Lieb-Schultz-Mattis theorem for 1d quantum magnets with magnetic space group symmetries

Chang-Tse Hsieh

Dept. of Physics, National Taiwan Univ

NQS 2022, YITP

Nov. 17, 2022

In collaboration with

Yuan Yao (RIKEN)

Masaki Oshikawa (ISSP & Kavli IPMU) Linhao Li (ISSP)

arXiv:2211.????

Outline

- Introduction: non-featureless spectrum and conventional LSM thm
- LSM thm for magnetic space groups (MSGs)
 - Symmetry-twisting method
 - Lattice homotopy
- LSM constraints from MSGs in 1d
- Summary

Outline

- Introduction: non-featureless spectrum and conventional LSM thm
- LSM thm for magnetic space groups (MSGs)
 > Symmetry-twisting method
 - Lattice homotopy
- LSM constraints from MSGs in 1d
- Summary

. . .

Given a quantum system w/ a Hamiltonian, it's natural to ask

- whether there is a spectral gap
- what are the properties of ground state(s) / low-energy states

Given a quantum system w/ a Hamiltonian, it's natural to ask

- whether there is a spectral **gap**
- what are the properties of ground state(s) / low-energy states

>Easy for *free* systems, but in general hard for *interacting* systems

energy spectrum

. . .

Let's be more specific:

Let's be more specific:

• Knowing just the **microscopic DOF** and the **symmetries** of the Hamiltonian, what low-energy properties can we determine?

Let's be more specific:

• Knowing just the **microscopic DOF** and the **symmetries** of the Hamiltonian, what low-energy properties can we determine?

Let's be more specific:

- Knowing just the **microscopic DOF** and the **symmetries** of the Hamiltonian, what low-energy properties can we determine?
- > It determines when the system must be **non-featureless**.

$$H_{\text{HAF}}^{s=1} = \sum_{i} \boldsymbol{S}_{i} \cdot \boldsymbol{S}_{i+1}$$
$$H_{\text{HAF}}^{s=1/2} = \sum_{i} \boldsymbol{S}_{i} \cdot \boldsymbol{S}_{i+1}$$

$$H_{\text{HAF}}^{s=1} = \sum_{i} S_{i} \cdot S_{i+1}$$

unique gap

$$H_{\mathrm{HAF}}^{s=1/2} = \sum_{i} S_{i} \cdot S_{i+1}$$

"Haldane's conjecture" [Haldane ('83)]

$$H_{\mathrm{HAF}}^{s=1} = \sum_{i} \boldsymbol{S}_{i} \cdot \boldsymbol{S}_{i+1}$$
unique gap

$$H_{\text{HAF}}^{s=1/2} = \sum_{i} S_{i} \cdot S_{i+1}$$

$$H_{\text{MG}}^{s=1/2} = \sum_{i} \left(\boldsymbol{S}_{i} \cdot \boldsymbol{S}_{i+1} + \frac{1}{2} \boldsymbol{S}_{i} \cdot \boldsymbol{S}_{i+2} + \frac{3}{8} \right)$$

dimerized

(gapped w/ 2-fold deg.)

$$H_{\text{HAF}}^{s=1} = \sum_{i} S_{i} \cdot S_{i+1} \quad \text{featureless}$$
unique gap i

$$H_{\text{HAF}}^{s=1/2} = \sum_{i} S_{i} \cdot S_{i+1}$$
apless
$$H_{\text{MG}}^{s=1/2} = \sum_{i} \left(S_{i} \cdot S_{i+1} + \frac{1}{2} S_{i} \cdot S_{i+2} + \frac{3}{8} \right)$$
non-featureless

(gapped w/ 2-fold deg.)

In fact, *any* spin-half-integer chain is *always* non-featureless, indicated by the Lieb-Schultz-Mattis (LSM) theorem [Lieb-Schultz-Mattis ('61)]:

A 1d antiferromagnetic spin chain **cannot** have a unique gapped GS if the spin per unit cell is **half-integral** and if the **lattice-transl** and **spin-rotation symm** are strictly imposed.

Outline

- Introduction: non-featureless spectrum and conventional LSM thm
- LSM thm for magnetic space groups (MSGs)
 - Symmetry-twisting method
 - Lattice homotopy
- LSM constraints from MSGs in 1d
- Summary

Various versions of LSM theorem

Various versions of LSM thm for 1d quantum magnets w/ diff symm $G_{int} \times G_{space}$ were known: [Watanabe et al. (15); Po et al. (17); Ogata et al. (18, 20); Else-Thorngren (19); Yao-Oshikawa (21)]

- $G_{int} = SO(3)$ or $\mathbb{Z}_2 \times \mathbb{Z}_2$ or \mathbb{Z}_2^T , $G_{space} = \mathbb{Z}^{Tr}$
- $G_{int} = SO(3)$ or $\mathbb{Z}_2 \times \mathbb{Z}_2$ or \mathbb{Z}_2^T , $G_{space} = \mathbb{Z}_2^{I_s}$

($Tr = transl, T = time reversal, I_s = site-centered inversion$)

Various versions of LSM theorem

Various versions of LSM thm for 1d quantum magnets w/ diff symm $G_{int} \times G_{space}$ were known: [Watanabe et al. (15); Po et al. (17); Ogata et al. (18, 20); Else-Thorngren (19); Yao-Oshikawa (21)]

•
$$G_{int} = SO(3)$$
 or $\mathbb{Z}_2 \times \mathbb{Z}_2$ or \mathbb{Z}_2^T , $G_{space} = \mathbb{Z}^{T_1}$

