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The question

Given a quantum system w/ a Hamiltonian, it’s natural to ask
- whether there is a spectral gap

- what are the properties of ground state(s) / low-energy states
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The question

Given a quantum system w/ a Hamiltonian, it’s natural to ask
- whether there is a spectral gap

- what are the properties of ground state(s) / low-energy states

»Easy for free systems, but in general hard for interacting systems
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The question

Let’s be more specific:

« Knowing just the microscopic DOF and the symmetries of the
Hamiltonian, what low-energy properties can we determine?

» It determines when the system must be non-featureless.

E ¢ E 4 E ¢
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1d spin chains w/ spin-rotation and translation symm
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1d spin chains w/ spin-rotation and translation symm

HHAF — Z Si - Sit

unique gap

s 1/2 ZS Sz—|—1

gap ess “Haldane’s conjecture”
[Haldane (’83)]
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1d spin chains w/ spin-rotation and translation symm

In fact, any spin-half-integer chain 1s always non-featureless, indicated
by the Lieb-Schultz-Mattis (LSM) theorem [Lieb-Schultz-Mattis (*61)]:

A 1d antiferromagnetic spin chain cannot have a unique gapped GS
if the spin per unit cell is half-integral and if the lattice-transl and
spin-rotation symm are strictly imposed.
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- LSM thm for magnetic space groups (MSGs)



Various versions of LSM theorem

Various versions of LSM thm for 1d quantum magnets w/ diff

. X : [ Watanabe et al. (15); Po et al. (17); Ogata et al. (18, 20);
Symin Glnt GSpace were known Else-Thorngren (19); Yao-Oshikawa (21)]

Gint = SO(3) or ZyXZy or Zy, Gspace = L'
Is
Gint = SO(3) or ZyXZ; or L3, Gspgce = L

(Tr = transl, T = time reversal, / = site-centered inversion)



Various versions of LSM theorem

Various versions of LSM thm for 1d quantum magnets w/ diff

X . [Watanabe et al. (15); Po et al. (17); Ogata et al. (18, 20);
Symin Glnt GSpace Were known Else-Thorngren (19); Yao-Oshikawa (21)]

Gint = SO(3) or ZyXZy or Zy, Gspace = L'
Is
Gint = SO(3) or ZyXZ; or L3, Gspgce = L

(Tr = transl, T = time reversal, / = site-centered inversion)

However, there are non-featureless systems not respecting the
above symm, e.g.

—

H = JZ(—l)Zg; . (§i+1 X SZ'_|_2)



Chiral ladder w/ 3-spin interactions

[Schmoll et al. (’18)]
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Chiral ladder w/ 3-spin interactions

[Schmoll et al. (’18)]
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Chiral ladder w/ 3-spin interactions

[Schmoll et al. (’18)]
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Chiral ladder w/ 3-spin interactions

[Schmoll et al. (’18)]

_ lolol 1 1 3
S1-(S2 x S3) = Ziajpl/za*—mp?)m 2®¥3®3 =5, D5_©3
N - :
J J - « sign(J,/,) > 0: FH
Heff——sgn(JJ)’ 1|+|2‘an'sn—|—1 v
3v3 n=1 * sign(J1/,) < 0: AFH

* J; = £(—1)%: Effectively a spin-1/2 AFH => gapless

» Numeric check (iIDMRG) by [Schmoll et al. (’18)] confirmed low-energy
states of H are described by a ¢ = 1 CFT, 1.e. SU(2); WZW universality class



Chiral ladder w/ 3-spin interactions

[Schmoll et al. (’18)]

V3 111 1 1 3
Sl (SQ X S3) = ZiOATIEDl/2a+O]P)3/2 §®§®§ — §+@§_€B§
il + | o & + sign(Jo/,) > 0: FH

* sign(J1/,) < 0: AFH

* J; = £(—1)%: Effectively a spin-1/2 AFH => gapless

» Numeric check (iIDMRG) by [Schmoll et al. (’18)] confirmed low-energy
states of H are described by a ¢ = 1 CFT, 1.e. SU(2); WZW universality class

Is such a non-featureless H dictated by spin-rot and time-rev-transl symm?
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LSM thm for spin-rot and time-rev-trans| symm

Indeed, 1d quantum magnets w/ spin-rot = SO(3) or Z, XZ, and
time-rev-transl = Z(T™T) symm must be non-featureless

 Assume H has (Z,XZ,)XZT™T) symm:
Zo X Lo : RI = exp(inSf); R, = exp(z’wZSﬁ)

zTr ). A=Tr- T, AS,A™'=—8.1; AiA™" = —

* # of spins per unit cell: s + s = 2s € Z

» Spectrum is not constrained by conventional LSM thm

o It e ol et et Sl et
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- LSM thm for magnetic space groups (MSGs)
» Symmetry-twisting method



