Disorder-free localization in lattice gauge theories

Markus Heyl

Center for Electronic Correlations and Magnetism University of Augsburg

17.11.22

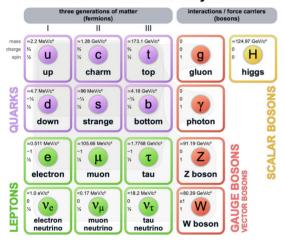
Workshop "Novel Quantum States in Condensed Matter 2022"

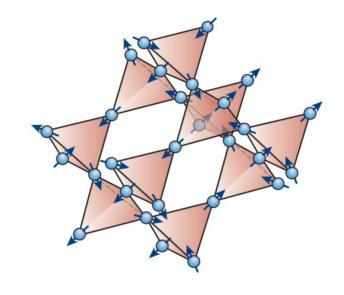
Work together with

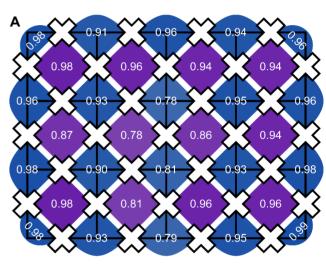
ICTP & SISSA: M. Dalmonte, M. Brenes, A. Scardicchio, F. Surace, R. Fazio, S. Notarnicola MPI-PKS: P. Karpov, R. Moessner, N. Chakraborty, G.-Y. Zhu, R. Verdel, A. Russomanno, Y.-P. Huang Cologne: M. Schmitt

