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The question
Given a quantum system w/ a Hamiltonian, it’s natural to ask
• whether there is a spectral gap
• what are the properties of ground state(s) / low-energy states
…

energy 
spectrum

w/ degeneracy gapless/critical

EEE



The question
Given a quantum system w/ a Hamiltonian, it’s natural to ask
• whether there is a spectral gap
• what are the properties of ground state(s) / low-energy states
…
ØEasy for free systems, but in general hard for interacting systems

energy 
spectrum

w/ degeneracy gapless/critical

EEE



The question
Let’s be more specific:

energy 
spectrum

w/ degeneracy gapless/critical

EEE



The question
Let’s be more specific:
• Knowing just the microscopic DOF and the symmetries of the 

Hamiltonian, what low-energy properties can we determine?

energy 
spectrum

w/ degeneracy gapless/critical

EEE



The question
Let’s be more specific:
• Knowing just the microscopic DOF and the symmetries of the 

Hamiltonian, what low-energy properties can we determine?

energy 
spectrum

w/ degeneracy gapless/critical

EEE

featureless non-featureless



The question
Let’s be more specific:
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1d spin chains w/ spin-rotation and translation symm

Symmetry protected critical phase classification of SU(N) spin chains in rectangular
Young tableaux representations, and global axial anomaly in 1+1 dimensions

We derive the low-energy properties of SU(N) spin systems in the presence of spin rotation and
translation symmetries. Based on mixed PSU(N)-Z anomaly, the spin system cannot be gapped
with a unique ground state if the number of Young-tableaux boxes per unit cell is not divisible by
N . The SU(N) WZW model are classified into N symmetry-protected critical classes and each
spin system can only realize one of them at criticality. It implies a no-go theorem that an RG flow
is possible between two critical points only if they belong to the same symmetry-protected critical
class, as long as the underlying lattice spin models respect the imposed symmetries.
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The classification of quantum phases is a central is-
sue in condensed matter physics, where considerable
recent progresses were initiated in strongly interacting
many-body systems. In particular, various topologi-
cal phases with unbroken symmetries, e.g. symmetry-
protected trivial (SPT) ordered phases [1, 2] and topo-
logical ordered phases enrich the phase diagram beyond
conventional Landau-Ginzburg-Wilson spontaneously-
symmetry-breaking paradigm. Therefore, the constraints
in the appearance of symmetries on phase diagrams play
essential roles since they rule out the existence of a large
class of forbidden gapped or gapless phases when the cer-
tain symmetry is respected. For gapped phases, the re-
striction on the ground-state degeneracy allows a unified
understanding on the low-energy spectral properties. For
example, Lieb-Schultz-Mattis (LSM) theorem [3] and its
generalization LSMOH theorem by Oshikawa and Hast-
ings [4, 5] states that the ground states cannot be trivially
gapped with a unique ground state if the particle number
per unit cell is fractional and both the translation sym-
metry and charge U(1) conservation are preserved. As
a part of gapless phases, critical phase classifications is
a key ingredient in the understanding of universal criti-
cal behaviors of various phase transitions. However, the
classification of critical phases still remains open and the
related proposal is only given in SU(2) spin chains [6].
Furthermore, many stable critical phases have been found
experimentally and numerically [7, 8], and the reason of
such stability is not completely understood.

In reality, the constraints on phase diagrams with more
general symmetries than U(1) and SU(2) are within
intense interest. For example, SU(N) “spin” systems
with N > 2 are realized in ultracold atoms on op-
tical lattices [9–16] and also in some spin-orbital sys-
tems [? ], although SU(N) systems was initially intro-
duced as theoretical toy models to understand “physical”
SU(2) spins. Thus the study related with the phase di-
agrams of SU(N) spin systems is of realistic interest in
its own. Furthermore, although spin-rotation and trans-
lation symmetries are imposed, symmetry enhancements
cannot be excluded, e.g. phases with emergent symme-
tries. The symmetry can be enhanced on the lattice such
as that the spin-1 chain has an explicit SU(3) symmetry
in the Uimin-Lai-Sutherland model [17–19]. In addition,
higher symmetries can also emerge at the thermodynam-
ical limit, e.g. the emergent SU(3) symmetry of critical
spin-2 chain [20]. Therefore, the generalized SU(N) spin
models are necessary in understanding the symmetry en-
hancement.

In this Letter, we focus on the fundamental constraints
on the phase diagrams of SU(N) spin chains in gen-
eral representations with SU(N) spin rotation symmetry

and lattice translation symmetry respected. More specif-
ically, we obtain the restriction of ground-state degener-
acy of gapped phases generalizing Lieb-Schultz-Mattis-
A✏eck (LSMA) theorem [21], and the classification of
critical phases, when the required symmetries are im-
posed. The compulsory degenerate ground states can
be understood by the concept of “ingappability” simi-
larly to the boundary states of nontrivial SPT phase,
which cannot be gapped with a specified symmetry un-
broken and bulk gap unclosed [1, 2]. On the SPT side,
the ingappability results from the quantum symmetry
anomaly of e↵ective boundary theory forbidding its lat-
tice realization [22]. CH: Should add more references
here. I will also do it later. Although the SU(N)
spin chain in our interest can be realized in its own di-
mension, the non-on-site nature of translation symme-
try enables us to understand its ingappability by consid-
ering the quantum anomaly of its e↵ective field theory
in the thermodynamical limit [23]. In a similar spirit,
the classification of critical phases can be done accord-
ing to their quantum anomaly. Such symmetry-protected
critical (SPC) classification has been proposed in SU(2)-
symmetric and translation-symmetric spin chains, where
the critical points are classified into two classes, one of
which can only take place in half-integer spin chains
while the other one can be realized only by integer spin
chains [6]. We generalize the SPC classification to SU(N)
symmetric critical phases of SU(N) spin chains with-
out emergent symmetries. Moreover, we also obtain a
constraint on the candidates of emergent higher SU(N 0)
symmetry with N 0 > N by matching their symmetry
anomaly. As a special example, such restriction can ex-
plain that SU(3) symmetry enhancements have not (ac-
tually cannot) been found in SU(2) and translation sym-
metric half-integer spin chains.