LSM thm for spin-rot and time-rev-trans| symm

Claim: H, w/ half-integer s per site, has a doubly degenerate
spectrum under the following twisted BC:
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LSM thm for spin-rot and time-rev-trans| symm

Claim: H, w/ half-integer s per site, has a doubly degenerate
spectrum under the following twisted BC:

— —

S..=RS(R)'=5., Leaz
« A=Tr-T isthen not a symm of Hygc, while A’ = ™S 4 is:
[A/7 HTBC] =0

* Any eigenstate |¥) of Hygc has a partner A'| W) w/ a diff eigenvalue

of R7, thanks to A'RT = (—1)*RT A’
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LSM thm for spin-rot and time-rev-trans| symm

Claim: H, w/ half-integer s per site, has a doubly degenerate
spectrum under the following twisted BC:

— —

S, =R'S.(R")"'=8,, Le2Z

« A=Tr-T isthen not a symm of Hygc, while A’ = ™S 4 is:

[A/7 HTBC] =0

* Any eigenstate |¥) of Hygc has a partner A'| W) w/ a diff eigenvalue
of RT, thanks to
’ A'RT = (—1)**RT A’ @
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LSM thm for spin-rot and time-rev-trans| symm

Claim: H, w/ half-integer s per site, has a doubly degenerate
spectrum under the following twisted BC:

— —

S, =R'S.(R")"'=8,, Le2Z

* Spectrum robustness: [Watanabe (*18); Yao-Oshikawa (*20)]
Hpgc has a unique gapped GS < Hygc has a unique gapped GS
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LSM thm for spin-rot and time-rev-trans| symm

Claim: H, w/ half-integer s per site, has a doubly degenerate
spectrum under the following twisted BC:

— —

S, =R'S.(R")"'=8,, Le2Z

* Spectrum robustness: [Watanabe (*18); Yao-Oshikawa (*20)]
Hpgc has a unique gapped GS < Hygc has a unique gapped GS

Hppc cannot have a unique gapped GS as well!

o e e el e e et et S et

S S
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(as we’ll see later), but it seems symm-twisting method doesn’t work



LSM thm for magnetic space groups

- We’d like to explore all 1d LSM thm for magnetic space groups
(spin-rot + transl + time-rev + inv)

+ Not sure all can be argued based on the above symm-twisting method

» E.g., systems w/ only I - T symm are also subject to to a LSM constraint
(as we’ll see later), but it seems symm-twisting method doesn’t work

 Nevertheless, all these cases can be understood from lattice homotopy
[Po et al. (’17); Else-Po-Watanabe (’18); Else-Thorngren (°19)]

(and also from bulk-bdry corresp of 2d crystalline SPTs)



Outline

- LSM thm for magnetic space groups (MSGs)

» Lattice homotopy



Projective rep and anomalous texture
A representation U of G satisfies
U(gh) = w(g, U (q)U(R), g¢,heG w(g, h) = e

- If w(g, h) 1s trivial (= 1), U is called a linear rep
- If w(g, h) 1s nontrivial, U is called a proj rep
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Projective rep and anomalous texture

A representation U of G satisfies
U(gh) = w(g, U (9)U(h), g,h€G w(g,h) = e'*9:h)
- If w(g, h) 1s trivial (= 1), U is called a linear rep

- If w(g, h) 1s nontrivial, U is called a proj rep

Ex2: G = 7Z,XZ,, one can choose U(R%) =¢™5, a=4%, 2

U(RE)U(RE) = *™Sn = (~1)% = (~1)>U(1)

* Integer s: linear rep

* Half-integer s: proj rep



Projective rep and anomalous texture

A representation U of G satisfies
U(gh) = w(g, NU(QU(R), g.h€G  w(g.h)=eoh
- If w(g, h) 1s trivial (= 1), U is called a linear rep
- If w(g, h) 1s nontrivial, U is called a proj rep
Ex3: G = 7%, one can choose U(T) = ¢™SvK, K : complex conj
U(T)U(T) = e*™ = (-1)* = (-1)*U(1)

* Integer s: linear rep

* Half-integer s: proj rep



Projective rep and anomalous texture

A representation U of G satisfies

U(gh) = w(g,R)U(9)U(h), g.heG w(g, ) = e?le:h)

Properties of w(g, h)
“Cocycle equation™  w(h, k)w(g, hk) = w(g, hw(gh, k)
Redefinition: U(g) — B(¢)U(g)  w(g,h) — B(gh)B(g)" ' B(h) 'w(g,h)