Gauge theories in physics

Standard Model of Elementary Particles



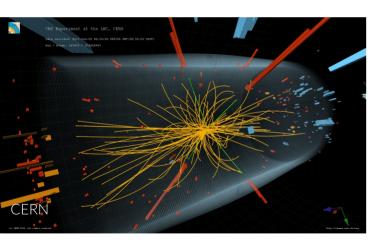


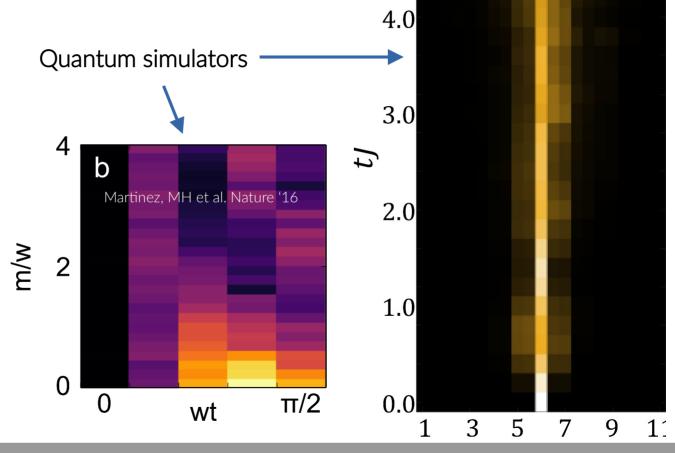


Wikipedia Balents Nature '10 Satzinger et al. Science '21

Dynamics in gauge theories







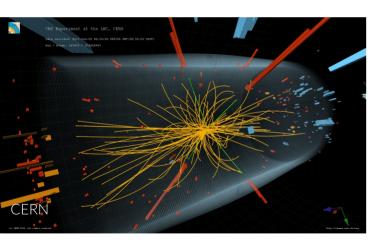
arXiv:2203.08905

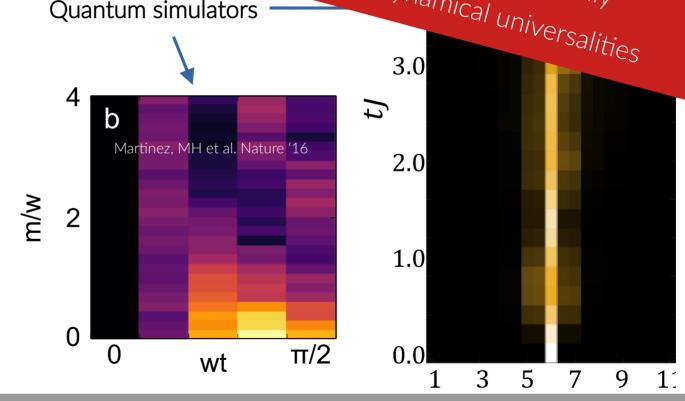
Mildenberger et al

Dynamics in gaus

Goal: explore dynamical principles and dynamical universalities

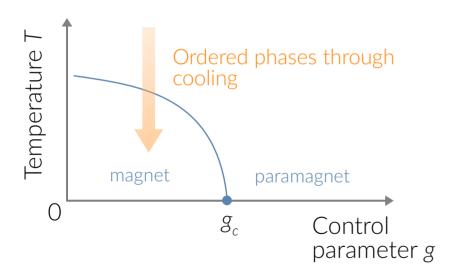
Particle collisions





New kinds of order

Conventional matter



New kinds of order

Conventional matter

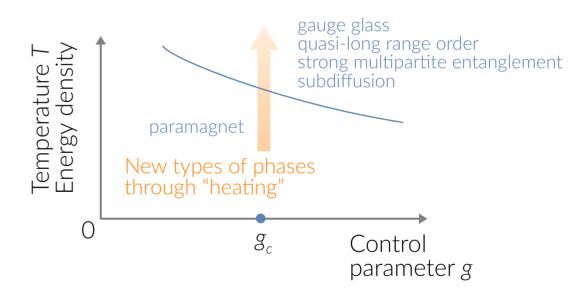
Ordered phases through cooling magnet paramagnet

 g_c

Control

parameter g

Matter with gauge constraints



Not happening (generically) in thermodynamic systems → requires **new mechanism**

Outline

Disorder-free localization (DFL)

Breaking thermalization through gauge invariance

New types of order

Gauge time crystals Subdiffusion in the Kitaev honeycomb

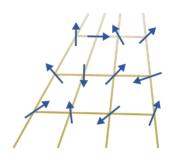
Quantum thermalization

DFL in 2D lattice gauge theories

Quantum link model (quantum spin ice, quantum dimer model)

Quantum thermalization

Isolated quantum magnet



Realistic (homogeneous) systems thermalize

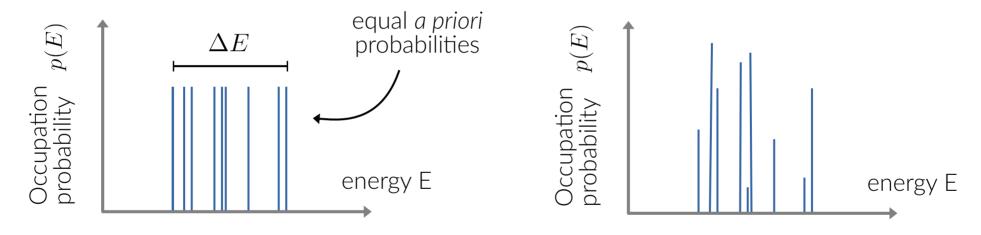
Ensemble equivalence: long-time steady state ↔ thermal Gibbs state

$$\rho_A = \operatorname{tr}_B \rho(t \to \infty) = \operatorname{tr}_B \frac{1}{Z} e^{-\beta H}$$

subsystems thermalize (remainder acting as an effective bath)

Breaking ergodicity

No thermalization: avoid equipartition



New quantum states **beyond thermodynamic constraints**

Breaking ergodicity

Integrability

- Fine-tuning
- Not robust
 → no stable
 nonthermal states

Polkovnikov et al. RMP '11

Disorder

- (Many-body) Localization
- Robust in 1D
- But unstable beyond
 1D!

Vosk & Altman, Nandkishore & Huse, Annu, Rev. '15

Local constraints

- Fractons
- Quantum many-body scars
- Gauge invariance
 - → Disorder-free

Smith et al. PRL'17 Brenes, MH et al. PRL '18

Breaking ergodical

Robust ergodicity breaking in any dimension

Disorder-free localization dimension

Integrability

- Fine-tuning
- Not robust \rightarrow no stable nonthermal states

Polkovnikov et al. RMP '11

- (Many-body) Localization
- Robust in 1D
- But unstable beyond 1D!