Based on.... anomaly, we come to the conclusion
that.... End of intro(?)

Translationally invariant SU(N) spin system in 1 + 1
dimensions and the LSM index — We consider a generic
(1 + 1)d SU(N) spin system described by a Hamilto-
nian HSU(N) with the lattice translation symmetry and
a global spin-rotation symmetry specified by the projec-
tive special unitary group PSU(N). Here the system is
subject to periodic boundary condition and the trans-
lation, for generality, defines the unit cell consisting of
multiple sites and forms a discrete group Ztrans in the
thermodynamic limit. A typical example of such a sys-
tem is the SU(N) Heisenberg antiferromagnetic (HAF)
model

HHAF = J
X

i,↵,�

S↵
i,�S

�
i+1,↵, J > 0. (25)

where ↵ and � are the spin indices that take values among
1 to N and the SU(N) generators satisfy the following

gapless

dimerized
(gapped w/ 2-fold deg.)
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unique gap

Symmetry protected critical phase classification of SU(N) spin chains in rectangular
Young tableaux representations, and global axial anomaly in 1+1 dimensions

We derive the low-energy properties of SU(N) spin systems in the presence of spin rotation and
translation symmetries. Based on mixed PSU(N)-Z anomaly, the spin system cannot be gapped
with a unique ground state if the number of Young-tableaux boxes per unit cell is not divisible by
N . The SU(N) WZW model are classified into N symmetry-protected critical classes and each
spin system can only realize one of them at criticality. It implies a no-go theorem that an RG flow
is possible between two critical points only if they belong to the same symmetry-protected critical
class, as long as the underlying lattice spin models respect the imposed symmetries.
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The classification of quantum phases is a central is-
sue in condensed matter physics, where considerable
recent progresses were initiated in strongly interacting
many-body systems. In particular, various topologi-
cal phases with unbroken symmetries, e.g. symmetry-
protected trivial (SPT) ordered phases [1, 2] and topo-
logical ordered phases enrich the phase diagram beyond
conventional Landau-Ginzburg-Wilson spontaneously-
symmetry-breaking paradigm. Therefore, the constraints
in the appearance of symmetries on phase diagrams play
essential roles since they rule out the existence of a large
class of forbidden gapped or gapless phases when the cer-
tain symmetry is respected. For gapped phases, the re-
striction on the ground-state degeneracy allows a unified
understanding on the low-energy spectral properties. For
example, Lieb-Schultz-Mattis (LSM) theorem [3] and its
generalization LSMOH theorem by Oshikawa and Hast-
ings [4, 5] states that the ground states cannot be trivially
gapped with a unique ground state if the particle number
per unit cell is fractional and both the translation sym-
metry and charge U(1) conservation are preserved. As
a part of gapless phases, critical phase classifications is
a key ingredient in the understanding of universal criti-
cal behaviors of various phase transitions. However, the
classification of critical phases still remains open and the
related proposal is only given in SU(2) spin chains [6].
Furthermore, many stable critical phases have been found
experimentally and numerically [7, 8], and the reason of
such stability is not completely understood.

In reality, the constraints on phase diagrams with more
general symmetries than U(1) and SU(2) are within
intense interest. For example, SU(N) “spin” systems
with N > 2 are realized in ultracold atoms on op-
tical lattices [9–16] and also in some spin-orbital sys-
tems [? ], although SU(N) systems was initially intro-
duced as theoretical toy models to understand “physical”
SU(2) spins. Thus the study related with the phase di-
agrams of SU(N) spin systems is of realistic interest in
its own. Furthermore, although spin-rotation and trans-
lation symmetries are imposed, symmetry enhancements
cannot be excluded, e.g. phases with emergent symme-
tries. The symmetry can be enhanced on the lattice such
as that the spin-1 chain has an explicit SU(3) symmetry
in the Uimin-Lai-Sutherland model [17–19]. In addition,
higher symmetries can also emerge at the thermodynam-
ical limit, e.g. the emergent SU(3) symmetry of critical
spin-2 chain [20]. Therefore, the generalized SU(N) spin
models are necessary in understanding the symmetry en-
hancement.

In this Letter, we focus on the fundamental constraints
on the phase diagrams of SU(N) spin chains in gen-
eral representations with SU(N) spin rotation symmetry

and lattice translation symmetry respected. More specif-
ically, we obtain the restriction of ground-state degener-
acy of gapped phases generalizing Lieb-Schultz-Mattis-
A✏eck (LSMA) theorem [21], and the classification of
critical phases, when the required symmetries are im-
posed. The compulsory degenerate ground states can
be understood by the concept of “ingappability” simi-
larly to the boundary states of nontrivial SPT phase,
which cannot be gapped with a specified symmetry un-
broken and bulk gap unclosed [1, 2]. On the SPT side,
the ingappability results from the quantum symmetry
anomaly of e↵ective boundary theory forbidding its lat-
tice realization [22]. CH: Should add more references
here. I will also do it later. Although the SU(N)
spin chain in our interest can be realized in its own di-
mension, the non-on-site nature of translation symme-
try enables us to understand its ingappability by consid-
ering the quantum anomaly of its e↵ective field theory
in the thermodynamical limit [23]. In a similar spirit,
the classification of critical phases can be done accord-
ing to their quantum anomaly. Such symmetry-protected
critical (SPC) classification has been proposed in SU(2)-
symmetric and translation-symmetric spin chains, where
the critical points are classified into two classes, one of
which can only take place in half-integer spin chains
while the other one can be realized only by integer spin
chains [6]. We generalize the SPC classification to SU(N)
symmetric critical phases of SU(N) spin chains with-
out emergent symmetries. Moreover, we also obtain a
constraint on the candidates of emergent higher SU(N 0)
symmetry with N 0 > N by matching their symmetry
anomaly. As a special example, such restriction can ex-
plain that SU(3) symmetry enhancements have not (ac-
tually cannot) been found in SU(2) and translation sym-
metric half-integer spin chains.

