Lieb-Schultz-Mattis theorem for 1d quantum magnets with magnetic space group symmetries

Chang-Tse Hsieh

Dept. of Physics, National Taiwan Univ

NQS 2022, YITP
Nov. 17, 2022

In collaboration with

Yuan Yao (RIKEN)

Masaki Oshikawa (ISSP \& Kavli IPMU)

Linhao Li (ISSP)
arXiv:2211.?????

Outline

- Introduction: non-featureless spectrum and conventional LSM thm
- LSM thm for magnetic space groups (MSGs)
$>$ Symmetry-twisting method
$>$ Lattice homotopy
- LSM constraints from MSGs in 1d
- Summary

Outline

- Introduction: non-featureless spectrum and conventional LSM thm
- LSM thm for magnetic space groups (MSGs) $>$ Symmetry-twisting method $>$ Lattice homotopy
- LSM constraints from MSGs in 1d
- Summary

The question

Given a quantum system w/ a Hamiltonian, it's natural to ask

- whether there is a spectral gap
- what are the properties of ground state(s) / low-energy states
...
energy
spectrum

w/ degeneracy

The question

Given a quantum system w/ a Hamiltonian, it's natural to ask

- whether there is a spectral gap
- what are the properties of ground state(s) / low-energy states
$>$ Easy for free systems, but in general hard for interacting systems

The question

Let's be more specific:

The question

Let's be more specific:

- Knowing just the microscopic DOF and the symmetries of the Hamiltonian, what low-energy properties can we determine?

The question

Let's be more specific:

- Knowing just the microscopic DOF and the symmetries of the Hamiltonian, what low-energy properties can we determine?

The question

Let's be more specific:

- Knowing just the microscopic DOF and the symmetries of the Hamiltonian, what low-energy properties can we determine?
> It determines when the system must be non-featureless.

1d spin chains w/ spin-rotation and translation symm

$$
\begin{aligned}
& H_{\mathrm{HAF}}^{s=1}=\sum_{i} \boldsymbol{S}_{i} \cdot \boldsymbol{S}_{i+1} \\
& H_{\mathrm{HAF}}^{s=1 / 2}=\sum_{i} \boldsymbol{S}_{i} \cdot \boldsymbol{S}_{i+1}
\end{aligned}
$$

1d spin chains w/ spin-rotation and translation symm

$$
\begin{aligned}
& \underset{\substack{\mathrm{HAF} \\
\text { unique gap }}}{H_{i}^{s=1}} \sum_{i} \boldsymbol{S}_{i} \cdot \boldsymbol{S}_{i+1} \\
& \underset{\substack{\text { gapess }}}{H_{\mathrm{HAF}}^{s=1 / 2}}=\sum_{i} \boldsymbol{S}_{i} \cdot \boldsymbol{S}_{i+1}
\end{aligned}
$$

"Haldane's conjecture" [Haldane ('83)]

1d spin chains w/ spin-rotation and translation symm

$$
\underset{\substack{\text { unique gap }}}{H_{i}^{s=1}=} \sum_{i} \boldsymbol{S}_{i} \cdot \boldsymbol{S}_{i+1}
$$

$$
\underset{\substack{\boldsymbol{H}_{\text {gaptess }}^{s=1 / 2}}}{\boldsymbol{H}_{i}}=\sum_{i} \boldsymbol{S}_{i} \cdot \boldsymbol{S}_{i+1}
$$

$$
\underset{\substack{\mathrm{MG}^{s} \\ \text { dimerized }}}{\boldsymbol{s}_{i}^{s=1 / 2}}=\sum_{i}\left(\boldsymbol{S}_{i} \cdot \boldsymbol{S}_{i+1}+\frac{1}{2} \boldsymbol{S}_{i} \cdot \boldsymbol{S}_{i+2}+\frac{3}{8}\right)
$$

(gapped w/ 2-fold deg.)

1d spin chains w/ spin-rotation and translation symm

$$
\underset{\substack{\text { nique gap } \\ \text { und }} \underset{i}{s=1}=\sum_{i} \boldsymbol{S}_{i} \cdot \boldsymbol{S}_{i+1} \text { featureless }}{H_{\mathrm{HAF}}}
$$

$$
\begin{aligned}
& \begin{array}{l}
\boldsymbol{H}_{\mathrm{HAF}}^{s=1 / 2} \\
\text { gapless }
\end{array}=\sum_{i} \boldsymbol{S}_{i} \cdot \boldsymbol{S}_{i+1} \\
& \underset{\mathrm{MG}}{\boldsymbol{M G}_{\mathrm{M}}^{s=1 / 2}} \begin{array}{l}
\text { dimerized }
\end{array}=\sum_{i}\left(\boldsymbol{S}_{i} \cdot \boldsymbol{S}_{i+1}+\frac{1}{2} \boldsymbol{S}_{i} \cdot \boldsymbol{S}_{i+2}+\frac{3}{8}\right)
\end{aligned} \mathbf{n}_{\text {non-featureless }}
$$

(gapped w/ 2-fold deg.)

1d spin chains w/ spin-rotation and translation symm

In fact, any spin-half-integer chain is always non-featureless, indicated by the Lieb-Schultz-Mattis (LSM) theorem [Lieb-Schultz-Mattis ('61)]:

A ld antiferromagnetic spin chain cannot have a unique gapped GS if the spin per unit cell is half-integral and if the lattice-transl and spin-rotation symm are strictly imposed.

Outline

- Introduction: non-featureless spectrum and conventional LSM thm
- LSM thm for magnetic space groups (MSGs)
\rightarrow Symmetry-twisting method
$>$ Lattice homotopy
- LSM constraints from MSGs in 1d
- Sumimary

Various versions of LSM theorem

Various versions of LSM thm for 1d quantum magnets w/ diff symm $G_{\text {int }} \times G_{\text {space }}$ were known: ${ }^{\text {[Watanabe et al. (15); Po et al. (17); Ogata et al. (18, 20); }}$

- $G_{\text {int }}=S O(3)$ or $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ or $\mathbb{Z}_{2}^{T}, G_{\text {space }}=\mathbb{Z}^{T r}$
- $G_{\text {int }}=S O(3)$ or $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ or $\mathbb{Z}_{2}^{T}, G_{\text {space }}=\mathbb{Z}_{2}^{I_{S}}$
$\left(T r=\operatorname{transl}, T=\right.$ time reversal, $I_{s}=$ site-centered inversion $)$

Various versions of LSM theorem

Various versions of LSM thm for 1d quantum magnets w/ diff symm $G_{\text {int }} \times G_{\text {space }}$ were known: [Watanabe et al. (15); Po et al. (17); Ogata et al. (18,20); Else-Thorngren (19); Yao-Oshikawa (21)]

- $G_{\text {int }}=S O(3)$ or $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ or $\mathbb{Z}_{2}^{T}, G_{\text {space }}=\mathbb{Z}^{T r}$
- $G_{\text {int }}=S O(3)$ or $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ or $\mathbb{Z}_{2}^{T}, G_{\text {space }}=\mathbb{Z}_{2}^{I_{S}}$

$$
\left(T r=\operatorname{transl}, T=\text { time reversal, } I_{s}=\text { site-centered inversion }\right)
$$