•
$$G_{int} = SO(3)$$
 or $\mathbb{Z}_2 \times \mathbb{Z}_2$ or \mathbb{Z}_2^T , $G_{space} = \mathbb{Z}_2^{I_s}$

($Tr = transl, T = time reversal, I_s = site-centered inversion$)

However, there are non-featureless systems not respecting the above symm, e.g.

$$\mathcal{H} = J \sum_{i} (-1)^{i} \vec{S}_{i} \cdot (\vec{S}_{i+1} \times \vec{S}_{i+2})$$

$$H = \sum_{i} J_i \, \mathbf{S}_i \cdot (\mathbf{S}_{i+1} \times \mathbf{S}_{i+2})$$

• $J_i = \pm 1: SO(3) \times \mathbb{Z}^{Tr}$ (cases H_3, H_4)

• $J_i = \pm (-1)^i : SO(3) \times \mathbb{Z}^{Tr \cdot T}$ (cases H_1, H_2)

$$H = \sum_{i} J_{i} \mathbf{S}_{i} \cdot (\mathbf{S}_{i+1} \times \mathbf{S}_{i+2})$$

$$\mathbf{S}_1 \cdot (\mathbf{S}_2 \times \mathbf{S}_3) = \sum_{\alpha = \pm} \alpha \frac{\sqrt{3}}{4} \mathbb{P}_{1/2,\alpha} + 0 \mathbb{P}_{3/2}$$

$$H_{\text{eff}} = -\text{sgn}\left(J_1 J_2\right) \frac{|J_1| + |J_2|}{3\sqrt{3}} \sum_{n=1}^N \widetilde{\mathbf{S}}_n \cdot \widetilde{\mathbf{S}}_{n+1}$$

$$\frac{1}{2} \otimes \frac{1}{2} \otimes \frac{1}{2} = \frac{1}{2} \oplus \frac{1}{2} \oplus \frac{3}{2}$$

- $sign(J_1J_2) > 0$: FH
- $\operatorname{sign}(J_1J_2) < 0$: AFH

 $H_3 = -ec{S}_1 \cdot \left(ec{S}_2 imes ec{S}_3
ight) - ec{S}_2 \cdot \left(ec{S}_3 imes ec{S}_4
ight)$

 $H_4 = +\vec{S}_1 \cdot \left(\vec{S}_2 \times \vec{S}_3\right) + \vec{S}_2 \cdot \left(\vec{S}_3 \times \vec{S}_4\right)$

$$H = \sum_{i} J_{i} \mathbf{S}_{i} \cdot (\mathbf{S}_{i+1} \times \mathbf{S}_{i+2})$$

 $\mathbf{S}_1 \cdot (\mathbf{S}_2 \times \mathbf{S}_3) = \sum_{\alpha = \pm} \alpha \frac{\sqrt{3}}{4} \mathbb{P}_{1/2,\alpha} + 0 \mathbb{P}_{3/2}$

$$H_{\text{eff}} = -\text{sgn}\left(J_1 J_2\right) \frac{|J_1| + |J_2|}{3\sqrt{3}} \sum_{n=1}^N \widetilde{\mathbf{S}}_n \cdot \widetilde{\mathbf{S}}_{n+1}$$

- [Schmoll et al. ('18)]
 - $\frac{1}{2} \otimes \frac{1}{2} \otimes \frac{1}{2} = \frac{1}{2} \oplus \frac{1}{2} \oplus \frac{3}{2}$
 - $sign(J_1J_2) > 0$: FH
 - $\operatorname{sign}(J_1J_2) < 0$: AFH
- $J_i = \pm (-1)^i$: Effectively a spin-1/2 AFH => gapless

$$H = \sum_{i} J_{i} \mathbf{S}_{i} \cdot (\mathbf{S}_{i+1} \times \mathbf{S}_{i+2})$$

 $\mathbf{S}_1 \cdot (\mathbf{S}_2 \times \mathbf{S}_3) = \sum_{\alpha = \pm} \alpha \frac{\sqrt{3}}{4} \mathbb{P}_{1/2,\alpha} + 0 \mathbb{P}_{3/2}$

$$H_{\text{eff}} = -\text{sgn}\left(J_1 J_2\right) \frac{|J_1| + |J_2|}{3\sqrt{3}} \sum_{n=1}^N \widetilde{\mathbf{S}}_n \cdot \widetilde{\mathbf{S}}_{n+1}$$

- [Schmoll et al. ('18)]
 - $\frac{1}{2} \otimes \frac{1}{2} \otimes \frac{1}{2} = \frac{1}{2} \oplus \frac{1}{2} \oplus \frac{3}{2}$
 - $sign(J_1J_2) > 0$: FH
 - $\operatorname{sign}(J_1J_2) < 0$: AFH
- $J_i = \pm (-1)^i$: Effectively a spin-1/2 AFH => gapless
- Numeric check (iDMRG) by [Schmoll et al. ('18)] confirmed low-energy states of *H* are described by a c = 1 CFT, i.e. SU(2)₁ WZW universality class

$$H = \sum_{i} J_{i} \mathbf{S}_{i} \cdot (\mathbf{S}_{i+1} \times \mathbf{S}_{i+2})$$