Based on.... anomaly, we come to the conclusion
that.... End of intro(?)

Translationally invariant SU(N) spin system in 1 + 1
dimensions and the LSM index — We consider a generic
(1 + 1)d SU(N) spin system described by a Hamilto-
nian HSU(N) with the lattice translation symmetry and
a global spin-rotation symmetry specified by the projec-
tive special unitary group PSU(N). Here the system is
subject to periodic boundary condition and the trans-
lation, for generality, defines the unit cell consisting of
multiple sites and forms a discrete group Ztrans in the
thermodynamic limit. A typical example of such a sys-
tem is the SU(N) Heisenberg antiferromagnetic (HAF)
model

HHAF = J
X

i,↵,�

S↵
i,�S

�
i+1,↵, J > 0. (25)

where ↵ and � are the spin indices that take values among
1 to N and the SU(N) generators satisfy the following

gapless

dimerized
(gapped w/ 2-fold deg.)

non-featureless

featureless



1d spin chains w/ spin-rotation and translation symm

In fact, any spin-half-integer chain is always non-featureless, indicated 
by the Lieb-Schultz-Mattis (LSM) theorem [Lieb-Schultz-Mattis (’61)]:

A 1d antiferromagnetic spin chain cannot have a unique gapped GS
if the spin per unit cell is half-integral and if the lattice-transl and
spin-rotation symm are strictly imposed.
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Various versions of  LSM theorem
Various versions of LSM thm for 1d quantum magnets w/ diff 
symm 𝐺!"#×𝐺$%&'( were known:

(Tr = transl,  T = time reversal,  Is = site-centered inversion)

• 𝐺!"# = 𝑆𝑂 3 or ℤ$×ℤ$ or ℤ$%, 𝐺&'()* = ℤ$
+!

• 𝐺!"# = 𝑆𝑂 3 or ℤ$×ℤ$ or ℤ$%, 𝐺&'()* = ℤ%,

[Watanabe et al. (15); Po et al. (17); Ogata et al. (18, 20); 
Else-Thorngren (19); Yao-Oshikawa (21)] 



Various versions of  LSM theorem
Various versions of LSM thm for 1d quantum magnets w/ diff 
symm 𝐺!"#×𝐺$%&'( were known:

However, there are non-featureless systems not respecting the 
above symm, e.g.

(Tr = transl,  T = time reversal,  Is = site-centered inversion)

• 𝐺!"# = 𝑆𝑂 3 or ℤ$×ℤ$ or ℤ$%, 𝐺&'()* = ℤ$
+!

• 𝐺!"# = 𝑆𝑂 3 or ℤ$×ℤ$ or ℤ$%, 𝐺&'()* = ℤ%,

[Watanabe et al. (15); Po et al. (17); Ogata et al. (18, 20); 
Else-Thorngren (19); Yao-Oshikawa (21)] 

Chiral Lieb-Schultz-Mattis theorem
under antiunitary translations and inversions

(Dated: December 21, 2021)

We study quantum many-body systems with spin-rotation symmetries and an exotic antiunitary
translation or inversion symmetry formed from time reversal and concentrate on a class of chiral
spin models of which the gaplessness cannot be understood by earlier works. Based on a symmetry-
twisting method and spectrum robustness, we propose that the half-integer spin systems respecting
these symmetries must either be gapless or possess degenerate ground states. We also relate this
ingappability to the quantum anomaly, and the anomaly-matching argument resolves the puzzling
criticality stability and the universality class of the chiral spin models. By the anomaly argument, we
also claim that the antiunitary inversion symmetry alone is su�cient to ensure the ingappability even
though the spin-rotation symmetry is completely broken. Furthermore, we apply our ingappability
and stability analyses to several hybridized Hamiltonian to obtain nontrivial constraints on the
possible phase diagram.

(Z2 ⇥ Z2)⇥ ZTr ZT
2 ⇥ ZTr (Z2 ⇥ Z2)⇥ Z(Tr·T ) Z2 ⇥ Z⇡Is

2
Z(Is·T )

2

HAF/XYZ 3 3 3 3 3

uDM 7 3 7 � ( ~D / ẑ) 7

sDM 7 7 7 7 3

uSTP 3 7 7 7 3

sSTP 7 7 3 7 3

TABLE I. The symmetry preserving and breaking of the mod-
els: all these models have LSM ingappabilities ensured by
their symmetries, and I2 is respected by the general combi-
nation HchHAF-DM.

HNF({J↵}) + hH
NF
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!(g, h) = ei�(g,h) (10)



Chiral ladder w/ 3-spin interactions
2

FIG. 1: 2-leg ladder made of triangles, for the model in
Eq. (1).

for the chiral ladder with 3-spin interactions. Then we
explain briefly the expected behaviour from Kadano↵
coarse-graining and small-size exact diagonalization re-
sults, before we discuss its bosonization. In Sec. III we
explain some details about the implementation of our
numerical method, namely, SU(2)-invariant iDMRG. In
Sec. IV we present the results of our simulation, where
we show that the ground state of the system corresponds
to a conformal field theory (CFT) with c = 1. We addi-
tionally study the algebraic decay of spin-spin and dimer-
dimer correlation functions, as well as the entanglement
spectrum and the convergence of the ground state energy.
Our results for the entanglement spectrum are remark-
ably similar to those of the spin-1/2 Heisenberg chain,
which we take as a strong indication that the CFT at
low energies is a SU(2)1 WZW theory. We wrap up our
conclusions in Sec. V. Finally, in Appendix we compute
the spin-current operators (Appendix A), review the con-
tinuum limit of the model by Huang et al. presented in
Ref. [11] (Appendix B) and explain the details of how
to construct the SU(2)-invariant MPO for the Hamilto-
nian that we want to simulate (Appendix C), focusing
on chiral 3-spin interactions. In Appendix D we provide
numerical data on the finite-entanglement scaling of the
entanglement spectrum.