However, there are non-featureless systems not respecting the above symm, e.g.

$$
\mathcal{H}=J \sum_{i}(-1)^{i} \vec{S}_{i} \cdot\left(\vec{S}_{i+1} \times \vec{S}_{i+2}\right)
$$

Chiral ladder w/ 3-spin interactions

[Schmoll et al. ('18)]

$$
H=\sum_{i} J_{i} \mathbf{S}_{i} \cdot\left(\mathbf{S}_{i+1} \times \mathbf{S}_{i+2}\right)
$$

- $J_{i}= \pm 1: S O(3) \times \mathbb{Z}^{T r} \quad\left(\right.$ cases $\left.H_{3}, H_{4}\right)$
- $J_{i}= \pm(-1)^{i}: S O(3) \times \mathbb{Z}^{T r \cdot T}\left(\operatorname{cases} H_{1}, H_{2}\right)$

Chiral ladder w/ 3-spin interactions

[Schmoll et al. ('18)]

$$
H=\sum_{i} J_{i} \mathbf{S}_{i} \cdot\left(\mathbf{S}_{i+1} \times \mathbf{S}_{i+2}\right)
$$

$\mathbf{S}_{1} \cdot\left(\mathbf{S}_{2} \times \mathbf{S}_{3}\right)=\sum_{\alpha= \pm} \alpha \frac{\sqrt{3}}{4} \mathbb{P}_{1 / 2, \alpha}+0 \mathbb{P}_{3 / 2}$

$$
H_{\text {eff }}=-\operatorname{sgn}\left(J_{1} J_{2}\right) \frac{\left|J_{1}\right|+\left|J_{2}\right|}{3 \sqrt{3}} \sum_{n=1}^{N} \widetilde{\mathbf{S}}_{n} \cdot \widetilde{\mathbf{S}}_{n+1}
$$

$$
\frac{1}{2} \otimes \frac{1}{2} \otimes \frac{1}{2}=\frac{1}{2}+\oplus \frac{1}{2}-\oplus \frac{3}{2}
$$

- $\operatorname{sign}\left(J_{1} J_{2}\right)>0: \mathrm{FH}$
- $\operatorname{sign}\left(J_{1} J_{2}\right)<0: \mathrm{AFH}$

$$
H_{2}=-\vec{S}_{1} \cdot\left(\vec{S}_{2} \times \vec{S}_{3}\right)+\vec{S}_{2} \cdot\left(\vec{S}_{3} \times \vec{S}_{4}\right)
$$

$$
H_{4}=+\vec{S}_{1} \cdot\left(\vec{S}_{2} \times \vec{S}_{3}\right)+\vec{S}_{2} \cdot\left(\vec{S}_{3} \times \vec{S}_{4}\right)
$$

Chiral ladder w/ 3-spin interactions

[Schmoll et al. ('18)]

$$
H=\sum_{i} J_{i} \mathbf{S}_{i} \cdot\left(\mathbf{S}_{i+1} \times \mathbf{S}_{i+2}\right)
$$

$\mathbf{S}_{1} \cdot\left(\mathbf{S}_{2} \times \mathbf{S}_{3}\right)=\sum_{\alpha= \pm} \alpha \frac{\sqrt{3}}{4} \mathbb{P}_{1 / 2, \alpha}+0 \mathbb{P}_{3 / 2}$
$H_{\text {eff }}=-\operatorname{sgn}\left(J_{1} J_{2}\right) \frac{\left|J_{1}\right|+\left|J_{2}\right|}{3 \sqrt{3}} \sum_{n=1}^{N} \widetilde{\mathbf{S}}_{n} \cdot \widetilde{\mathbf{S}}_{n+1}$

$\frac{1}{2} \otimes \frac{1}{2} \otimes \frac{1}{2}=\frac{1}{2}+\oplus \frac{1}{2}-\oplus \frac{3}{2}$

- $\operatorname{sign}\left(J_{1} J_{2}\right)>0:$ FH
- $\operatorname{sign}\left(J_{1} J_{2}\right)<0:$ AFH
- $J_{i}= \pm(-1)^{i}$: Effectively a spin- $1 / 2 \mathrm{AFH} \Rightarrow$ gapless

Chiral ladder w/ 3-spin interactions

[Schmoll et al. ('18)]

$$
H=\sum_{i} J_{i} \mathbf{S}_{i} \cdot\left(\mathbf{S}_{i+1} \times \mathbf{S}_{i+2}\right)
$$

$\mathbf{S}_{1} \cdot\left(\mathbf{S}_{2} \times \mathbf{S}_{3}\right)=\sum_{\alpha= \pm} \alpha \frac{\sqrt{3}}{4} \mathbb{P}_{1 / 2, \alpha}+0 \mathbb{P}_{3 / 2}$
$H_{\text {eff }}=-\operatorname{sgn}\left(J_{1} J_{2}\right) \frac{\left|J_{1}\right|+\left|J_{2}\right|}{3 \sqrt{3}} \sum_{n=1}^{N} \widetilde{\mathbf{S}}_{n} \cdot \widetilde{\mathbf{S}}_{n+1}$

$\frac{1}{2} \otimes \frac{1}{2} \otimes \frac{1}{2}=\frac{1}{2}+\oplus \frac{1}{2}-\oplus \frac{3}{2}$

- $\operatorname{sign}\left(J_{1} J_{2}\right)>0: \mathrm{FH}$
- $\operatorname{sign}\left(J_{1} J_{2}\right)<0: \mathrm{AFH}$
- $J_{i}= \pm(-1)^{i}$: Effectively a spin- $1 / 2 \mathrm{AFH} \Rightarrow$ gapless
$>$ Numeric check (iDMRG) by [Schmoll et al. ('18)] confirmed low-energy states of H are described by a $c=1 \mathrm{CFT}$, i.e. $\mathrm{SU}(2)_{1}$ WZW universality class

Chiral ladder w/ 3-spin interactions

[Schmoll et al. ('18)]

$$
H=\sum_{i} J_{i} \mathbf{S}_{i} \cdot\left(\mathbf{S}_{i+1} \times \mathbf{S}_{i+2}\right)
$$

$\mathbf{S}_{1} \cdot\left(\mathbf{S}_{2} \times \mathbf{S}_{3}\right)=\sum_{\alpha= \pm} \alpha \frac{\sqrt{3}}{4} \mathbb{P}_{1 / 2, \alpha}+0 \mathbb{P}_{3 / 2}$
$H_{\text {eff }}=-\operatorname{sgn}\left(J_{1} J_{2}\right) \frac{\left|J_{1}\right|+\left|J_{2}\right|}{3 \sqrt{3}} \sum_{n=1}^{N} \widetilde{\mathbf{S}}_{n} \cdot \widetilde{\mathbf{S}}_{n+1}$

$$
\frac{1}{2} \otimes \frac{1}{2} \otimes \frac{1}{2}=\frac{1}{2}+\oplus \frac{1}{2}-\oplus \frac{3}{2}
$$

- $\operatorname{sign}\left(J_{1} J_{2}\right)>0: \mathrm{FH}$
- $\operatorname{sign}\left(J_{1} J_{2}\right)<0: \mathrm{AFH}$
- $J_{i}= \pm(-1)^{i}$: Effectively a spin-1/2 AFH $=>$ gapless
$>$ Numeric check (iDMRG) by [Schmoll et al. ('18)] confirmed low-energy states of H are described by a $c=1$ CFT, i.e. $\mathrm{SU}(2)_{1}$ WZW universality class

Is such a non-featureless H dictated by spin-rot and time-rev-transl symm?