 $\mathbf{S}_1 \cdot (\mathbf{S}_2 \times \mathbf{S}_3) = \sum_{\alpha = \pm} \alpha \frac{\sqrt{3}}{4} \mathbb{P}_{1/2,\alpha} + 0 \mathbb{P}_{3/2}$

$$H_{\text{eff}} = -\text{sgn}\left(J_1 J_2\right) \frac{|J_1| + |J_2|}{3\sqrt{3}} \sum_{n=1}^N \widetilde{\mathbf{S}}_n \cdot \widetilde{\mathbf{S}}_{n+1}$$

- [Schmoll et al. ('18)]
 - $\frac{1}{2} \otimes \frac{1}{2} \otimes \frac{1}{2} = \frac{1}{2} \oplus \frac{1}{2} \oplus \frac{3}{2}$
 - $sign(J_1J_2) > 0$: FH
 - $\operatorname{sign}(J_1J_2) < 0$: AFH
- $J_i = \pm (-1)^i$: Effectively a spin-1/2 AFH => gapless
- Numeric check (iDMRG) by [Schmoll et al. ('18)] confirmed low-energy states of *H* are described by a c = 1 CFT, i.e. SU(2)₁ WZW universality class

Is such a non-featureless H dictated by spin-rot and time-rev-transl symm?

Indeed, 1d quantum magnets w/ spin-rot = SO(3) or $\mathbb{Z}_2 \times \mathbb{Z}_2$ and time-rev-transl = $\mathbb{Z}^{(Tr \cdot T)}$ symm must be **non-featureless**

Indeed, 1d quantum magnets w/ spin-rot = SO(3) or $\mathbb{Z}_2 \times \mathbb{Z}_2$ and time-rev-transl = $\mathbb{Z}^{(Tr \cdot T)}$ symm must be **non-featureless**

• Assume *H* has $(\mathbb{Z}_2 \times \mathbb{Z}_2) \times \mathbb{Z}^{(Tr \cdot T)}$ symm:

$$\mathbb{Z}_{2} \times \mathbb{Z}_{2} : \quad R_{x}^{\pi} = \exp(i\pi \sum_{r} S_{r}^{x}); \ R_{z}^{\pi} = \exp(i\pi \sum_{r} S_{r}^{z})$$
$$\mathbb{Z}^{(Tr \cdot T)} : \quad A \equiv Tr \cdot T, \quad A\vec{S}_{r}A^{-1} = -\vec{S}_{r+1}; \ AiA^{-1} = -i$$

Indeed, 1d quantum magnets w/ spin-rot = SO(3) or $\mathbb{Z}_2 \times \mathbb{Z}_2$ and time-rev-transl = $\mathbb{Z}^{(Tr \cdot T)}$ symm must be **non-featureless**

• Assume *H* has $(\mathbb{Z}_2 \times \mathbb{Z}_2) \times \mathbb{Z}^{(Tr \cdot T)}$ symm:

$$\mathbb{Z}_{2} \times \mathbb{Z}_{2} : \quad R_{x}^{\pi} = \exp(i\pi \sum_{r} S_{r}^{x}); \ R_{z}^{\pi} = \exp(i\pi \sum_{r} S_{r}^{z})$$
$$\mathbb{Z}^{(Tr \cdot T)} : \quad A \equiv Tr \cdot T, \quad A\vec{S}_{r}A^{-1} = -\vec{S}_{r+1}; \ AiA^{-1} = -i$$

• # of spins per unit cell: $s + s = 2s \in \mathbb{Z}$

Spectrum is not constrained by conventional LSM thm

Outline

- Introduction: non-featureless spectrum and conventional LSM thm
- LSM thm for magnetic space groups (MSGs)
 - Symmetry-twisting method
 - Lattice Homotopy
- LSM constraints from MSGs in 1d
- Summary

Claim: H, w/ half-integer *s* per site, has a doubly degenerate spectrum under the following twisted BC:

$$\vec{S}_{r+L} = R_x^{\pi} \vec{S}_r (R_x^{\pi})^{-1} \equiv \tilde{\vec{S}}_r, \quad L \in 2\mathbb{Z}$$

Claim: H, w/ half-integer *s* per site, has a doubly degenerate spectrum under the following twisted BC:

$$\vec{S}_{r+L} = R_x^{\pi} \vec{S}_r (R_x^{\pi})^{-1} \equiv \tilde{\vec{S}}_r, \quad L \in 2\mathbb{Z}$$

Ex:
$$\mathcal{H}_{PBC} = J_{r=0}^{L-1} (-1)^r \vec{S}_r \cdot (\vec{S}_{r+1} \times \vec{S}_{r+2})$$

$$\mathcal{H}_{\text{TBC}} = J \sum_{r=0}^{L-3} (-1)^r \vec{S}_r \cdot (\vec{S}_{r+1} \times \vec{S}_{r+2}) + \vec{S}_{L-2} \cdot (\vec{S}_{L-1} \times \tilde{\vec{S}}_0) - \vec{S}_{L-1} \cdot (\tilde{\vec{S}}_0 \times \tilde{\vec{S}}_1)$$

Claim: H, w/ half-integer *s* per site, has a doubly degenerate spectrum under the following twisted BC:

$$\vec{S}_{r+L} = R_x^{\pi} \vec{S}_r (R_x^{\pi})^{-1} \equiv \tilde{\vec{S}}_r, \quad L \in 2\mathbb{Z}$$

• $A = Tr \cdot T$ is then not a symm of H_{TBC} , while $A' \equiv e^{i\pi S_0^x} A$ is: $[A', H_{\text{TBC}}] = 0$