II. CHIRAL LADDER

A. The model

The model that we analyze in this paper is a 2-leg
ladder with chiral interactions on triangles. Specifically,
it is a model of spins-1/2 on the sites of the ladder of
Fig. 1 via the three-spin interaction Hamiltonian

H =
X

i

Ji Si · (Si+1 ⇥ Si+2) , (1)

with Si the spin-1/2 operator at site i. The sites of the
ladder are labeled in a snake-like pattern as shown in the
details of the ladder in Fig. 2 and both triangles follow
this snake-like labelling (upper triangles 1-2-3, lower tri-
angles 2-3-4). We will consider the cases where Ji 2 {±1}
in which the coupling coe�cients depend on the traversal
of the triangle. A triangle formed by sites i, i+1, i+2 is
traversed in (against) the direction of the labels if Ji = 1
(Ji = �1). This can be rephrased to clockwise or anti-
clockwise configurations for each triangle. The triangles
of the full ladder are all clockwise configured if Ji = (�1)i

(anticlockwise if Ji = �(�1)i). Mixing the two scenarios
gives rise to Ji = 1 8 i (Ji = �1 8 i), which leads to a stag-
gered, anticlockwise/clockwise (clockwise/anticlockwise)
configuration pattern.
Playing with di↵erent clockwise/anticlockwise config-

urations of the triangles, we can get di↵erent Hamiltoni-
ans. For instance, for a unit cell of two triangles we can
get the four configurations presented in Fig. 2. In the
figure, two of the configurations (H1 and H2) have the
same orientation of the triangles (i.e., both clockwise or
both anticlockwise), and two (H3 and H4) have opposite
orientation (i.e., one clockwise and one anticlockwise).
Since we have H1 = �H2 and H3 = �H4, both pairs of
Hamiltonians have the same energy spectrum. Therefore,
for the physical properties only the relative orientation
between the two triangles matters and it is su�cient to
restrict to H1 and H3 as di↵erent cases.
Both Hamiltonians are odd under time-reversal sym-

metry (Si ! �Si), which results in T HiT �1 = �Hi.
The combination of two mirror symmetries (which is
equivalent to an inversion at the chain center) leaves
Hamiltonian H1 invariant, whereas H3 transforms as
PH3P�1 = �H3. This main di↵erence between the two
cases with di↵erent relative triangle orientations (H1 and
H3) results in di↵erent behaviour of the edge states:
while edge states for H1 are expected to be counter-
propagating, they propagate in the same direction for
H3, see the arrows in Fig. 2. In what follows we show
that this intuition is indeed true.

B. First intuition with Kadano↵ coarse-graining

The first approach we take to understand the dom-
inant physics of the model consists in a Kadano↵-like
coarse-graining procedure of the triangles into e↵ective
spin-1/2’s. In particular, we simply (i) project the 23-
dimensional Hilbert space of the triangle n starting at
site i = 3n� 2 onto the 2-dimensional subspace of lowest
energy via the isometry Wn : 1

2 ⌦ 1
2 ⌦ 1

2 �! 1
2 , (ii) con-

struct the representation of the operators WnSjW †
n and

Wn (Sj ⇥ Sj+1)W †
n in this subspace, and then (iii) look

for the emerging Hamiltonian.
The first step is rather easy, once we recall that the

SU(2)-invariant Hamiltonian triangle term of Eq. (1) has
to be proportional to the identity in the di↵erent sub-
spaces with definite total spin, that it has null trace and
that it will be vanishing once the three spins are all paral-
lel arranged. Indeed, a bit of algebra with Pauli matrices
and Levi-Civita symbols leads to the expression:

S1 · (S2 ⇥ S3) =
X

↵=±
↵

p
3

4
P1/2,↵ + 0P3/2, (2)

where 1
2⌦

1
2⌦

1
2 = 1

2+
� 1

2��
3
2 and P are the corresponding

projectors. 1
2± are the subspaces of the spin-1/2 states

with positive and negative energy. The searched isom-
etry will then be depending on the sign of the triangle

2

FIG. 1: 2-leg ladder made of triangles, for the model in
Eq. (1).
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we show that the ground state of the system corresponds
to a conformal field theory (CFT) with c = 1. We addi-
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dimer correlation functions, as well as the entanglement
spectrum and the convergence of the ground state energy.
Our results for the entanglement spectrum are remark-
ably similar to those of the spin-1/2 Heisenberg chain,
which we take as a strong indication that the CFT at
low energies is a SU(2)1 WZW theory. We wrap up our
conclusions in Sec. V. Finally, in Appendix we compute
the spin-current operators (Appendix A), review the con-
tinuum limit of the model by Huang et al. presented in
Ref. [11] (Appendix B) and explain the details of how
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nian that we want to simulate (Appendix C), focusing
on chiral 3-spin interactions. In Appendix D we provide
numerical data on the finite-entanglement scaling of the
entanglement spectrum.
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FIG. 2: Di↵erent orientations of the chiral triple product re-
sult in di↵erent models. In the first two cases the orientation
is chosen to be the same whereas it is opposite in the last two
cases.

coupling, i.e.,

WnW
†
n = P1/2,�sgn(J3n�2) . (3)

Next we have to construct the coarse-grained expres-
sions of the spin operators involved in the interaction
between triangles n and n+ 1. It turns out that we can
choose the projectors such that 8j 2 {3n� 2, 3n� 1, 3n}
and ↵ 2 {±}:

W1/2,↵SjW
†
1/2,↵ =

1

3
eSn (4)

W1/2,↵ (Sj ⇥ Sj+1)W
†
1/2,↵ =

↵p
3
eSn (5)

with eSn the new e↵ective spin 1/2. The resulting e↵ective
Hamiltonian then reads:

He↵ = �sgn (J1J2)
|J1|+ |J2|

3
p
3

NX

n=1

eSn · eSn+1 , (6)

where N ' L/3 is the total number of e↵ective triangles,

and we neglected an additive term �
p
3
4

|J1|+|J2|
2 N . We

thus obtained an emerging spin-1/2 Heisenberg chain,
whose magnetic character (ferro- or antiferro-) depends
on the mutual signs of the triangle couplings J1 and J2,
and we can resort to a wealth of known facts to foresee
the behaviour of our triangle ladder.