> Equiv choices are classified by H% (G, U(1))



Projective rep and anomalous texture

A representation U of G satisfies

U(gh) = w(g, NU(QU(R), g.h€G  w(g.h)=eoh

Properties of w(g, h)
“Cocycle equation™  w(h, k)w(g, hk) = w(g, hw(gh, k)
Redefinition: U(g) — B(¢)U(g)  w(g,h) — B(gh)B(g)" ' B(h) 'w(g,h)

> Equiv choices are classified by H% (G, U(1))

> For G = SO(3),Z,;XZ,,0r 25, H?(G,U(1)) = Z,
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Projective rep and anomalous texture

Existence of proj rep reveals certain property of the spectrum

- 0d system of spins w/ G = SO(3),Z,XZ,, or Z}:

If the # of total spins 1s a half-integer, then the system
must not have a unique symmetric gapped ground state
(For G = Z), we have the Kramers degeneracy)

Proj rep of symm G => 0d LSM theorem

Higher-dim system of spins?



Projective rep and anomalous texture

A “projrep” of G = G X Gspgee acting on a d-dim system is defined
as an anomalous texture which corresp to consistent assignments of
proj rep of the isotropy group at each site » [Else-Thorngren (*19)]

* Isotropy group G, € G leaving r invariant

« Anomalous texture = {w, € H* (Gr, U (1))}

Ex1: Gipe = SO(3), Gspace = Z'



Projective rep and anomalous texture

A “projrep” of G = G X Gspgee acting on a d-dim system is defined
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Projective rep and anomalous texture

A “projrep” of G = G X Gspgee acting on a d-dim system is defined
as an anomalous texture which corresp to consistent assignments of
proj rep of the isotropy group at each site » [Else-Thorngren (*19)]

* Isotropy group G, € G leaving r invariant

« Anomalous texture = {w, € H* (Gr, U (1))}

Ex?2: Gint — ZZX Zz Gspace — 7T7-T (translation)X(time reversal)
° b

Wryq1 = Wy

ZzXZZ ZzXZZ ZzXZZ ZZXZZ ZZXZZ



Projective rep and anomalous texture

A “projrep” of G = G X Gspgee acting on a d-dim system is defined
as an anomalous texture which corresp to consistent assignments of
proj rep of the isotropy group at each site » [Else-Thorngren (*19)]

* Isotropy group G, € G leaving r invariant

« Anomalous texture = {w, € H* (Gr, U (1))}

] . _ mls'T  (site-centered inversion)X(time reversal)

W_y = Wy

wrzo € H2(I1d, U(1)) = Z,

wo € H2 (23,U(1)) = Z,



Projective rep and anomalous texture

A “projrep” of G = G X Gspgee acting on a d-dim system is defined
as an anomalous texture which corresp to consistent assignments of
proj rep of the isotropy group at each site » [Else-Thorngren (*19)]

* Isotropy group G, € G leaving r invariant

« Anomalous texture = {w, € H* (Gr, U (1))}

. _ __ Ip  bond-centered inversion

W_y—1 = Wy
w, € H2(S0(3),U(1)) = Z,

[ [ I [
S0(3) S0(3) S0@B3) so(d)



Lattice homotopy

Equiv relation for anom texture:
* Symm deform: h,(g -7) = g - h(r), g € Gspgce, t € [0,1]

* Equiv anom textures are related by symm deform

» Lattice homotopy [Po et al. (’17); Else-Po-Watanabe (*18)]
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Lattice homotopy

Equiv relation for anom texture:
* Symm deform: h,(g -7) = g - h(r), g € Gspgce, t € [0,1]

* Equiv anom textures are related by symm deform

» Lattice homotopy [Po et al. (’17); Else-Po-Watanabe (*18)]

Trivial anom texture: w,, = 1 for all » => deformable to a unique
symm gapped GS

Nontrivial anom texture => d-dim LSM theorem
[Else-Thorngren (’19)]
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Lattice homotopy

Equiv relation for anom texture:
* Symm deform: h,(g - 1) = g - h(T), g € Gspgce, t € [0,1]

* Equiv anom textures are related by symm deform

15T
Ex3: Gint — Id, Gspace — ZZ _______ _._._‘_._.. .......