LSM thm for spin-rot and time-rev-transl symm

Indeed, 1 d quantum magnets $\mathrm{w} /$ spin-rot $=S O(3)$ or $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ and time-rev-transl $=\mathbb{Z}^{(T r \cdot T)}$ symm must be non-featureless

$$
\uparrow-\downarrow-\uparrow-\downarrow-\uparrow-\downarrow-\uparrow-\downarrow-\uparrow-\downarrow-\uparrow-\downarrow-\cdots
$$

LSM thm for spin-rot and time-rev-transl symm

Indeed, 1d quantum magnets w/ spin-rot $=S O(3)$ or $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ and time-rev-transl $=\mathbb{Z}^{(T r \cdot T)}$ symm must be non-featureless

- Assume H has $\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right) \times \mathbb{Z}^{(T r \cdot T)}$ symm:

$$
\begin{aligned}
\mathbb{Z}_{2} \times \mathbb{Z}_{2}: & R_{x}^{\pi}=\exp \left(i \pi \sum_{r} S_{r}^{x}\right) ; R_{z}^{\pi}=\exp \left(i \pi \sum_{r} S_{r}^{z}\right) \\
\mathbb{Z}^{(T r \cdot T)}: & A \equiv \operatorname{Tr} \cdot T, \quad A \vec{S}_{r} A^{-1}=-\vec{S}_{r+1} ; A i A^{-1}=-i
\end{aligned}
$$

$$
\uparrow-\downarrow-\uparrow-\downarrow-\uparrow-\downarrow-\uparrow-\downarrow-\uparrow-\downarrow-\uparrow-\downarrow \ldots
$$

LSM thm for spin-rot and time-rev-transl symm

Indeed, 1d quantum magnets w/ spin-rot $=S O(3)$ or $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ and time-rev-transl $=\mathbb{Z}^{(T r \cdot T)}$ symm must be non-featureless

- Assume H has $\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right) \times \mathbb{Z}^{(T r \cdot T)}$ symm:

$$
\begin{aligned}
\mathbb{Z}_{2} \times \mathbb{Z}_{2}: & R_{x}^{\pi}=\exp \left(i \pi \sum_{r} S_{r}^{x}\right) ; \quad R_{z}^{\pi}=\exp \left(i \pi \sum_{r} S_{r}^{z}\right) \\
\mathbb{Z}^{(T r \cdot T)}: & A \equiv \operatorname{Tr} \cdot T, \quad A \vec{S}_{r} A^{-1}=-\vec{S}_{r+1} ; A i A^{-1}=-i
\end{aligned}
$$

- \# of spins per unit cell: $s+s=2 s \in \mathbb{Z}$
$>$ Spectrum is not constrained by conventional LSM thm

$$
\uparrow-\downarrow-\uparrow-\downarrow-\uparrow-\downarrow-\uparrow-\downarrow-\uparrow-\downarrow-\uparrow-\downarrow-\cdots
$$

Outline

- Introduction: non-featureless spectrum and conventional LSM thm
- LSM thm for magnetic space groups (MSGs)
$>$ Symmetry-twisting method
> Lattice Homotopy
- LSMI constraints from MSGs in 1d
- Suimmary

LSM thm for spin-rot and time-rev-transl symm

Claim: $H, \mathrm{w} /$ half-integer \boldsymbol{s} per site, has a doubly degenerate spectrum under the following twisted BC :

$$
\vec{S}_{r+L}=R_{x}^{\pi} \vec{S}_{r}\left(R_{x}^{\pi}\right)^{-1} \equiv \tilde{\vec{S}}_{r}, \quad L \in 2 \mathbb{Z}
$$

$$
\uparrow-\downarrow-\uparrow-\downarrow-\uparrow-\downarrow_{s}-\uparrow-\downarrow-\uparrow-\downarrow-\uparrow-\downarrow \ldots
$$

LSM thm for spin-rot and time-rev-transl symm

Claim: $H, \mathrm{w} /$ half-integer \boldsymbol{s} per site, has a doubly degenerate spectrum under the following twisted BC :

$$
\begin{gathered}
\vec{S}_{r+L}=R_{x}^{\pi} \vec{S}_{r}\left(R_{x}^{\pi}\right)^{-1} \equiv \tilde{\vec{S}}_{r}, \quad L \in 2 \mathbb{Z} \\
\text { Ex: } \quad \mathcal{H}_{\mathrm{PBC}}=J \sum_{r=0}^{L-1}(-1)^{r} \vec{S}_{r} \cdot\left(\vec{S}_{r+1} \times \vec{S}_{r+2}\right) \\
\mathcal{H}_{\mathrm{TBC}}=J \sum_{r=0}^{L-3}(-1)^{r} \vec{S}_{r} \cdot\left(\vec{S}_{r+1} \times \vec{S}_{r+2}\right) \\
+\vec{S}_{L-2} \cdot\left(\vec{S}_{L-1} \times \tilde{\vec{S}}_{0}\right)-\vec{S}_{L-1} \cdot\left(\tilde{\vec{S}}_{0} \times \tilde{\vec{S}}_{1}\right) \\
\uparrow-\downarrow-\uparrow-\downarrow-\uparrow-\downarrow-\uparrow-\downarrow-\uparrow-\downarrow-\uparrow-\downarrow \ldots
\end{gathered}
$$

LSM thm for spin-rot and time-rev-transl symm

Claim: $H, \mathrm{w} /$ half-integer \boldsymbol{s} per site, has a doubly degenerate spectrum under the following twisted BC :

$$
\vec{S}_{r+L}=R_{x}^{\pi} \vec{S}_{r}\left(R_{x}^{\pi}\right)^{-1} \equiv \tilde{\vec{S}}_{r}, \quad L \in 2 \mathbb{Z}
$$

- $A=\operatorname{Tr} \cdot T$ is then not a symm of H_{TBC}, while $A^{\prime} \equiv e^{i \pi S_{0}^{x}} A$ is:

$$
\left[A^{\prime}, H_{\mathrm{TBC}}\right]=0
$$

$$
\uparrow-\downarrow-\uparrow-\downarrow-\uparrow-\downarrow_{s}-\uparrow-\downarrow-\uparrow-\downarrow-\uparrow-\downarrow \ldots
$$

LSM thm for spin-rot and time-rev-transl symm

Claim: $H, \mathrm{w} /$ half-integer \boldsymbol{s} per site, has a doubly degenerate spectrum under the following twisted BC :

$$
\vec{S}_{r+L}=R_{x}^{\pi} \vec{S}_{r}\left(R_{x}^{\pi}\right)^{-1} \equiv \tilde{\vec{S}}_{r}, \quad L \in 2 \mathbb{Z}
$$