If the triangles are all (anti-)clockwise oriented
(H1 and H2), then the e↵ective model (6) is anti-
ferromagnetic: we therefore predict that it will be gap-
less, with central charge c = 1, and that its ground state
would tend to minimize the total-spin of the chain, i.e.,
for even N will be in the zero total spin sector. Con-
versely, if the triangles have mixed character (H3 and
H4), then the e↵ective model (6) is ferromagnetic: we
have thus good reasons to expect that the system will try
to maximize its total spin, giving rise to a macroscopic
degeneracy of the ground state manifold, and without a
well-defined CFT character. Of course, such low-energy
projection is a very strong simplification and further cor-
rections would be needed to describe the full richness
of the model (e.g., the degeneracy counting of the case
J1 = J2 in finite systems will be non-trivial). But still,
we will see below that the main results obtained by this
simple analysis are in fact confirmed by more sophisti-
cated theoretical and numerical approaches.

C. Exact diagonalization of small systems

The intuition obtained from the Kadano↵ blocking in
the previous section can be further corroborated by a sim-
ple exact diagonalization exercise. Specifically, here we
perform exact diagonalization for small sizes, in partic-
ular for 16 spins. For this case, we compute the ground
state and low-energy excited states and evaluate some
observables. Of particular interest in order to assess chi-
rality are spin-current operators of the form

J z
i,i+1 = �Ji�1S

z
i�1 (SiSi+1)� Ji (SiSi+1)S

z
i+2

J z
i,i+2 = �Ji (SiSi+2)S
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(7)

which describe the flow of the z-component of magnetiza-
tion from sites i to site i+1 and i+2 respectively (notice
that, by SU(2) invariance, there is not a preferred spin-
component). J z

i,i+1 measures the currents on the rung
and slash links, to which there are contributions from
two triangles. J z

i,i+2 measures the currents in the chains
with only a single triangle contribution. The current op-
erators can be derived by taking the commutator of the
spin operator and the Hamiltonian, which is presented
in Appendix A for a general N -leg ladder. For the wave
functions obtained from our small-size exact diagonal-
ization, we evaluate the expectation value of this current
operator for the up, down, rung and slash pairs of sites.
Notice that in the chosen basis described below there are
no J x and J y current components, so that the plotted
current J z is the total current in the system.

For the Hamiltonian configuration H1 (or equivalently
H2), we find from our results that the ground state is a
singlet of SU(2) with total spin zero, i.e., hS2i = 0 with
S the total spin vector operator. Thus, we find that the
ground state does not carry any currents. However, in
the first excited state (an SU(2) triplet) the pattern of
currents for every pair of sites corresponds to the one in
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FIG. 2: Di↵erent orientations of the chiral triple product re-
sult in di↵erent models. In the first two cases the orientation
is chosen to be the same whereas it is opposite in the last two
cases.

coupling, i.e.,

WnW
†
n = P1/2,�sgn(J3n�2) . (3)

Next we have to construct the coarse-grained expres-
sions of the spin operators involved in the interaction
between triangles n and n+ 1. It turns out that we can
choose the projectors such that 8j 2 {3n� 2, 3n� 1, 3n}
and ↵ 2 {±}:

W1/2,↵SjW
†
1/2,↵ =

1

3
eSn (4)
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†
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with eSn the new e↵ective spin 1/2. The resulting e↵ective
Hamiltonian then reads:

He↵ = �sgn (J1J2)
|J1|+ |J2|

3
p
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NX

n=1

eSn · eSn+1 , (6)

where N ' L/3 is the total number of e↵ective triangles,

and we neglected an additive term �
p
3
4

|J1|+|J2|
2 N . We

thus obtained an emerging spin-1/2 Heisenberg chain,
whose magnetic character (ferro- or antiferro-) depends
on the mutual signs of the triangle couplings J1 and J2,
and we can resort to a wealth of known facts to foresee
the behaviour of our triangle ladder.

If the triangles are all (anti-)clockwise oriented
(H1 and H2), then the e↵ective model (6) is anti-
ferromagnetic: we therefore predict that it will be gap-
less, with central charge c = 1, and that its ground state
would tend to minimize the total-spin of the chain, i.e.,
for even N will be in the zero total spin sector. Con-
versely, if the triangles have mixed character (H3 and
H4), then the e↵ective model (6) is ferromagnetic: we
have thus good reasons to expect that the system will try
to maximize its total spin, giving rise to a macroscopic
degeneracy of the ground state manifold, and without a
well-defined CFT character. Of course, such low-energy
projection is a very strong simplification and further cor-
rections would be needed to describe the full richness
of the model (e.g., the degeneracy counting of the case
J1 = J2 in finite systems will be non-trivial). But still,
we will see below that the main results obtained by this
simple analysis are in fact confirmed by more sophisti-
cated theoretical and numerical approaches.

C. Exact diagonalization of small systems

The intuition obtained from the Kadano↵ blocking in
the previous section can be further corroborated by a sim-
ple exact diagonalization exercise. Specifically, here we
perform exact diagonalization for small sizes, in partic-
ular for 16 spins. For this case, we compute the ground
state and low-energy excited states and evaluate some
observables. Of particular interest in order to assess chi-
rality are spin-current operators of the form

J z
i,i+1 = �Ji�1S

z
i�1 (SiSi+1)� Ji (SiSi+1)S

z
i+2

J z
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which describe the flow of the z-component of magnetiza-
tion from sites i to site i+1 and i+2 respectively (notice
that, by SU(2) invariance, there is not a preferred spin-
component). J z

i,i+1 measures the currents on the rung
and slash links, to which there are contributions from
two triangles. J z

i,i+2 measures the currents in the chains
with only a single triangle contribution. The current op-
erators can be derived by taking the commutator of the
spin operator and the Hamiltonian, which is presented
in Appendix A for a general N -leg ladder. For the wave
functions obtained from our small-size exact diagonal-
ization, we evaluate the expectation value of this current
operator for the up, down, rung and slash pairs of sites.
Notice that in the chosen basis described below there are
no J x and J y current components, so that the plotted
current J z is the total current in the system.

