha} \sigma_i^{\alpha} + \sum_{i,j,\alpha,\beta} J_{ij}^{\alpha\beta} \sigma_i^{\alpha} \sigma_j^{\beta} + \cdots$$

 $\sigma_i^{\alpha=x,y,z}$: Pauli matrices

Discrete models: digital computer friendly

Outline

• How to find ground states on quantum simulators?

 Simulated adiabatic demagnetization protocol

 Cooling trivial and topological excitations

Ground States on Quantum Computers

Q: How to prepare the ground state of a given Hamiltonian on a quantum simulator?

Noisy Intermediate-Scale Quantum (NISQ) era Preskill, 2018

- **Adiabatic Preparation**
- $H(t) = \left(1 \frac{t}{\tau}\right)H_1 + \frac{t}{\tau}H_2$ E

 H_2 : Hamiltonian of interest

• Variational Quantum Eigensolvers: prepare a wavefunction $|\psi(\lambda_1, ..., \lambda_{N_p})\rangle$, minimize $\langle \psi|H|\psi\rangle$ over $\lambda_1, ..., \lambda_{N_p}$ Variational Quantum Eigensolver review: Tilly et al. (2021)

Adiabatic Demagnetization

cryodynamics.de

Decrease B(t) adiabatically \Rightarrow decrease T

Hamiltonian H_S

Anne Matthies, Mark Rudner, Achim Rosch, EB, arXiv:2210.17256 see also S. Polla et al. (2021)

 $H(t) = H_S + H_B(t) + H_g(t)$

Initial state:

 $|\psi(0)\rangle = |\psi\rangle_S \otimes |\uparrow \cdots \uparrow\rangle_B$

Anne Matthies, Mark Rudner, Achim Rosch, EB, arXiv:2210.17256 see also S. Polla et al. (2021)

 $H(t) = H_S + H_B(t) + H_g(t)$

Anne Matthies, Mark Rudner, Achim Rosch, EB, arXiv:2210.17256 see also S. Polla et al. (2021)

Why does this cycle cool?

Adiabatic demagnetization:

As B(t) decreases, the entropy of the bath spins **increases** Entropy conserved $S_S(t) + S_B(t) = const$

Entropy of the system decreases

Microsopic picture: Imagine system with 3 states, single bath spin

No system-bath coupling (g = 0)

Why does this cycle cool?

Adiabatic demagnetization:

As B(t) decreases, the entropy of the bath spins **increases** Entropy conserved $S_S(t) + S_B(t) = const$

Entropy of the system decreases

Microsopic picture:

Imagine system with 3 states, single bath spin

 $\boldsymbol{g} \neq \boldsymbol{0}$

Steady state (many cycles): $\rho \rightarrow |\psi_0\rangle\langle\psi_0|$

$$\langle \dot{H}_S \rangle \approx -4\pi g(t)^2 \int d\omega \, n_B(\omega) \omega \chi_S''(\omega) \delta(\omega - 2B(t))$$

$$\chi_{S}^{\prime\prime}(t) = \sum_{j} i\theta(t) \langle [s_{j}^{y}(t), s_{j}^{y}(0)] \rangle$$

Steady state
$$\hat{\rho}$$
 with $E = \langle \hat{H}_S \rangle = \text{Tr}[\hat{\rho}\hat{H}_S] > E_0$

Energy density of steady state: $\frac{\partial e}{\partial t} = \frac{1}{L} \left\langle \frac{\partial \hat{H}_S}{\partial t} \right\rangle = -C(e - e_0) + \eta_e = 0$

$$e - e_0 \propto \eta_e$$

"Thermalizing" Hamiltonain:

$$\rho \rightarrow \rho_{eq} \propto e^{-\hat{H}_S/T}$$
 for $C, \eta_e \rightarrow 0$ with fixed $\frac{C}{\eta_e}$

Noise

Depolarizing noise rate $\eta_e = 2 \cdot 10^{-2}$

Improve energy by post selection:

Measure system only when bath measurement outcome is $|\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\cdots\rangle$

Noise

η_e : average number of depolarizing errors (phase/bit flip) per spin per cycle

Noise

FerromagnetParamagnet

FM w/post selection
PM w/post selection

 η_e : average number of depolarizing errors (phase/bit flip)

- FM is more diffipult to ecool
- Post-selection decreases energy

FM: Domain wall excitations

Cannot be removed by local coupling to bath!

Energy of steady state:
$$\frac{\partial e}{\partial t} = \frac{1}{L} \left\langle \frac{\partial \hat{H}_S}{\partial t} \right\rangle = -C(e - e_0)^2 + \eta_e = 0$$

 $e - e_0 \propto \sqrt{\eta_e}$

Finite d = 1 system (# of excitations = O(1)):

 $e-e_0 \propto \eta_e L$

"Trapping" topological excitations

Reduce the number of *mobile* excitations

"Trapping" topological excitations

Reduce the number of *mobile* excitations

Summary

less than 1 excitation

0.02

ener

- Simulated adiabatic cooling: Robust method to find low-energy states of generic Hamiltonians.
- Topological excitations are harder to cool:

 $e_{\mathbb{N}}^{-1} e_{0} \propto \eta_{e}^{1/M}$ M: # of excitations that

removed

Thank you.