Vosk & Altman, Nandkishore & Huse, Annu. Rev. '15

- Fractons
 - Quantum many-be scars
- Gauge invariance
 - \rightarrow Disorder-free localization

Brenes, MH et al. PRL '18

Disorder-free localization

Gauge invariance & conservation laws

Lattice gauge theory (LGT)

Local gauge symmetry \rightarrow Generators: $[G_n, H] = 0$

Noether theorem: local symmetry \rightarrow local conservation law

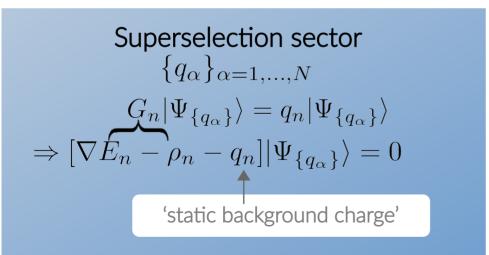
Extensive # local conserved operators/quantities (almost like *integrable* systems, but not equal to the # DOF)

LGTs have builtin constrained dynamics

Fragmentation & Superselection sectors

$$\psi_{n-1}$$
 ψ_n ψ_{n+1} Abelian LGT o Generators:
$$[G_n,H]=0 \ \ [G_n,G_{n'}]=0 \ \ orall n$$

Hamiltonian eigenstates can be labeled by the eigenvalues of the generators

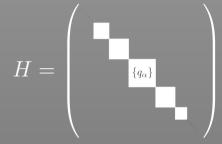


Background charges & dynamics

$$e^{-iHt}|\Psi_{\{q_{\alpha}\}}\rangle = e^{-iH_{\{q_{\alpha}\}}t}|\Psi_{\{q_{\alpha}\}}\rangle$$

Dynamics for superposition states:

$$|\Psi\rangle = \sum_{\{q_{\alpha}\}} C_{\{q_{\alpha}\}} |\Psi_{\{q_{\alpha}\}}\rangle$$



Diagonal observable (gauge invariant

$$\langle \mathcal{O}(t) \rangle = \sum_{\{q_{\alpha}\}} |C_{\{q_{\alpha}\}}|^2 \langle \Psi_{\{q_{\alpha}\}} | e^{iH_{\{q_{\alpha}\}}t} \mathcal{O}e^{-iH_{\{q_{\alpha}\}}t} | \Psi_{\{q_{\alpha}\}} \rangle$$

"disorder average" even though the state might be homogeneous

Disorder-free localization from strong random background charges

Smith et al. PRL '17 & Brenes, MH et al. PRL '18

DFL Mechanisms

Localization through interference

Disorder landscape generated by the background charges (disorder often spatially correlated)

→ Anderson or many-body localization

Localization through kinetic constraints

Fragmentation in real & Hilbert space

→ Quantum/classical percolation problem

 \rightarrow this talk

DFL in interacting 2D LGTs

U(1) quantum link model (QLM)

$$H = H_0 + V \equiv \lambda \sum_{\square} (U_{\square} + U_{\square}^{\dagger})^2 - J \sum_{\square} (U_{\square} + U_{\square}^{\dagger})$$
Potential energy counting # flippable plaquettes
$$\begin{array}{c} \text{Correlated spin flip on full plaquette} \\ \text{For each of the plaquette} \end{array}$$

Local symmetry:
$$G_n = \frac{1}{2} \left[\# \text{ out - } \# \text{ in} \right]$$



Quantum spin ice $(G_n=0) \rightarrow \text{Emergent strong-coupling QED, quantum dimer model } (G_n=(-1)^n), ...$

Nonequilibrium dynamics

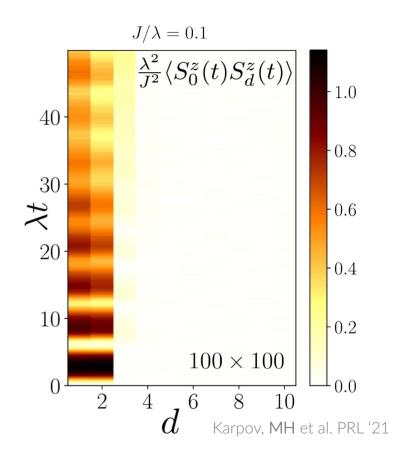
Initial condition:

$$|\psi_0\rangle = |\to\rangle = \frac{1}{\sqrt{\dim_H}} \sum_s |s\rangle$$

→ superposition over all superselection sectors

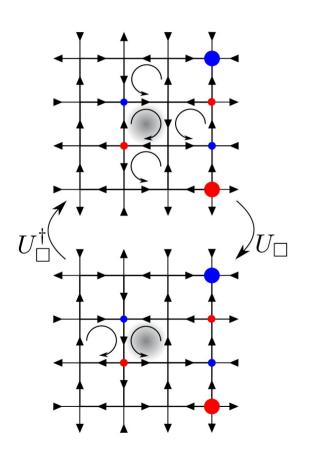
No propagation of quantum correlations

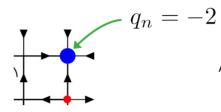
Is this just *slow dynamics* or really *nonergodic* behavior?



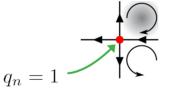
Solution via classical networks Verdel, MH et al. PRB '21

Background charges & kinetic constraints





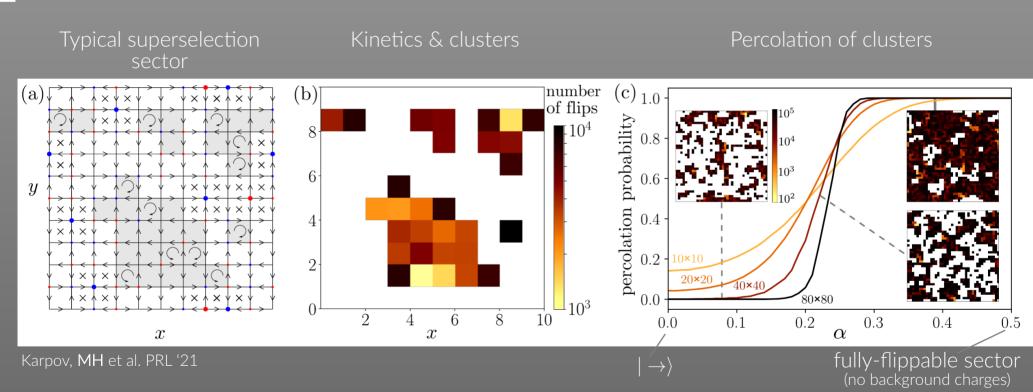
All 4 spins will be frozen forever



At least 2 neighboring plaquettes unflippable

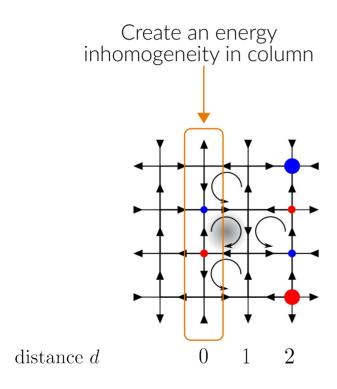
Key question: kinetics local or can excitations still propagate?