For the Hamiltonian configuration H1 (or equivalently
H2), we find from our results that the ground state is a
singlet of SU(2) with total spin zero, i.e., hS2i = 0 with
S the total spin vector operator. Thus, we find that the
ground state does not carry any currents. However, in
the first excited state (an SU(2) triplet) the pattern of
currents for every pair of sites corresponds to the one in

• 𝐽! = ±1: 𝑆𝑂 3 ×ℤ%, (cases H3, H4)

• 𝐽! = ±(−1)!: 𝑆𝑂 3 ×ℤ%,-% (cases H1, H2)

[Schmoll et al. (’18)]
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FIG. 1: 2-leg ladder made of triangles, for the model in
Eq. (1).

for the chiral ladder with 3-spin interactions. Then we
explain briefly the expected behaviour from Kadano↵
coarse-graining and small-size exact diagonalization re-
sults, before we discuss its bosonization. In Sec. III we
explain some details about the implementation of our
numerical method, namely, SU(2)-invariant iDMRG. In
Sec. IV we present the results of our simulation, where
we show that the ground state of the system corresponds
to a conformal field theory (CFT) with c = 1. We addi-
tionally study the algebraic decay of spin-spin and dimer-
dimer correlation functions, as well as the entanglement
spectrum and the convergence of the ground state energy.
Our results for the entanglement spectrum are remark-
ably similar to those of the spin-1/2 Heisenberg chain,
which we take as a strong indication that the CFT at
low energies is a SU(2)1 WZW theory. We wrap up our
conclusions in Sec. V. Finally, in Appendix we compute
the spin-current operators (Appendix A), review the con-
tinuum limit of the model by Huang et al. presented in
Ref. [11] (Appendix B) and explain the details of how
to construct the SU(2)-invariant MPO for the Hamilto-
nian that we want to simulate (Appendix C), focusing
on chiral 3-spin interactions. In Appendix D we provide
numerical data on the finite-entanglement scaling of the
entanglement spectrum.

II. CHIRAL LADDER

A. The model

The model that we analyze in this paper is a 2-leg
ladder with chiral interactions on triangles. Specifically,
it is a model of spins-1/2 on the sites of the ladder of
Fig. 1 via the three-spin interaction Hamiltonian

H =
X

i

Ji Si · (Si+1 ⇥ Si+2) , (1)

with Si the spin-1/2 operator at site i. The sites of the
ladder are labeled in a snake-like pattern as shown in the
details of the ladder in Fig. 2 and both triangles follow
this snake-like labelling (upper triangles 1-2-3, lower tri-
angles 2-3-4). We will consider the cases where Ji 2 {±1}
in which the coupling coe�cients depend on the traversal
of the triangle. A triangle formed by sites i, i+1, i+2 is
traversed in (against) the direction of the labels if Ji = 1
(Ji = �1). This can be rephrased to clockwise or anti-
clockwise configurations for each triangle. The triangles
of the full ladder are all clockwise configured if Ji = (�1)i

(anticlockwise if Ji = �(�1)i). Mixing the two scenarios
gives rise to Ji = 1 8 i (Ji = �1 8 i), which leads to a stag-
gered, anticlockwise/clockwise (clockwise/anticlockwise)
configuration pattern.
Playing with di↵erent clockwise/anticlockwise config-

urations of the triangles, we can get di↵erent Hamiltoni-
ans. For instance, for a unit cell of two triangles we can
get the four configurations presented in Fig. 2. In the
figure, two of the configurations (H1 and H2) have the
same orientation of the triangles (i.e., both clockwise or
both anticlockwise), and two (H3 and H4) have opposite
orientation (i.e., one clockwise and one anticlockwise).
Since we have H1 = �H2 and H3 = �H4, both pairs of
Hamiltonians have the same energy spectrum. Therefore,
for the physical properties only the relative orientation
between the two triangles matters and it is su�cient to
restrict to H1 and H3 as di↵erent cases.
Both Hamiltonians are odd under time-reversal sym-

metry (Si ! �Si), which results in T HiT �1 = �Hi.
The combination of two mirror symmetries (which is
equivalent to an inversion at the chain center) leaves
Hamiltonian H1 invariant, whereas H3 transforms as
PH3P�1 = �H3. This main di↵erence between the two
cases with di↵erent relative triangle orientations (H1 and
H3) results in di↵erent behaviour of the edge states:
while edge states for H1 are expected to be counter-
propagating, they propagate in the same direction for
H3, see the arrows in Fig. 2. In what follows we show
that this intuition is indeed true.

B. First intuition with Kadano↵ coarse-graining

The first approach we take to understand the dom-
inant physics of the model consists in a Kadano↵-like
coarse-graining procedure of the triangles into e↵ective
spin-1/2’s. In particular, we simply (i) project the 23-
dimensional Hilbert space of the triangle n starting at
site i = 3n� 2 onto the 2-dimensional subspace of lowest
energy via the isometry Wn : 1

2 ⌦ 1
2 ⌦ 1

2 �! 1
2 , (ii) con-

struct the representation of the operators WnSjW †
n and

Wn (Sj ⇥ Sj+1)W †
n in this subspace, and then (iii) look

for the emerging Hamiltonian.
The first step is rather easy, once we recall that the

SU(2)-invariant Hamiltonian triangle term of Eq. (1) has
to be proportional to the identity in the di↵erent sub-
spaces with definite total spin, that it has null trace and
that it will be vanishing once the three spins are all paral-
lel arranged. Indeed, a bit of algebra with Pauli matrices
and Levi-Civita symbols leads to the expression:

S1 · (S2 ⇥ S3) =
X

↵=±
↵

p
3

4
P1/2,↵ + 0P3/2, (2)

where 1
2⌦

1
2⌦

1
2 = 1

2+
� 1

2��
3
2 and P are the corresponding

projectors. 1
2± are the subspaces of the spin-1/2 states

with positive and negative energy. The searched isom-
etry will then be depending on the sign of the triangle
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FIG. 1: 2-leg ladder made of triangles, for the model in
Eq. (1).
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explain briefly the expected behaviour from Kadano↵
coarse-graining and small-size exact diagonalization re-
sults, before we discuss its bosonization. In Sec. III we
explain some details about the implementation of our
numerical method, namely, SU(2)-invariant iDMRG. In
Sec. IV we present the results of our simulation, where
we show that the ground state of the system corresponds
to a conformal field theory (CFT) with c = 1. We addi-
tionally study the algebraic decay of spin-spin and dimer-
dimer correlation functions, as well as the entanglement
spectrum and the convergence of the ground state energy.
Our results for the entanglement spectrum are remark-
ably similar to those of the spin-1/2 Heisenberg chain,
which we take as a strong indication that the CFT at
low energies is a SU(2)1 WZW theory. We wrap up our
conclusions in Sec. V. Finally, in Appendix we compute
the spin-current operators (Appendix A), review the con-
tinuum limit of the model by Huang et al. presented in
Ref. [11] (Appendix B) and explain the details of how
to construct the SU(2)-invariant MPO for the Hamilto-
nian that we want to simulate (Appendix C), focusing
on chiral 3-spin interactions. In Appendix D we provide
numerical data on the finite-entanglement scaling of the
entanglement spectrum.
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restrict to H1 and H3 as di↵erent cases.
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metry (Si ! �Si), which results in T HiT �1 = �Hi.
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FIG. 2: Di↵erent orientations of the chiral triple product re-
sult in di↵erent models. In the first two cases the orientation
is chosen to be the same whereas it is opposite in the last two
cases.

coupling, i.e.,

WnW
†
n = P1/2,�sgn(J3n�2) . (3)

Next we have to construct the coarse-grained expres-
sions of the spin operators involved in the interaction
between triangles n and n+ 1. It turns out that we can
choose the projectors such that 8j 2 {3n� 2, 3n� 1, 3n}
and ↵ 2 {±}:

W1/2,↵SjW
†
1/2,↵ =

1

3
eSn (4)

W1/2,↵ (Sj ⇥ Sj+1)W
†
1/2,↵ =

↵p
3
eSn (5)

with eSn the new e↵ective spin 1/2. The resulting e↵ective
Hamiltonian then reads:

He↵ = �sgn (J1J2)
|J1|+ |J2|

3
p
3

NX

n=1

eSn · eSn+1 , (6)

where N ' L/3 is the total number of e↵ective triangles,

and we neglected an additive term �
p
3
4

|J1|+|J2|
2 N . We

thus obtained an emerging spin-1/2 Heisenberg chain,
whose magnetic character (ferro- or antiferro-) depends
on the mutual signs of the triangle couplings J1 and J2,
and we can resort to a wealth of known facts to foresee
the behaviour of our triangle ladder.

If the triangles are all (anti-)clockwise oriented
(H1 and H2), then the e↵ective model (6) is anti-
ferromagnetic: we therefore predict that it will be gap-
less, with central charge c = 1, and that its ground state
would tend to minimize the total-spin of the chain, i.e.,
for even N will be in the zero total spin sector. Con-
versely, if the triangles have mixed character (H3 and
H4), then the e↵ective model (6) is ferromagnetic: we
have thus good reasons to expect that the system will try
to maximize its total spin, giving rise to a macroscopic
degeneracy of the ground state manifold, and without a
well-defined CFT character. Of course, such low-energy
projection is a very strong simplification and further cor-
rections would be needed to describe the full richness
of the model (e.g., the degeneracy counting of the case
J1 = J2 in finite systems will be non-trivial). But still,
we will see below that the main results obtained by this
simple analysis are in fact confirmed by more sophisti-
cated theoretical and numerical approaches.

C. Exact diagonalization of small systems

The intuition obtained from the Kadano↵ blocking in
the previous section can be further corroborated by a sim-
ple exact diagonalization exercise. Specifically, here we
perform exact diagonalization for small sizes, in partic-
ular for 16 spins. For this case, we compute the ground
state and low-energy excited states and evaluate some
observables. Of particular interest in order to assess chi-
rality are spin-current operators of the form

J z
i,i+1 = �Ji�1S

z
i�1 (SiSi+1)� Ji (SiSi+1)S

z
i+2

J z
i,i+2 = �Ji (SiSi+2)S

z
i+1

(7)

which describe the flow of the z-component of magnetiza-
tion from sites i to site i+1 and i+2 respectively (notice
that, by SU(2) invariance, there is not a preferred spin-
component). J z

i,i+1 measures the currents on the rung
and slash links, to which there are contributions from
two triangles. J z

i,i+2 measures the currents in the chains
with only a single triangle contribution. The current op-
erators can be derived by taking the commutator of the
spin operator and the Hamiltonian, which is presented
in Appendix A for a general N -leg ladder. For the wave
functions obtained from our small-size exact diagonal-
ization, we evaluate the expectation value of this current
operator for the up, down, rung and slash pairs of sites.
Notice that in the chosen basis described below there are
no J x and J y current components, so that the plotted
current J z is the total current in the system.

For the Hamiltonian configuration H1 (or equivalently
H2), we find from our results that the ground state is a
singlet of SU(2) with total spin zero, i.e., hS2i = 0 with
S the total spin vector operator. Thus, we find that the
ground state does not carry any currents. However, in
the first excited state (an SU(2) triplet) the pattern of
currents for every pair of sites corresponds to the one in
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FIG. 2: Di↵erent orientations of the chiral triple product re-
sult in di↵erent models. In the first two cases the orientation
is chosen to be the same whereas it is opposite in the last two
cases.

coupling, i.e.,
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†
n = P1/2,�sgn(J3n�2) . (3)

Next we have to construct the coarse-grained expres-
sions of the spin operators involved in the interaction
between triangles n and n+ 1. It turns out that we can
choose the projectors such that 8j 2 {3n� 2, 3n� 1, 3n}
and ↵ 2 {±}:
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with eSn the new e↵ective spin 1/2. The resulting e↵ective
Hamiltonian then reads:

He↵ = �sgn (J1J2)
|J1|+ |J2|
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eSn · eSn+1 , (6)

where N ' L/3 is the total number of e↵ective triangles,

and we neglected an additive term �
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3
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|J1|+|J2|
2 N . We

thus obtained an emerging spin-1/2 Heisenberg chain,
whose magnetic character (ferro- or antiferro-) depends
on the mutual signs of the triangle couplings J1 and J2,
and we can resort to a wealth of known facts to foresee
the behaviour of our triangle ladder.