- $A=\operatorname{Tr} \cdot T$ is then not a symm of H_{TBC}, while $A^{\prime} \equiv e^{i \pi S_{0}^{x}} A$ is:

$$
\left[A^{\prime}, H_{\mathrm{TBC}}\right]=0
$$

- Any eigenstate $|\Psi\rangle$ of H_{TBC} has a partner $\mathrm{A}^{\prime}|\Psi\rangle \mathrm{w} /$ a diff eigenvalue of R_{Z}^{π}, thanks to

$$
A^{\prime} R_{z}^{\pi}=(-1)^{2 s} R_{z}^{\pi} A^{\prime}
$$

$$
\uparrow-\downarrow-\uparrow-\downarrow-\uparrow-\downarrow_{\checkmark}-\uparrow-\downarrow-\uparrow-\downarrow-\uparrow-\downarrow-\cdots
$$

LSM thm for spin-rot and time-rev-transl symm

Claim: $H, \mathrm{w} /$ half-integer \boldsymbol{s} per site, has a doubly degenerate spectrum under the following twisted BC :

$$
\vec{S}_{r+L}=R_{x}^{\pi} \vec{S}_{r}\left(R_{x}^{\pi}\right)^{-1} \equiv \tilde{\vec{S}}_{r}, \quad L \in 2 \mathbb{Z}
$$

- $A=\operatorname{Tr} \cdot T$ is then not a symm of H_{TBC}, while $A^{\prime} \equiv e^{i \pi S_{0}^{x}} A$ is:

$$
\left[A^{\prime}, H_{\mathrm{TBC}}\right]=0
$$

- Any eigenstate $|\Psi\rangle$ of H_{TBC} has a partner $\mathrm{A}^{\prime}|\Psi\rangle$ w/ a diff eigenvalue of R_{Z}^{π}, thanks to

$$
A^{\prime} R_{z}^{\pi}=(-1)^{2 s} R_{z}^{\pi} A^{\prime}
$$

$$
\uparrow-\downarrow-\uparrow-\downarrow-\uparrow-\downarrow_{-}-\uparrow-\downarrow-\uparrow-\downarrow-\uparrow-\downarrow \ldots
$$

LSM thm for spin-rot and time-rev-transl symm

Claim: $H, \mathrm{w} /$ half-integer \boldsymbol{s} per site, has a doubly degenerate spectrum under the following twisted BC :

$$
\vec{S}_{r+L}=R_{x}^{\pi} \vec{S}_{r}\left(R_{x}^{\pi}\right)^{-1} \equiv \tilde{\vec{S}}_{r}, \quad L \in 2 \mathbb{Z}
$$

- Spectrum robustness: [Watanabe ('18); Yao-Oshikawa ('20)] H_{PBC} has a unique gapped GS $\Leftrightarrow H_{\mathrm{TBC}}$ has a unique gapped GS

$$
\uparrow-\downarrow-\uparrow-\downarrow-\uparrow-\downarrow_{s}-\uparrow-\downarrow-\uparrow-\downarrow-\uparrow-\downarrow-\cdots
$$

LSM thm for spin-rot and time-rev-transl symm

Claim: $H, \mathrm{w} /$ half-integer \boldsymbol{s} per site, has a doubly degenerate spectrum under the following twisted BC :

$$
\vec{S}_{r+L}=R_{x}^{\pi} \vec{S}_{r}\left(R_{x}^{\pi}\right)^{-1} \equiv \tilde{\vec{S}}_{r}, \quad L \in 2 \mathbb{Z}
$$

- Spectrum robustness: [Watanabe ('18); Yao-Oshikawa ('20)] H_{PBC} has a unique gapped GS $\Leftrightarrow H_{\mathrm{TBC}}$ has a unique gapped GS
H_{PBC} cannot have a unique gapped GS as well!

$$
\uparrow-\downarrow-\uparrow-\downarrow-\uparrow-\upharpoonright_{s} \downarrow_{s} \uparrow-\downarrow-\uparrow-\downarrow-\uparrow-\downarrow \ldots
$$

LSM thm for magnetic space groups

- We'd like to explore all 1d LSM thm for magnetic space groups (spin-rot + transl + time-rev + inv)

LSM thm for magnetic space groups

- We'd like to explore all 1d LSM thm for magnetic space groups (spin-rot + transl + time-rev + inv)
- Not sure all can be argued based on the above symm-twisting method
$>$ E.g., systems w/ only $I_{S} \cdot T$ symm are also subject to to a LSM constraint (as we'll see later), but it seems symm-twisting method doesn't work

LSM thm for magnetic space groups

- We'd like to explore all 1d LSM thm for magnetic space groups (spin-rot + transl + time-rev + inv)
- Not sure all can be argued based on the above symm-twisting method
$>$ E.g., systems w/ only $I_{S} \cdot T$ symm are also subject to to a LSM constraint (as we'll see later), but it seems symm-twisting method doesn't work
- Nevertheless, all these cases can be understood from lattice homotopy [Po et al. ('17); Else-Po-Watanabe ('18); Else-Thorngren (' 19)] (and also from bulk-bdry corresp of 2d crystalline SPTs)

Outline

- Introduction: non-featureless spectrum and conventional LSM thm
- LSM thm for magnetic space groups (MSGs)
\rightarrow Symmetry-twisting method
$>$ Lattice homotopy
- LSM constraints from MSGs in 1d
- Suimmary

Projective rep and anomalous texture

A representation U of G satisfies

$$
U(g h)=\omega(g, h) U(g) U(h), \quad g, h \in G \quad \omega(g, h)=e^{i \phi(g, h)}
$$

- If $\omega(g, h)$ is trivial $(=1), U$ is called a linear rep
- If $\omega(g, h)$ is nontrivial, U is called a proj rep

Projective rep and anomalous texture

A representation U of G satisfies

$$
U(g h)=\omega(g, h) U(g) U(h), \quad g, h \in G \quad \omega(g, h)=e^{i \phi(g, h)}
$$

- If $\omega(g, h)$ is trivial $(=1), U$ is called a linear rep
- If $\omega(g, h)$ is nontrivial, U is called a proj rep

Ex1: $G=S O(3)$, one can choose $U(\hat{n}, \theta)=e^{i \theta \hat{n} \cdot \vec{S}}$

$$
U(\hat{n}, \theta) U(\hat{n}, 2 \pi-\theta)=e^{2 \pi i \hat{n} \cdot \vec{S}}=(-1)^{2 s}=(-1)^{2 s} U(\mathbb{1})
$$

- Integer s : linear rep
- Half-integer s : proj rep

Projective rep and anomalous texture

A representation U of G satisfies

$$
U(g h)=\omega(g, h) U(g) U(h), \quad g, h \in G \quad \omega(g, h)=e^{i \phi(g, h)}
$$

- If $\omega(g, h)$ is trivial $(=1), U$ is called a linear rep
- If $\omega(g, h)$ is nontrivial, U is called a proj rep