Claim: H, w/ half-integer *s* per site, has a doubly degenerate spectrum under the following twisted BC:

$$\vec{S}_{r+L} = R_x^{\pi} \vec{S}_r (R_x^{\pi})^{-1} \equiv \tilde{\vec{S}}_r, \quad L \in 2\mathbb{Z}$$

- $A = Tr \cdot T$ is then not a symm of H_{TBC} , while $A' \equiv e^{i\pi S_0^x} A$ is: $[A', H_{\text{TBC}}] = 0$
- Any eigenstate $|\Psi\rangle$ of H_{TBC} has a partner A' $|\Psi\rangle$ w/ a diff eigenvalue of R_z^{π} , thanks to

$$A'R_z^{\pi} = (-1)^{2s} R_z^{\pi} A'$$

Claim: H, w/ half-integer *s* per site, has a doubly degenerate spectrum under the following twisted BC:

$$\vec{S}_{r+L} = R_x^{\pi} \vec{S}_r (R_x^{\pi})^{-1} \equiv \tilde{\vec{S}}_r, \quad L \in 2\mathbb{Z}$$

- $A = Tr \cdot T$ is then not a symm of H_{TBC} , while $A' \equiv e^{i\pi S_0^x} A$ is: $[A', H_{\text{TBC}}] = 0$
- Any eigenstate $|\Psi\rangle$ of H_{TBC} has a partner $A'|\Psi\rangle$ w/ a diff eigenvalue of R_z^{π} , thanks to $A' R_z^{\pi} = (-1)^{2s} R_z^{\pi} A' \quad (\checkmark)$

Claim: H, w/ half-integer *s* per site, has a doubly degenerate spectrum under the following twisted BC:

$$\vec{S}_{r+L} = R_x^{\pi} \vec{S}_r (R_x^{\pi})^{-1} \equiv \tilde{\vec{S}}_r, \quad L \in 2\mathbb{Z}$$

Spectrum robustness: [Watanabe ('18); Yao-Oshikawa ('20)]
 H_{PBC} has a unique gapped GS ⇔ H_{TBC} has a unique gapped GS

Claim: H, w/ half-integer *s* per site, has a doubly degenerate spectrum under the following twisted BC:

$$\vec{S}_{r+L} = R_x^{\pi} \vec{S}_r (R_x^{\pi})^{-1} \equiv \tilde{\vec{S}}_r, \quad L \in 2\mathbb{Z}$$

Spectrum robustness: [Watanabe ('18); Yao-Oshikawa ('20)]
 *H*_{PBC} has a unique gapped GS ⇔ *H*_{TBC} has a unique gapped GS

 H_{PBC} cannot have a unique gapped GS as well!

LSM thm for magnetic space groups

• We'd like to explore all 1d LSM thm for magnetic space groups (spin-rot + trans1 + time-rev + inv)

LSM thm for magnetic space groups

- We'd like to explore all 1d LSM thm for magnetic space groups (spin-rot + transl + time-rev + inv)
- Not sure all can be argued based on the above symm-twisting method
 - E.g., systems w/ only $I_s \cdot T$ symm are also subject to to a LSM constraint (as we'll see later), but it seems symm-twisting method doesn't work
LSM thm for magnetic space groups

- We'd like to explore all 1d LSM thm for magnetic space groups (spin-rot + transl + time-rev + inv)
- Not sure all can be argued based on the above symm-twisting method
 - E.g., systems w/ only $I_s \cdot T$ symm are also subject to to a LSM constraint (as we'll see later), but it seems symm-twisting method doesn't work
- Nevertheless, all these cases can be understood from lattice homotopy [Po et al. ('17); Else-Po-Watanabe ('18); Else-Thorngren ('19)] (and also from bulk-bdry corresp of 2d crystalline SPTs)

Outline

- Introduction: non-featureless spectrum and conventional LSM thm
- LSM thm for magnetic space groups (MSGs)
 - Symmetry-twisting method
 - Lattice homotopy
- LSM constraints from MSGs in 1d
- Summary

A representation U of G satisfies

 $U(gh) = \omega(g,h)U(g)U(h), \quad g,h \in G \qquad \qquad \omega(g,h) = e^{i\phi(g,h)}$

- If $\omega(g, h)$ is trivial (= 1), U is called a *linear rep*
- If $\omega(g, h)$ is nontrivial, U is called a *proj rep*

A representation U of G satisfies

 $U(gh) = \omega(g,h)U(g)U(h), \quad g,h \in G \qquad \qquad \omega(g,h) = e^{i\phi(g,h)}$

- If $\omega(g, h)$ is trivial (= 1), U is called a *linear rep*
- If $\omega(g, h)$ is nontrivial, U is called a *proj rep*

Ex1: G = SO(3), one can choose $U(\hat{n}, \theta) = e^{i\theta\hat{n}\cdot\vec{S}}$

$$U(\hat{n},\theta)U(\hat{n},2\pi-\theta) = e^{2\pi i\hat{n}\cdot\vec{S}} = (-1)^{2s} = (-1)^{2s}U(1)$$

- Integer *s*: linear rep
- Half-integer s: proj rep

A representation U of G satisfies

 $U(gh) = \omega(g,h)U(g)U(h), \quad g,h \in G \qquad \qquad \omega(g,h) = e^{i\phi(g,h)}$

• If $\omega(g, h)$ is trivial (= 1), U is called a *linear rep*

• If $\omega(g, h)$ is nontrivial, U is called a *proj rep*

Ex2: $G = \mathbb{Z}_2 \times \mathbb{Z}_2$, one can choose $U(R_{\hat{n}}^{\pi}) = e^{i\pi S_n}$, $\hat{n} = \hat{x}, \hat{z}$

$$U(R_{\hat{n}}^{\pi})U(R_{\hat{n}}^{\pi}) = e^{2i\pi S_n} = (-1)^{2s} = (-1)^{2s}U(\mathbb{1})$$