W_y = Wy

wrzo € H?(1d, U(1)) = Z,
wo € H2 (23,U(1)) = Z,



Lattice homotopy

Equiv relation for anom texture:

* Symm deform: h,(g - 1) = g - h(T), g € Gspgce, t € [0,1]

* Equiv anom textures are related by symm deform

. . T W_o W_1 Wo w1 W7
Ex3: G, = 1d, Gspace =Z, _._._._._.. .......
Iy’
Wyzo € Hz(ld, U (1)) = Z, Why, (-2) Ohy, (1) Phe,(0) Phey (1) Dhe, (2)
wo € H2 (23,U(1)) = Z, N

Wp(r) = Wr



Lattice homotopy

Equiv relation for anom texture:
* Symm deform: h,(g - 1) = g - h(T), g € Gspgce, t € [0,1]

* Equiv anom textures are related by symm deform

. - _ I.-T w_» (1)_1 Wy w1 (1)2
EX3. Glnt - Id, Gspace i ZZS ....... . . _‘__._‘.: -------
Y
Wyzo € Hz(ld, U (1)) = Z, Why, (-2) Ohy, (1) Phe,(0) Phey (1) Dhe, (2)
w, € H? (ZT, U (1)) =Z, = assases N | e i | SCREREEEE
Wp(r) = Wr
W'h, (~2)=hy, (-1) W'h, (1)=hy, (2)

= Wne,(-2) Oy (1) Phep(0) = W, 1) Ony,2)



Lattice homotopy

Equiv relation for anom texture:
* Symm deform: h,(g - 1) = g - h(T), g € Gspgce, t € [0,1]

* Equiv anom textures are related by symm deform

. — __ lsT W_y w_; Wo w1 W
Ex3: Gine = 1d, Gopace = 2Z; ... 0—0—0—0—0--
Y
Wyzo € Hz(ld, U (1)) = Z, Why, (-2) Ohy, (1) Phe,(0) Phey (1) Dhe, (2)
wq € H? (ZT, U (1)) =Zy;  asessss S | a1 RTTTIERE
Wh(r) = Wr ’ ,
W g, (—=2)=he, (1) W h, (1)=hy,(2)
. : : — : w - :
Half-integer s at inversion center r = 0: Oney (-2 Oney (1) 0020 = O, )" Ony 29
------- ) .——O—-’,‘:".—q—‘.:-o-q @sssmmmEnm

{w, } 1s nontrivial => non-featureless



Lattice homotopy

Equiv relation for anom texture:
* Symm deform: h,(g - 1) = g - h(T), g € Gspgce, t € [0,1]

* Equiv anom textures are related by symm deform

Ex4: Gine = SO(3), Gspace = LY wevee. —o—0—0 -
W_y_1 = Wy

wr € H2(S0(3),U(1)) = Z,
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Lattice homotopy

Equiv relation for anom texture:

* Symm deform: h,(g - 1) = g - h(T), g € Gspgce, t € [0,1]

* Equiv anom textures are related by symm deform

Ex4: Gine = SO(3), Gspace = Ly
W_y_1 = Wy
wr € H2(S0(3),U(1)) = Z,

Why(r) = Wr

Trivial anom texture (regardless of s at each site)
=> (deformable to) unique symm gapped GS
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Outline

- LSM constraints from MSGs in 1d



(Minimal) MSGs giving rise to LSM constraints

’ Gspace = ZTT» Gint = Ly X1y or Z; T T T T T T

* Gspace = L', Gine = Ly X1y T ¢ T ¢ T ¢

(m-rotation) X (site-centered inversion)

 Gspace = Ly > Gint = I t—1— m i

-Gspace=Z;S.T,Gint=Id / T AN [ N l )/



Non-featureless spin interactions in 1d

(Za x Zo) x ZT"|2E < 277 |(Za x Zo) x 2777 \Zy x 775 |71 T
XYZ: S JaSESE v v v v v
uDM: > D- (S’; X §r+1) X v X v X
DM : 3, (=1)"D - (8, x §,11) X X X X v
uTP: 3, JS, - (Sri1 X Sri2) v X X X v
STP: 3 (=1)"JS, - (Srs1 X Spi2) X X v X v

u: uniform  s: staggered DM: Dzyaloshinskii-Moriya  TP: (scalar-)triple-product
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Non-featureless combinations:

« XYZ + (any of the other 4 terms), e.g. HAF + sDM = XXZ [Oshikawa-Affleck ("97)]

e sDM +uTP + sTP



General phase structures
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Summary

« Conventional LSM thm: 1d spin chain w/ lattice-transl and spin-rot
symm cannot have a unique gapped ground state if the spin per unit cell
is half-integral.

- In this talk, we discuss various versions of 1d LSM thm for magnetic
space groups (spin-rot + transl + time-rev + inv), basing on a symm-
twisting method as well as lattice homotopy.

- The extended LSM constraints apply to systems with a broader class of
spin interactions, such as Dzyaloshinskii-Moriya and scalar-triple-product
3-spin interactions.



Thank you for your attention!