Ex2: $G=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$, one can choose $U\left(R_{\hat{n}}^{\pi}\right)=e^{i \pi S_{n}}, \quad \hat{n}=\hat{x}, \hat{z}$

$$
U\left(R_{\hat{n}}^{\pi}\right) U\left(R_{\hat{n}}^{\pi}\right)=e^{2 i \pi S_{n}}=(-1)^{2 s}=(-1)^{2 s} U(\mathbb{1})
$$

- Integer s : linear rep
- Half-integer s : proj rep

Projective rep and anomalous texture

A representation U of G satisfies

$$
U(g h)=\omega(g, h) U(g) U(h), \quad g, h \in G \quad \omega(g, h)=e^{i \phi(g, h)}
$$

- If $\omega(g, h)$ is trivial (= 1$), U$ is called a linear rep
- If $\omega(g, h)$ is nontrivial, U is called a proj rep

Ex3: $G=\mathbb{Z}_{2}^{T}$, one can choose $U(T)=e^{i \pi S_{y}} K, \quad K$: complex conj

$$
U(T) U(T)=e^{2 i \pi S_{y}}=(-1)^{2 s}=(-1)^{2 s} U(\mathbb{1})
$$

- Integer s : linear rep
- Half-integer s : proj rep

Projective rep and anomalous texture

A representation U of G satisfies

$$
U(g h)=\omega(g, h) U(g) U(h), \quad g, h \in G \quad \omega(g, h)=e^{i \phi(g, h)}
$$

Properties of $\omega(g, h)$
"Cocycle equation": $\omega(h, k) \omega(g, h k)=\omega(g, h) \omega(g h, k)$
Redefinition: $U(g) \rightarrow \beta(g) U(g) \quad \omega(g, h) \rightarrow \beta(g h) \beta(g)^{-1} \beta(h)^{-1} \omega(g, h)$
$>$ Equiv choices are classified by $H^{2}(G, U(1))$

Projective rep and anomalous texture

A representation U of G satisfies

$$
U(g h)=\omega(g, h) U(g) U(h), \quad g, h \in G \quad \omega(g, h)=e^{i \phi(g, h)}
$$

Properties of $\omega(g, h)$
"Cocycle equation": $\omega(h, k) \omega(g, h k)=\omega(g, h) \omega(g h, k)$
Redefinition: $U(g) \rightarrow \beta(g) U(g) \quad \omega(g, h) \rightarrow \beta(g h) \beta(g)^{-1} \beta(h)^{-1} \omega(g, h)$
$>$ Equiv choices are classified by $H^{2}(G, U(1))$

$$
>\text { For } G=S O(3), \mathbb{Z}_{2} \times \mathbb{Z}_{2}, \text { or } \mathbb{Z}_{2}^{T}, \quad H^{2}(G, U(1))=\mathbb{Z}_{2}
$$

Projective rep and anomalous texture

Existence of proj rep reveals certain property of the spectrum

Projective rep and anomalous texture

Existence of proj rep reveals certain property of the spectrum

- 0 d system of spins w/ $G=S O(3), \mathbb{Z}_{2} \times \mathbb{Z}_{2}$, or \mathbb{Z}_{2}^{T} :

If the \# of total spins is a half-integer, then the system must not have a unique symmetric gapped ground state
 (For $G=\mathbb{Z}_{2}^{T}$, we have the Kramers degeneracy)

Projective rep and anomalous texture

Existence of proj rep reveals certain property of the spectrum

- 0 d system of spins w/ $G=S O(3), \mathbb{Z}_{2} \times \mathbb{Z}_{2}$, or \mathbb{Z}_{2}^{T} :

If the \# of total spins is a half-integer, then the system must not have a unique symmetric gapped ground state
 (For $G=\mathbb{Z}_{2}^{T}$, we have the Kramers degeneracy)

$$
\text { Proj rep of symm } G=>0 \mathrm{~d} \text { LSM theorem }
$$

Projective rep and anomalous texture

Existence of proj rep reveals certain property of the spectrum

- 0 d system of spins w/ $G=S O(3), \mathbb{Z}_{2} \times \mathbb{Z}_{2}$, or \mathbb{Z}_{2}^{T} :

If the \# of total spins is a half-integer, then the system must not have a unique symmetric gapped ground state
 (For $G=\mathbb{Z}_{2}^{T}$, we have the Kramers degeneracy)

$$
\text { Proj rep of symm } G=>0 \mathrm{~d} \text { LSM theorem }
$$

Higher-dim system of spins?

Projective rep and anomalous texture

A "proj rep" of $G=G_{\text {int }} \times G_{\text {space }}$ acting on a d-dim system is defined as an anomalous texture which corresp to consistent assignments of proj rep of the isotropy group at each site r [Else-Thorngren ('19)]

- Isotropy group $G_{r} \subseteq G$ leaving r invariant
- Anomalous texture $=\left\{\omega_{r} \in H^{2}\left(G_{r}, U(1)\right)\right\}$

$$
\text { Ex 1: } G_{\text {int }}=S O(3), G_{\text {space }}=\mathbb{Z}^{T r}
$$

Projective rep and anomalous texture

A "proj rep" of $G=G_{\text {int }} \times G_{\text {space }}$ acting on a d-dim system is defined as an anomalous texture which corresp to consistent assignments of proj rep of the isotropy group at each site r [Else-Thorngren ('19)]

- Isotropy group $G_{r} \subseteq G$ leaving r invariant
- Anomalous texture $=\left\{\omega_{r} \in H^{2}\left(G_{r}, U(1)\right)\right\}$

$$
\text { Ex1: } G_{\text {int }}=S O(3), G_{\text {space }}=\mathbb{Z}^{T r} \text { 1-site translation }
$$

$$
d=1 \quad \begin{array}{cccccc}
\omega_{-2} & \omega_{-1} & \omega_{0} & \omega_{1} & \omega_{2} \\
& \cdots+\cdots & & & & C^{\prime} \\
& G_{-2} & G_{-1} & G_{0} & G_{1} & G_{2} \\
& \| & \| & \| & \| & \| \\
& \operatorname{SO}(3) & \operatorname{SO}(3) & \operatorname{SO}(3) & \operatorname{SO}(3) & \operatorname{SO}(3)
\end{array}
$$

Projective rep and anomalous texture

A "proj rep" of $G=G_{i n t} \times G_{\text {space }}$ acting on a d-dim system is defined as an anomalous texture which corresp to consistent assignments of proj rep of the isotropy group at each site r [Else-Thorngren ('19)]

- Isotropy group $G_{r} \subseteq G$ leaving r invariant
- Anomalous texture $=\left\{\omega_{r} \in H^{2}\left(G_{r}, U(1)\right)\right\}$

Ex2: $G_{\text {int }}=\mathbb{Z}_{2} \times \mathbb{Z}_{2}, G_{\text {space }}=\mathbb{Z}^{T r \cdot T}$ (translation) $\times($ time reversal)

$$
d=1 \quad \begin{array}{ccccccc}
\omega_{-2} & \omega_{-1} & \omega_{0} & \omega_{1} & \omega_{2} & \omega_{r+1}=\omega_{r} \\
& G_{-2} & G_{-1} & G_{0} & G_{1} & G_{2} & \omega_{r} \in H^{2}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}, U(1)\right)=\mathbb{Z}_{2} \\
& \| & \| & \| & \| & \| & \\
\mathbb{Z}_{2} \times \mathbb{Z}_{2} & \mathbb{Z}_{2} \times \mathbb{Z}_{2} & \mathbb{Z}_{2} \times \mathbb{Z}_{2} & \mathbb{Z}_{2} \times \mathbb{Z}_{2} & \mathbb{Z}_{2} \times \mathbb{Z}_{2} &
\end{array}
$$