- Integer *s*: linear rep
- Half-integer s: proj rep

A representation U of G satisfies

 $U(gh) = \omega(g,h)U(g)U(h), \quad g,h \in G \qquad \qquad \omega(g,h) = e^{i\phi(g,h)}$

• If $\omega(g, h)$ is trivial (= 1), U is called a *linear rep*

• If $\omega(g, h)$ is nontrivial, U is called a *proj rep*

Ex3: $G = \mathbb{Z}_2^T$, one can choose $U(T) = e^{i\pi S_y} K$, K: complex conj

$$U(T)U(T) = e^{2i\pi S_y} = (-1)^{2s} = (-1)^{2s}U(1)$$

- Integer *s*: linear rep
- Half-integer s: proj rep

A representation U of G satisfies

 $U(gh) = \omega(g,h)U(g)U(h), \quad g,h \in G \qquad \qquad \omega(g,h) = e^{i\phi(g,h)}$

Properties of $\omega(g, h)$

"Cocycle equation": $\omega(h,k)\omega(g,hk) = \omega(g,h)\omega(gh,k)$

Redefinition: $U(g) \to \beta(g)U(g) \qquad \omega(g,h) \to \beta(gh)\beta(g)^{-1}\beta(h)^{-1}\omega(g,h)$

> Equiv choices are classified by $H^2(G, U(1))$

A representation U of G satisfies

 $U(gh) = \omega(g,h)U(g)U(h), \quad g,h \in G \qquad \qquad \omega(g,h) = e^{i\phi(g,h)}$

Properties of $\omega(g, h)$

"Cocycle equation": $\omega(h,k)\omega(g,hk) = \omega(g,h)\omega(gh,k)$ Redefinition: $U(g) \to \beta(g)U(g) \qquad \omega(g,h) \to \beta(gh)\beta(g)^{-1}\beta(h)^{-1}\omega(g,h)$

> Equiv choices are classified by $H^2(G, U(1))$

 $\succ \text{ For } G = SO(3), \mathbb{Z}_2 \times \mathbb{Z}_2, \text{ or } \mathbb{Z}_2^T, \ H^2(G, U(1)) = \mathbb{Z}_2$

Existence of proj rep reveals certain property of the spectrum

Existence of proj rep reveals certain property of the spectrum

• Od system of spins w/ $G = SO(3), \mathbb{Z}_2 \times \mathbb{Z}_2, \text{ or } \mathbb{Z}_2^T$:

If the # of total spins is a half-integer, then the system must **not** have a *unique symmetric gapped ground state* (For $G = \mathbb{Z}_2^T$, we have the Kramers degeneracy)

Existence of proj rep reveals certain property of the spectrum

• Od system of spins w/ $G = SO(3), \mathbb{Z}_2 \times \mathbb{Z}_2, \text{ or } \mathbb{Z}_2^T$:

If the # of total spins is a half-integer, then the system must **not** have a *unique symmetric gapped ground state* (For $G = \mathbb{Z}_2^T$, we have the Kramers degeneracy)

Proj rep of symm $G \implies 0d$ LSM theorem

Existence of proj rep reveals certain property of the spectrum

• Od system of spins w/ $G = SO(3), \mathbb{Z}_2 \times \mathbb{Z}_2, \text{ or } \mathbb{Z}_2^T$:

If the # of total spins is a half-integer, then the system must **not** have a *unique symmetric gapped ground state* (For $G = \mathbb{Z}_2^T$, we have the Kramers degeneracy)

Proj rep of symm $G \implies 0d$ LSM theorem

Higher-dim system of spins?

A "proj rep" of $G = G_{int} \times G_{space}$ acting on a d-dim system is defined as an *anomalous texture* which corresp to consistent assignments of proj rep of the isotropy group at each site r [Else-Thorngren ('19)]

- Isotropy group $G_r \subseteq G$ leaving *r* invariant
- Anomalous texture = $\{\omega_r \in H^2(G_r, U(1))\}$

Ex1: $G_{int} = SO(3), G_{space} = \mathbb{Z}^{Tr}$

A "proj rep" of $G = G_{int} \times G_{space}$ acting on a d-dim system is defined as an *anomalous texture* which corresp to consistent assignments of proj rep of the isotropy group at each site r [Else-Thorngren ('19)]

- Isotropy group $G_r \subseteq G$ leaving *r* invariant
- Anomalous texture = $\{\omega_r \in H^2(G_r, U(1))\}$

Ex1: $G_{int} = SO(3), G_{space} = \mathbb{Z}^{Tr}$ 1-site translation

A "proj rep" of $G = G_{int} \times G_{space}$ acting on a d-dim system is defined as an *anomalous texture* which corresp to consistent assignments of proj rep of the isotropy group at each site r [Else-Thorngren ('19)]

- Isotropy group $G_r \subseteq G$ leaving *r* invariant
- Anomalous texture = $\{\omega_r \in H^2(G_r, U(1))\}$

Ex2: $G_{int} = \mathbb{Z}_2 \times \mathbb{Z}_2$, $G_{space} = \mathbb{Z}^{Tr \cdot T}$ (translation)×(time reversal)