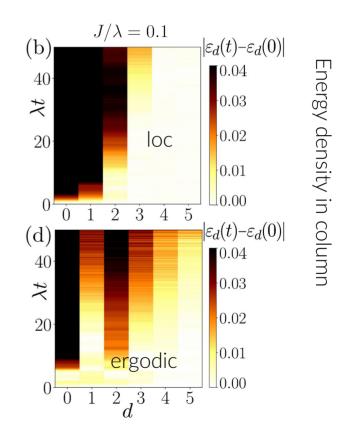
Mapping onto percolation problem



No percolation → Small clusters → Ergodicity breaking

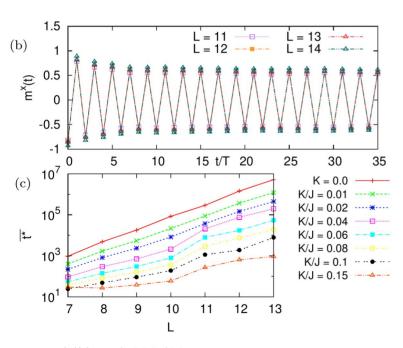
Signatures in quantum dynamics



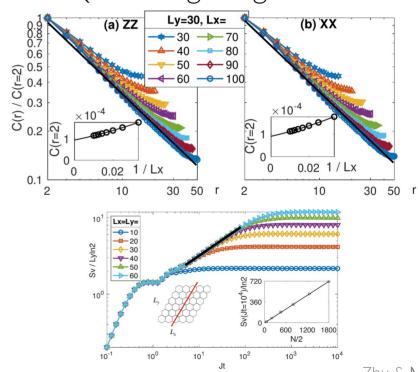


Localization protected quantum order

Gauge time crystal



Quasi long-range order



Russomanno, MH et al. PRR '20

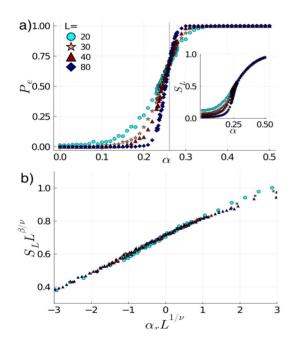
Zhu & MH PRR '21

Summary & outlook

- Disorder-free localization as a new mechanism for ergodicity breaking
- Robust ergodicity breaking even in 2D (provided gauge invariance is preserved)
- What new types of nonequilibrium phases are possible?
- What about 3D? Can there still be a nonergodic phase?
- What happens in the presence of matter in 2D?
- Implications on high-temperature spectral functions?

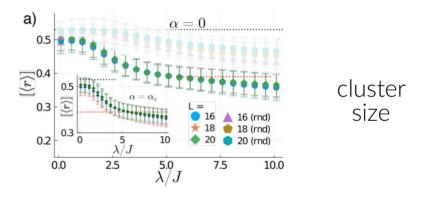
Quantum localization transition

Chakraborty, MH et al. '22



Universality class of 2D site percolation

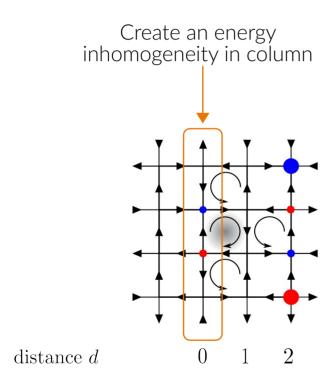
Level-spacing statistics for individual clusters

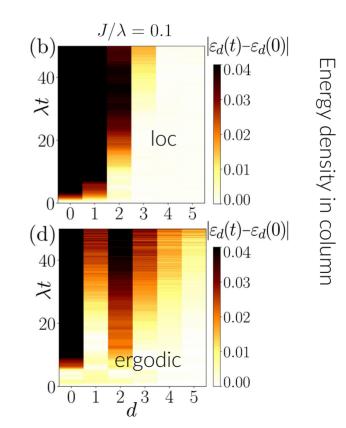


Clusters ergodic

Quantum thermalization transition = classical percolation transition

Signatures in quantum dynamics





Challenge: no efficient compression of quantum states available 2D

$$|\psi\rangle = \sum_{s} \psi(s)|s\rangle$$

amplitudes exponential in system size

Challenge: no efficient compression of quantum states available 2D

$$|\psi\rangle = \sum_{s} \psi(s)|s\rangle$$

amplitudes exponential in system size

Classical networks: "Don't store. Generate on the fly."

Sample using MC techniques

Schmitt & MH SciPost '18

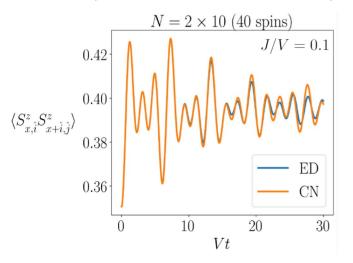
Effective classical Hamiltonian

 Structure obtained from cumulant expansion
 (around a classical limit)

$$\mathcal{H}_{\text{eff}}(s,t) = h_0(s,t) + \epsilon h_1(s,t) + \epsilon^2 h_2(s,t) + \dots$$

- Further variationally optimized
- "Simple artificial neural network"

Dynamics in zero charge superselection sector (worst case for method)



Effective classical Hamiltonian

 Structure obtained from cumulant expansion
 (around a classical limit)

$$\mathcal{H}_{\text{eff}}(s,t) = h_0(s,t) + \epsilon h_1(s,t) + \epsilon^2 h_2(s,t) + \dots$$

- Further variationally optimized
- "Simple artificial neural network"