Projective rep and anomalous texture

A "proj rep" of $G=G_{i n t} \times G_{\text {space }}$ acting on a d-dim system is defined as an anomalous texture which corresp to consistent assignments of proj rep of the isotropy group at each site r [Else-Thorngren ('19)]

- Isotropy group $G_{r} \subseteq G$ leaving r invariant
- Anomalous texture $=\left\{\omega_{r} \in H^{2}\left(G_{r}, U(1)\right)\right\}$

Ex3: $G_{\text {int }}=I d, G_{\text {space }}=\mathbb{Z}_{2}^{I_{S} \cdot T} \quad($ site-centered inversion $) \times($ time reversal $)$

$$
\begin{array}{cccccccc}
& \omega_{-2} & \omega_{-1} & \omega_{0} & \omega_{1} & \omega_{2} & \omega_{-r}=\omega_{r} \\
& G_{-2} & G_{-1} & G_{0} & G_{1} & G_{2} & \omega_{r \neq 0} \in H^{2}(I d, U(1))=\mathbb{Z}_{0} \\
\| & \| & \| & \| & \| & \\
& I d & I d & \mathbb{Z}_{2}^{T} & I d & I d & \omega_{0} \in H^{2}\left(\mathbb{Z}_{2}^{T}, U(1)\right)=\mathbb{Z}_{2}
\end{array}
$$

Projective rep and anomalous texture

A "proj rep" of $G=G_{\text {int }} \times G_{\text {space }}$ acting on a d-dim system is defined as an anomalous texture which corresp to consistent assignments of proj rep of the isotropy group at each site r [Else-Thorngren ('19)]

- Isotropy group $G_{r} \subseteq G$ leaving r invariant
- Anomalous texture $=\left\{\omega_{r} \in H^{2}\left(G_{r}, U(1)\right)\right\}$

Ex4: $G_{i n t}=S O(3), G_{\text {space }}=\mathbb{Z}_{2}^{I_{b}}$ bond-centered inversion

$$
d=1 \begin{array}{cccccc}
\omega_{-2} & \omega_{-1} & \omega_{0} & \omega_{1} & \omega_{-r-1}=\omega_{r} \\
& G_{-2} & G_{-1} & G_{0} & G_{1} & \omega_{r} \in H^{2}(S O(3), U(1))=\mathbb{Z}_{2} \\
& \| & \| & \| & \| & \\
& S O(3) & S O(3) & S O(3) & S O(3) &
\end{array}
$$

Lattice homotopy

Equiv relation for anom texture:

- Symm deform: $h_{t}(g \cdot r)=g \cdot h_{t}(r), g \in G_{\text {space }}, t \in[0,1]$
- Equiv anom textures are related by symm deform
$>$ Lattice homotopy [Po et al. ('17); Else-Po-Watanabe ('18)]

Lattice homotopy

Equiv relation for anom texture:

- Symm deform: $h_{t}(g \cdot r)=g \cdot h_{t}(r), g \in G_{\text {space }}, t \in[0,1]$
- Equiv anom textures are related by symm deform
$>$ Lattice homotopy [Po et al. ('17); Else-Po-Watanabe ('18)]

Trivial anom texture: $\omega_{r}=1$ for all $r \Rightarrow$ deformable to a unique symm gapped GS

Lattice homotopy

Equiv relation for anom texture:

- Symm deform: $h_{t}(g \cdot r)=g \cdot h_{t}(r), g \in G_{\text {space }}, t \in[0,1]$
- Equiv anom textures are related by symm deform
$>$ Lattice homotopy [Po et al. ('17); Else-Po-Watanabe ('18)]

Trivial anom texture: $\omega_{r}=1$ for all $r \Rightarrow$ deformable to a unique symm gapped GS

Nontrivial anom texture $=>$ d-dim LSM theorem
[Else-Thorngren ('19)]

Lattice homotopy

Equiv relation for anom texture:

- Symm deform: $h_{t}(g \cdot r)=g \cdot h_{t}(r), g \in G_{\text {space }}, t \in[0,1]$
- Equiv anom textures are related by symm deform

$$
\begin{gathered}
\mathrm{Ex} 1: G_{i n t}=S O(3), G_{\text {space }}=\mathbb{Z}^{T r} \\
\omega_{r+1}=\omega_{r} \\
\omega_{r} \in H^{2}(S O(3), U(1))=\mathbb{Z}_{2}
\end{gathered}
$$

Lattice homotopy

Equiv relation for anom texture:

- Symm deform: $h_{t}(g \cdot r)=g \cdot h_{t}(r), g \in G_{\text {space }}, t \in[0,1]$
- Equiv anom textures are related by symm deform

$$
\begin{gathered}
\text { Ex 1: } G_{\text {int }}=S O(3), G_{\text {space }}=\mathbb{Z}^{T r} \\
\omega_{r+1}=\omega_{r} \\
\omega_{r} \in H^{2}(S O(3), U(1))=\mathbb{Z}_{2} \\
\omega_{h_{t}(r)}=\omega_{r}
\end{gathered}
$$

$$
\omega_{h_{t}(-2)} \omega_{h_{t}(-1)} \omega_{h_{t}(0)} \quad \omega_{h_{t}(1)} \quad \omega_{h_{t}(2)}
$$

Lattice homotopy

Equiv relation for anom texture:

- Symm deform: $h_{t}(g \cdot r)=g \cdot h_{t}(r), g \in G_{\text {space }}, t \in[0,1]$
- Equiv anom textures are related by symm deform

$$
\begin{gathered}
\text { Ex1: } G_{\text {int }}=S O(3), G_{\text {space }}=\mathbb{Z}^{T r} \\
\omega_{r+1}=\omega_{r} \\
\omega_{r} \in H^{2}(S O(3), U(1))=\mathbb{Z}_{2} \\
\omega_{h_{t}(r)}=\omega_{r}
\end{gathered}
$$

\longmapsto

$$
\omega_{h_{t}(-2)} \omega_{h_{t}(-1)} \quad \omega_{h_{t}(0)} \quad \omega_{h_{t}(1)} \quad \omega_{h_{t}(2)}
$$

Half-integer \boldsymbol{s} per site: $\left\{\omega_{r}\right\}$ is nontrivial
$=>$ non-featureless

Lattice homotopy

Equiv relation for anom texture:

- Symm deform: $h_{t}(g \cdot r)=g \cdot h_{t}(r), g \in G_{\text {space }}, t \in[0,1]$
- Equiv anom textures are related by symm deform

$$
\begin{gathered}
\text { Ex2: } G_{\text {int }}=\mathbb{Z}_{2} \times \mathbb{Z}_{2}, G_{\text {space }}=\mathbb{Z}^{T r \cdot T} \\
\omega_{r+1}=\omega_{r} \\
\omega_{r} \in H^{2}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}, U(1)\right)=\mathbb{Z}_{2}
\end{gathered}
$$