A "proj rep" of $G = G_{int} \times G_{space}$ acting on a d-dim system is defined as an *anomalous texture* which corresp to consistent assignments of proj rep of the isotropy group at each site r [Else-Thorngren ('19)]

- Isotropy group $G_r \subseteq G$ leaving *r* invariant
- Anomalous texture = $\{\omega_r \in H^2(G_r, U(1))\}$

(site-centered inversion)×(time reversal) Ex3: $G_{int} = Id$, $G_{space} = \mathbb{Z}_{2}^{l_{s} \cdot T}$ $\omega_{-2} \quad \omega_{-1} \quad \omega_0$ ω_1 ω_2 $\omega_{-r} = \omega_r$ d = 1 $\omega_{r\neq 0} \in H^2(Id, U(1)) = \mathbb{Z}_0$ G_{-2} G_{-1} G_0 G_1 G_2 $\omega_0 \in H^2\left(\mathbb{Z}_2^T, U(1)\right) = \mathbb{Z}_2$ Id \mathbb{Z}_2^T Id Id Id

A "proj rep" of $G = G_{int} \times G_{space}$ acting on a d-dim system is defined as an *anomalous texture* which corresp to consistent assignments of proj rep of the isotropy group at each site r [Else-Thorngren ('19)]

- Isotropy group $G_r \subseteq G$ leaving *r* invariant
- Anomalous texture = $\{\omega_r \in H^2(G_r, U(1))\}$

Ex4: $G_{int} = SO(3), G_{space} = \mathbb{Z}_2^{I_b}$ bond-centered inversion

- Symm deform: $h_t(g \cdot r) = g \cdot h_t(r), g \in G_{space}, t \in [0, 1]$
- Equiv anom textures are related by symm deform
 Lattice homotopy [Po et al. ('17); Else-Po-Watanabe ('18)]

Equiv relation for anom texture:

- Symm deform: $h_t(g \cdot r) = g \cdot h_t(r), g \in G_{space}, t \in [0, 1]$
- Equiv anom textures are related by symm deform
 Lattice homotopy [Po et al. ('17); Else-Po-Watanabe ('18)]

Trivial anom texture: $\omega_r = 1$ for all $r \Rightarrow$ deformable to a unique symm gapped GS

Equiv relation for anom texture:

- Symm deform: $h_t(g \cdot r) = g \cdot h_t(r), g \in G_{space}, t \in [0, 1]$
- Equiv anom textures are related by symm deform
 Lattice homotopy [Po et al. ('17); Else-Po-Watanabe ('18)]

Trivial anom texture: $\omega_r = 1$ for all $r \Rightarrow$ deformable to a unique symm gapped GS

Nontrivial anom texture => d-dim LSM theorem

[Else-Thorngren ('19)]

- Symm deform: $h_t(g \cdot r) = g \cdot h_t(r), g \in G_{space}, t \in [0, 1]$
- Equiv anom textures are related by symm deform

Ex1:
$$G_{int} = SO(3), G_{space} = \mathbb{Z}^{Tr}$$
 $\omega_{-2} \quad \omega_{-1} \quad \omega_0 \quad \omega_1 \quad \omega_2$
 $\omega_{r+1} = \omega_r$
 $\omega_r \in H^2(SO(3), U(1)) = \mathbb{Z}_2$

- Symm deform: $h_t(g \cdot r) = g \cdot h_t(r), g \in G_{space}, t \in [0, 1]$
- Equiv anom textures are related by symm deform

Equiv relation for anom texture:

- Symm deform: $h_t(g \cdot r) = g \cdot h_t(r), g \in G_{space}, t \in [0, 1]$
- Equiv anom textures are related by symm deform

Half-integer *s* per site: $\{\omega_r\}$ is nontrivial => non-featureless

- Symm deform: $h_t(g \cdot r) = g \cdot h_t(r), g \in G_{space}, t \in [0, 1]$
- Equiv anom textures are related by symm deform

Ex2:
$$G_{int} = \mathbb{Z}_2 \times \mathbb{Z}_2, G_{space} = \mathbb{Z}^{Tr \cdot T}$$
 $\omega_{-2} \quad \omega_{-1} \quad \omega_0 \quad \omega_1 \quad \omega_2$
 $\omega_{r+1} = \omega_r$
 $\omega_r \in H^2(\mathbb{Z}_2 \times \mathbb{Z}_2, U(1)) = \mathbb{Z}_2$

- Symm deform: $h_t(g \cdot r) = g \cdot h_t(r), g \in G_{space}, t \in [0, 1]$
- Equiv anom textures are related by symm deform

Equiv relation for anom texture:

- Symm deform: $h_t(g \cdot r) = g \cdot h_t(r), g \in G_{space}, t \in [0, 1]$
- Equiv anom textures are related by symm deform

Half-integer *s* per site: $\{\omega_r\}$ is nontrivial => non-featureless

- Symm deform: $h_t(g \cdot r) = g \cdot h_t(r), g \in G_{space}, t \in [0, 1]$
- Equiv anom textures are related by symm deform

Ex3:
$$G_{int} = Id$$
, $G_{space} = \mathbb{Z}_2^{I_s \cdot T}$
 $\omega_{-r} = \omega_r$
 $\omega_{r\neq 0} \in H^2(Id, U(1)) = \mathbb{Z}_0$
 $\omega_0 \in H^2(\mathbb{Z}_2^T, U(1)) = \mathbb{Z}_2$

Equiv relation for anom texture:

• Symm deform: $h_t(g \cdot r) = g \cdot h_t(r), g \in G_{space}, t \in [0, 1]$

 ω_1

 ω_0

 ω_2

Equiv anom textures are related by symm deform ۲

Ex3:
$$G_{int} = Id$$
, $G_{space} = \mathbb{Z}_{2}^{I_{s} \cdot T}$
 $\omega_{-r} = \omega_{r}$
 $\omega_{r \neq 0} \in H^{2}(Id, U(1)) = \mathbb{Z}_{0}$
 $\omega_{0} \in H^{2}(\mathbb{Z}_{2}^{T}, U(1)) = \mathbb{Z}_{2}$
 $\omega_{h_{t}(r)} = \omega_{r}$
 $\omega_{-2} \quad \omega_{-1} \quad \omega_{0} \quad \omega_{1} \quad \omega_{2}$
 $\omega_{-2} \quad \omega_{-1} \quad \omega_{0} \quad \omega_{1} \quad \omega_{2}$
 $\omega_{-1} \quad \omega_{0} \quad \omega_{1} \quad \omega_{2}$
 $\omega_{h_{t_{1}(-2)}} \quad \omega_{-1} \quad \omega_{0} \quad \omega_{1} \quad \omega_{2}$
 $\omega_{h_{t_{1}(-1)}} \quad \omega_{h_{t_{1}(0)}} \quad \omega_{h_{t_{1}(1)}} \quad \omega_{h_{t_{1}(2)}} \quad \omega_{h_{t_{1}(1)}} \quad \omega_{h_{t_{1}(2)}} \quad \omega_{h_{t_{1}(-2)}} \quad \omega_{h_{t_{1}(-1)}} \quad \omega_{h_{t_{1}(0)}} \quad \omega_{h_{t_{1}(1)}} \quad \omega_{h_{t_{1}(2)}} \quad \omega_{h_{t_{1}(-2)}} \quad \omega_{h_{t_{1}(-2)}} \quad \omega_{h_{t_{1}(-2)}} \quad \omega_{h_{t_{1}(0)}} \quad \omega_{h_{t_{1}(1)}} \quad \omega_{h_{t_{1}(2)}} \quad \omega_{h_{t_{1}(2)}} \quad \omega_{h_{t_{1}(-2)}} \quad \omega_{h_{t_{1}(-2)}} \quad \omega_{h_{t_{1}(0)}} \quad \omega_{h_{t_{1}(1)}} \quad \omega_{h_{t_{1}(2)}} \quad \omega_{h_{t_{1}(2)}} \quad \omega_{h_{t_{1}(-2)}} \quad \omega_{h_{t_{1}(-2)}} \quad \omega_{h_{t_{1}(0)}} \quad \omega_{h_{t_{1}(1)}} \quad \omega_{h_{t_{1}(2)}} \quad \omega_{h_{t_{1}(2)}} \quad \omega_{h_{t_{1}(-2)}} \quad \omega$

- Symm deform: $h_t(g \cdot r) = g \cdot h_t(r), g \in G_{space}, t \in [0, 1]$
- Equiv anom textures are related by symm deform

Ex3:
$$G_{int} = Id$$
, $G_{space} = \mathbb{Z}_{2}^{I_{s} \cdot T}$
 $\omega_{-r} = \omega_{r}$
 $\omega_{r \neq 0} \in H^{2}(Id, U(1)) = \mathbb{Z}_{0}$
 $\omega_{0} \in H^{2}(\mathbb{Z}_{2}^{T}, U(1)) = \mathbb{Z}_{2}$
 $\omega_{h_{t}(r)} = \omega_{r}$

Equiv relation for anom texture:

- Symm deform: $h_t(g \cdot r) = g \cdot h_t(r), g \in G_{space}, t \in [0, 1]$
- Equiv anom textures are related by symm deform

Ex3:
$$G_{int} = Id$$
, $G_{space} = \mathbb{Z}_{2}^{I_{s} \cdot T}$
 $\omega_{-r} = \omega_{r}$
 $\omega_{r \neq 0} \in H^{2}(Id, U(1)) = \mathbb{Z}_{0}$
 $\omega_{0} \in H^{2}(\mathbb{Z}_{2}^{T}, U(1)) = \mathbb{Z}_{2}$
 $\omega_{h_{t}(r)} = \omega_{r}$

Half-integer *s* at inversion center r = 0: { ω_r } is nontrivial => **non-featureless**

- Symm deform: $h_t(g \cdot r) = g \cdot h_t(r), g \in G_{space}, t \in [0, 1]$
- Equiv anom textures are related by symm deform

Ex4:
$$G_{int} = SO(3), G_{space} = \mathbb{Z}_2^{I_b}$$

 $\omega_{-r-1} = \omega_r$
 $\omega_r \in H^2(SO(3), U(1)) = \mathbb{Z}_2$

- Symm deform: $h_t(g \cdot r) = g \cdot h_t(r), g \in G_{space}, t \in [0, 1]$
- Equiv anom textures are related by symm deform

Ex4:
$$G_{int} = SO(3), G_{space} = \mathbb{Z}_2^{l_b}$$

 $\omega_{-r-1} = \omega_r$
 $\omega_r \in H^2(SO(3), U(1)) = \mathbb{Z}_2$
 $\omega_{h_t(r)} = \omega_r$

- Symm deform: $h_t(g \cdot r) = g \cdot h_t(r), g \in G_{space}, t \in [0, 1]$
- Equiv anom textures are related by symm deform