Lattice homotopy

Equiv relation for anom texture:

- Symm deform: $h_{t}(g \cdot r)=g \cdot h_{t}(r), g \in G_{\text {space }}, t \in[0,1]$
- Equiv anom textures are related by symm deform

$$
\begin{gathered}
\text { Ex2: } G_{\text {int }}=\mathbb{Z}_{2} \times \mathbb{Z}_{2}, G_{\text {space }}=\mathbb{Z}^{T r \cdot T} \\
\omega_{r+1}=\omega_{r} \\
\omega_{r} \in H^{2}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}, U(1)\right)=\mathbb{Z}_{2} \\
\omega_{h_{t}(r)}=\omega_{r}
\end{gathered}
$$

\square

$$
\omega_{h_{t}(-2)} \omega_{h_{t}(-1)} \omega_{h_{t}(0)} \quad \omega_{h_{t}(1)} \quad \omega_{h_{t}(2)}
$$

Lattice homotopy

Equiv relation for anom texture:

- Symm deform: $h_{t}(g \cdot r)=g \cdot h_{t}(r), g \in G_{\text {space }}, t \in[0,1]$
- Equiv anom textures are related by symm deform
Ex2: $G_{\text {int }}=\mathbb{Z}_{2} \times \mathbb{Z}_{2}, G_{\text {space }}=\mathbb{Z}^{T r \cdot T}$

$$
\omega_{r+1}=\omega_{r}
$$

$$
\omega_{r} \in H^{2}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}, U(1)\right)=\mathbb{Z}_{2}
$$

\square

$$
\omega_{h_{t}(-2)} \omega_{h_{t}(-1)} \quad \omega_{h_{t}(0)} \quad \omega_{h_{t}(1)} \quad \omega_{h_{t}(2)}
$$

$$
\omega_{h_{t}(r)}=\omega_{r}
$$

Half-integer s per site: $\left\{\omega_{r}\right\}$ is nontrivial
=> non-featureless

Lattice homotopy

Equiv relation for anom texture:

- Symm deform: $h_{t}(g \cdot r)=g \cdot h_{t}(r), g \in G_{\text {space }}, t \in[0,1]$
- Equiv anom textures are related by symm deform

$$
\begin{gathered}
\text { Ex3: } G_{\text {int }}=I d, G_{\text {space }}=\mathbb{Z}_{2}^{I_{s} \cdot T} \\
\omega_{-r}=\omega_{r} \\
\omega_{r \neq 0} \in H^{2}(I d, U(1))=\mathbb{Z}_{0} \\
\omega_{0} \in H^{2}\left(\mathbb{Z}_{2}^{T}, U(1)\right)=\mathbb{Z}_{2}
\end{gathered}
$$

Lattice homotopy

Equiv relation for anom texture:

- Symm deform: $h_{t}(g \cdot r)=g \cdot h_{t}(r), g \in G_{\text {space }}, t \in[0,1]$
- Equiv anom textures are related by symm deform

$$
\begin{gathered}
\text { Ex3: } G_{i n t}=I d, G_{\text {space }}=\mathbb{Z}_{2}^{I_{S} \cdot T} \\
\omega_{-r}=\omega_{r} \\
\omega_{r \neq 0} \in H^{2}(I d, U(1))=\mathbb{Z}_{0} \\
\omega_{0} \in H^{2}\left(\mathbb{Z}_{2}^{T}, U(1)\right)=\mathbb{Z}_{2} \\
\omega_{h_{t}(r)}=\omega_{r}
\end{gathered}
$$

Lattice homotopy

Equiv relation for anom texture:

- Symm deform: $h_{t}(g \cdot r)=g \cdot h_{t}(r), g \in G_{\text {space }}, t \in[0,1]$
- Equiv anom textures are related by symm deform

$$
\begin{gathered}
\text { Ex3: } G_{\text {int }}=I d, G_{\text {space }}=\mathbb{Z}_{2}^{I_{s} \cdot T} \\
\omega_{-r}=\omega_{r} \\
\omega_{r \neq 0} \in H^{2}(I d, U(1))=\mathbb{Z}_{0} \\
\omega_{0} \in H^{2}\left(\mathbb{Z}_{2}^{T}, U(1)\right)=\mathbb{Z}_{2} \\
\omega_{h_{t}(r)}=\omega_{r}
\end{gathered}
$$

Lattice homotopy

Equiv relation for anom texture:

- Symm deform: $h_{t}(g \cdot r)=g \cdot h_{t}(r), g \in G_{\text {space }}, t \in[0,1]$
- Equiv anom textures are related by symm deform

$$
\begin{gathered}
\text { Ex3: } G_{\text {int }}=I d, G_{\text {space }}=\mathbb{Z}_{2}^{I_{s} \cdot T} \\
\omega_{-r}=\omega_{r} \\
\omega_{r \neq 0} \in H^{2}(I d, U(1))=\mathbb{Z}_{0} \\
\omega_{0} \in H^{2}\left(\mathbb{Z}_{2}^{T}, U(1)\right)=\mathbb{Z}_{2} \\
\omega_{h_{t}(r)}=\omega_{r}
\end{gathered}
$$

Half-integer \boldsymbol{s} at inversion center $r=0$: $\left\{\omega_{r}\right\}$ is nontrivial $=>$ non-featureless

Lattice homotopy

Equiv relation for anom texture:

- Symm deform: $h_{t}(g \cdot r)=g \cdot h_{t}(r), g \in G_{\text {space }}, t \in[0,1]$
- Equiv anom textures are related by symm deform

$$
\text { Ex4: } G_{\text {int }}=S O(3), G_{\text {space }}=\mathbb{Z}_{2}^{I_{b}}
$$

$$
\begin{gathered}
\omega_{-r-1}=\omega_{r} \\
\omega_{r} \in H^{2}(S O(3), U(1))=\mathbb{Z}_{2}
\end{gathered}
$$

Lattice homotopy

Equiv relation for anom texture:

- Symm deform: $h_{t}(g \cdot r)=g \cdot h_{t}(r), g \in G_{\text {space }}, t \in[0,1]$
- Equiv anom textures are related by symm deform

$$
\begin{gathered}
\text { Ex4: } G_{\text {int }}=S O(3), G_{\text {space }}=\mathbb{Z}_{2}^{I_{b}} \\
\omega_{-r-1}=\omega_{r} \\
\omega_{r} \in H^{2}(S O(3), U(1))=\mathbb{Z}_{2} \\
\omega_{h_{t}(r)}=\omega_{r}
\end{gathered}
$$

3

Lattice homotopy

Equiv relation for anom texture:

- Symm deform: $h_{t}(g \cdot r)=g \cdot h_{t}(r), g \in G_{\text {space }}, t \in[0,1]$
- Equiv anom textures are related by symm deform

$$
\begin{gathered}
\mathrm{Ex} 4: G_{\text {int }}=S O(3), G_{\text {space }}=\mathbb{Z}_{2}^{I_{b}} \\
\omega_{-r-1}=\omega_{r} \\
\omega_{r} \in H^{2}(S O(3), U(1))=\mathbb{Z}_{2} \\
\omega_{h_{t}(r)}=\omega_{r}
\end{gathered}
$$

Lattice homotopy

Equiv relation for anom texture:

- Symm deform: $h_{t}(g \cdot r)=g \cdot h_{t}(r), g \in G_{\text {space }}, t \in[0,1]$
- Equiv anom textures are related by symm deform

$$
\text { Ex4: } G_{\text {int }}=S O(3), G_{\text {space }}=\mathbb{Z}_{2}^{I_{b}}
$$

$$
\omega_{-r-1}=\omega_{r}
$$

$$
\begin{gathered}
\omega_{r} \in H^{2}(S O(3), U(1))=\mathbb{Z}_{2} \\
\omega_{h_{t}(r)}=\omega_{r}
\end{gathered}
$$

Trivial anom texture (regardless of \boldsymbol{s} at each site)
$=>$ (deformable to) unique symm gapped GS

Outline

- Introduction: non-featureless spectrum and conventional LSM thm
- ILSM thm for magnetic space groups (MSGs) > Symmetry-twisting method > Lattice Homotopy
- LSM constraints from MSGs in 1d
- Summary

(Minimal) MSGs giving rise to LSM constraints

- $G_{\text {space }}=\mathbb{Z}^{T r}, G_{\text {int }}=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ or \mathbb{Z}_{2}^{T}

- $G_{\text {space }}=\mathbb{Z}^{T r \cdot T}, G_{\text {int }}=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$

$(\pi$-rotation $) \times($ site-centered inversion $)$
- $G_{\text {space }}=\mathbb{Z}_{2}^{\pi I_{s}}, G_{\text {int }}=\mathbb{Z}_{2}$

- $G_{\text {space }}=\mathbb{Z}_{2}^{I \cdot T}, G_{\text {int }}=I d$

Non-featureless spin interactions in 1d

	$\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right) \times \mathbb{Z}^{T r}$	$\mathbb{Z}_{2}^{T} \times \mathbb{Z}^{T r}$	$\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right) \times \mathbb{Z}^{T r \cdot T}$	$\mathbb{Z}_{2} \times \mathbb{Z}^{\pi I_{s}}$	$\mathbb{Z}_{2}^{I_{s} \cdot T}$
XYZ: $\sum_{\alpha, r} \mathcal{J}_{\alpha} S_{r}^{\alpha} S_{r+1}^{\alpha}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
uDM : $\sum_{r} \vec{D} \cdot\left(\vec{S}_{r} \times \vec{S}_{r+1}\right)$	x	\checkmark	x	\checkmark	x
sDM : $\sum_{r}(-1)^{r} \vec{D} \cdot\left(\vec{S}_{r} \times \vec{S}_{r+1}\right)$	x	x	x	x	\checkmark
uTP : $\sum_{r} J \vec{S}_{r} \cdot\left(\vec{S}_{r+1} \times \vec{S}_{r+2}\right)$	\checkmark	x	x	x	\checkmark
sTP : $\sum_{r}(-1)^{r} J \vec{S}_{r} \cdot\left(\vec{S}_{r+1} \times \vec{S}_{r+2}\right)$	x	x	\checkmark	x	\checkmark

u: uniform s: staggered DM: Dzyaloshinskii-Moriya TP: (scalar-)triple-product

Non-featureless spin interactions in 1d

	$\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right) \times \mathbb{Z}^{T r}$	$\mathbb{Z}_{2}^{T} \times \mathbb{Z}^{T r}$	$\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right) \times \mathbb{Z}^{T r \cdot T}$	$\mathbb{Z}_{2} \times \mathbb{Z}^{\pi I_{s}}$	$\mathbb{Z}_{2}^{I_{s} \cdot T}$
XYZ: $\sum_{\alpha, r} \mathcal{J}_{\alpha} S_{r}^{\alpha} S_{r+1}^{\alpha}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
uDM : $\sum_{r} \vec{D} \cdot\left(\vec{S}_{r} \times \vec{S}_{r+1}\right)$	x	\checkmark	x	\checkmark	x
sDM : $\sum_{r}(-1)^{r} \vec{D} \cdot\left(\vec{S}_{r} \times \vec{S}_{r+1}\right)$	x	x	x	x	\checkmark
uTP : $\sum_{r} J \vec{S}_{r} \cdot\left(\vec{S}_{r+1} \times \vec{S}_{r+2}\right)$	\checkmark	x	x	x	\checkmark
sTP : $\sum_{r}(-1)^{r} J \vec{S}_{r} \cdot\left(\vec{S}_{r+1} \times \vec{S}_{r+2}\right)$	x	x	\checkmark	x	\checkmark

u: uniform s: staggered DM: Dzyaloshinskii-Moriya TP: (scalar-)triple-product

Non-featureless combinations:

- $\mathrm{XYZ}+$ (any of the other 4 terms), e.g. HAF $+\mathrm{sDM}=\mathrm{XXZ}$ [Oshikawa-Affleck ('97)]
- $s D M+u T P+s T P$

General phase structures

NF: non-featureless

$\overline{\mathrm{NF}}$: not non-featureless

General phase structures

NF: non-featureless
$\overline{\mathrm{NF}}$: not non-featureless
FM/AFM/gapless
XYZ, DM, STP, etc. $-H_{\mathrm{NF}}\left(\left\{J_{\alpha}\right\}\right)$ $\underbrace{\llcorner }$

QPT of Ginzburg-Landau, BKT, etc.

$$
\begin{aligned}
& \text { E.g. } \\
& \qquad \begin{aligned}
\mathcal{H} & =J \sum_{j=1}^{N}\left(\frac{1+\gamma}{2} \sigma_{j}^{x} \sigma_{j+1}^{x}+\frac{1-\gamma}{2} \sigma_{j}^{y} \sigma_{j+1}^{y}+\Delta \sigma_{j}^{z} \sigma_{j+1}^{z}\right) \\
& +\sum_{j=1}^{N} \vec{D} \cdot\left(\vec{\sigma}_{j} \times \vec{\sigma}_{j+1}\right)-h \sum_{j=1}^{N} \sigma_{j}^{z},
\end{aligned}
\end{aligned}
$$

[Yi et al. (19')]

$$
D=0.2, \Delta=0.2, \text { and } J=1
$$

Outline

- Introduction: non-featureless spectrum and conventional LSM thm
- LSM thm for magnetic space groups (MSGs) $>$ Symmetry-twisting method > Lattice Homotopy
- List of (minimal) MSGs giving LSM constraints in 1 d
- Summary

Summary

- Conventional LSM thm: 1d spin chain w/ lattice-transl and spin-rot symm cannot have a unique gapped ground state if the spin per unit cell is half-integral.
- In this talk, we discuss various versions of 1d LSM thm for magnetic space groups (spin-rot + transl + time-rev + inv), basing on a symmtwisting method as well as lattice homotopy.
- The extended LSM constraints apply to systems with a broader class of spin interactions, such as Dzyaloshinskii-Moriya and scalar-triple-product 3 -spin interactions.

Thank you for your attention!