Ex4:
$$G_{int} = SO(3), G_{space} = \mathbb{Z}_2^{I_b}$$

 $\omega_{-r-1} = \omega_r$
 $\omega_r \in H^2(SO(3), U(1)) = \mathbb{Z}_2$
 $\omega_{h_t(r)} = \omega_r$

Equiv relation for anom texture:

- Symm deform: $h_t(g \cdot r) = g \cdot h_t(r), g \in G_{space}, t \in [0, 1]$
- Equiv anom textures are related by symm deform

Ex4:
$$G_{int} = SO(3), G_{space} = \mathbb{Z}_2^{I_b}$$

 $\omega_{-r-1} = \omega_r$
 $\omega_r \in H^2(SO(3), U(1)) = \mathbb{Z}_2$
 $\omega_{h_t(r)} = \omega_r$

Trivial anom texture (**regardless of** *s* at each site) => (deformable to) unique symm gapped GS

Outline

- Introduction: non-featureless spectrum and conventional LSM thm
- LSM thm for magnetic space groups (MSGs)
 > Symmetry-twisting method
 - Lattice Homotopy
- LSM constraints from MSGs in 1d
- Summary

(Minimal) MSGs giving rise to LSM constraints

•
$$G_{space} = \mathbb{Z}^{Tr \cdot T}, G_{int} = \mathbb{Z}_2 \times \mathbb{Z}_2$$

 $(\pi$ -rotation)×(site-centered inversion)

•
$$G_{space} = \mathbb{Z}_2^{\pi I_s}, G_{int} = \mathbb{Z}_2$$

•
$$G_{space} = \mathbb{Z}_2^{I_s \cdot T}, G_{int} = Id$$

Non-featureless spin interactions in 1d

	$(\mathbb{Z}_2 \times \mathbb{Z}_2) \times \mathbb{Z}^{Tr}$	$\mathbb{Z}_2^T \times \mathbb{Z}^{Tr}$	$(\mathbb{Z}_2 \times \mathbb{Z}_2) \times \mathbb{Z}^{Tr \cdot T}$	$\mathbb{Z}_2 \times \mathbb{Z}^{\pi I_s}$	$\mathbb{Z}_2^{I_s \cdot T}$
$XYZ: \sum_{\alpha,r} \mathcal{J}_{\alpha} S_r^{\alpha} S_{r+1}^{\alpha}$	1	1	1	1	1
uDM : $\sum_{r} \vec{D} \cdot \left(\vec{S}_{r} \times \vec{S}_{r+1} \right)$	×	1	×	1	×
sDM: $\sum_{r} (-1)^r \vec{D} \cdot \left(\vec{S}_r \times \vec{S}_{r+1}\right)$	×	×	×	×	1
uTP: $\sum_{r} J \vec{S}_r \cdot (\vec{S}_{r+1} \times \vec{S}_{r+2})$	1	×	×	×	1
sTP: $\sum_{r} (-1)^r J \vec{S}_r \cdot (\vec{S}_{r+1} \times \vec{S}_{r+2})$	×	×	1	×	1

u: uniform s: staggered DM: Dzyaloshinskii-Moriya TP: (scalar-)triple-product

Non-featureless spin interactions in 1d

	$(\mathbb{Z}_2 \times \mathbb{Z}_2) \times \mathbb{Z}^{Tr}$	$\mathbb{Z}_2^T \times \mathbb{Z}^{Tr}$	$(\mathbb{Z}_2 \times \mathbb{Z}_2) \times \mathbb{Z}^{Tr \cdot T}$	$\mathbb{Z}_2 \times \mathbb{Z}^{\pi I_s}$	$\mathbb{Z}_2^{I_s \cdot T}$
$XYZ: \sum_{\alpha,r} \mathcal{J}_{\alpha} S_r^{\alpha} S_{r+1}^{\alpha}$	1	1	1	1	1
uDM : $\sum_{r} \vec{D} \cdot \left(\vec{S}_{r} \times \vec{S}_{r+1} \right)$	×	1	×	1	×
sDM: $\sum_{r} (-1)^r \vec{D} \cdot \left(\vec{S}_r \times \vec{S}_{r+1}\right)$	×	×	×	×	1
uTP: $\sum_{r} J\vec{S}_r \cdot (\vec{S}_{r+1} \times \vec{S}_{r+2})$	1	×	×	×	1
sTP: $\sum_{r} (-1)^r J \vec{S}_r \cdot (\vec{S}_{r+1} \times \vec{S}_{r+2})$	×	×	1	×	1

u: uniform s: staggered DM: Dzyaloshinskii-Moriya TP: (scalar-)triple-product

Non-featureless combinations:

- XYZ + (any of the other 4 terms), e.g. HAF + sDM = XXZ [Oshikawa-Affleck ('97)]
- sDM + uTP + sTP

General phase structures

Outline

- Introduction: non-featureless spectrum and conventional LSM thm
- LSM thm for magnetic space groups (MSGs)
 > Symmetry-twisting method
 - Lattice Homotopy
- List of (minimal) MSGs giving LSM constraints in 1d
- Summary

Summary

• Conventional LSM thm: 1d spin chain w/ lattice-transl and spin-rot symm **cannot** have a unique gapped ground state if the spin per unit cell is **half-integral**.

• In this talk, we discuss various versions of 1d LSM thm for *magnetic space groups* (spin-rot + transl + time-rev + inv), basing on a symmetry twisting method as well as lattice homotopy.

 The extended LSM constraints apply to systems with a broader class of spin interactions, such as Dzyaloshinskii-Moriya and scalar-triple-product 3-spin interactions.

Thank you for your attention!