If the triangles are all (anti-)clockwise oriented
(H1 and H2), then the e↵ective model (6) is anti-
ferromagnetic: we therefore predict that it will be gap-
less, with central charge c = 1, and that its ground state
would tend to minimize the total-spin of the chain, i.e.,
for even N will be in the zero total spin sector. Con-
versely, if the triangles have mixed character (H3 and
H4), then the e↵ective model (6) is ferromagnetic: we
have thus good reasons to expect that the system will try
to maximize its total spin, giving rise to a macroscopic
degeneracy of the ground state manifold, and without a
well-defined CFT character. Of course, such low-energy
projection is a very strong simplification and further cor-
rections would be needed to describe the full richness
of the model (e.g., the degeneracy counting of the case
J1 = J2 in finite systems will be non-trivial). But still,
we will see below that the main results obtained by this
simple analysis are in fact confirmed by more sophisti-
cated theoretical and numerical approaches.

C. Exact diagonalization of small systems

The intuition obtained from the Kadano↵ blocking in
the previous section can be further corroborated by a sim-
ple exact diagonalization exercise. Specifically, here we
perform exact diagonalization for small sizes, in partic-
ular for 16 spins. For this case, we compute the ground
state and low-energy excited states and evaluate some
observables. Of particular interest in order to assess chi-
rality are spin-current operators of the form

J z
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which describe the flow of the z-component of magnetiza-
tion from sites i to site i+1 and i+2 respectively (notice
that, by SU(2) invariance, there is not a preferred spin-
component). J z

i,i+1 measures the currents on the rung
and slash links, to which there are contributions from
two triangles. J z

i,i+2 measures the currents in the chains
with only a single triangle contribution. The current op-
erators can be derived by taking the commutator of the
spin operator and the Hamiltonian, which is presented
in Appendix A for a general N -leg ladder. For the wave
functions obtained from our small-size exact diagonal-
ization, we evaluate the expectation value of this current
operator for the up, down, rung and slash pairs of sites.
Notice that in the chosen basis described below there are
no J x and J y current components, so that the plotted
current J z is the total current in the system.

For the Hamiltonian configuration H1 (or equivalently
H2), we find from our results that the ground state is a
singlet of SU(2) with total spin zero, i.e., hS2i = 0 with
S the total spin vector operator. Thus, we find that the
ground state does not carry any currents. However, in
the first excited state (an SU(2) triplet) the pattern of
currents for every pair of sites corresponds to the one in
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for the chiral ladder with 3-spin interactions. Then we
explain briefly the expected behaviour from Kadano↵
coarse-graining and small-size exact diagonalization re-
sults, before we discuss its bosonization. In Sec. III we
explain some details about the implementation of our
numerical method, namely, SU(2)-invariant iDMRG. In
Sec. IV we present the results of our simulation, where
we show that the ground state of the system corresponds
to a conformal field theory (CFT) with c = 1. We addi-
tionally study the algebraic decay of spin-spin and dimer-
dimer correlation functions, as well as the entanglement
spectrum and the convergence of the ground state energy.
Our results for the entanglement spectrum are remark-
ably similar to those of the spin-1/2 Heisenberg chain,
which we take as a strong indication that the CFT at
low energies is a SU(2)1 WZW theory. We wrap up our
conclusions in Sec. V. Finally, in Appendix we compute
the spin-current operators (Appendix A), review the con-
tinuum limit of the model by Huang et al. presented in
Ref. [11] (Appendix B) and explain the details of how
to construct the SU(2)-invariant MPO for the Hamilto-
nian that we want to simulate (Appendix C), focusing
on chiral 3-spin interactions. In Appendix D we provide
numerical data on the finite-entanglement scaling of the
entanglement spectrum.

II. CHIRAL LADDER

A. The model

The model that we analyze in this paper is a 2-leg
ladder with chiral interactions on triangles. Specifically,
it is a model of spins-1/2 on the sites of the ladder of
Fig. 1 via the three-spin interaction Hamiltonian

H =
X

i

Ji Si · (Si+1 ⇥ Si+2) , (1)

with Si the spin-1/2 operator at site i. The sites of the
ladder are labeled in a snake-like pattern as shown in the
details of the ladder in Fig. 2 and both triangles follow
this snake-like labelling (upper triangles 1-2-3, lower tri-
angles 2-3-4). We will consider the cases where Ji 2 {±1}
in which the coupling coe�cients depend on the traversal
of the triangle. A triangle formed by sites i, i+1, i+2 is
traversed in (against) the direction of the labels if Ji = 1
(Ji = �1). This can be rephrased to clockwise or anti-
clockwise configurations for each triangle. The triangles
of the full ladder are all clockwise configured if Ji = (�1)i

(anticlockwise if Ji = �(�1)i). Mixing the two scenarios
gives rise to Ji = 1 8 i (Ji = �1 8 i), which leads to a stag-
gered, anticlockwise/clockwise (clockwise/anticlockwise)
configuration pattern.
Playing with di↵erent clockwise/anticlockwise config-

urations of the triangles, we can get di↵erent Hamiltoni-
ans. For instance, for a unit cell of two triangles we can
get the four configurations presented in Fig. 2. In the
figure, two of the configurations (H1 and H2) have the
same orientation of the triangles (i.e., both clockwise or
both anticlockwise), and two (H3 and H4) have opposite
orientation (i.e., one clockwise and one anticlockwise).
Since we have H1 = �H2 and H3 = �H4, both pairs of
Hamiltonians have the same energy spectrum. Therefore,
for the physical properties only the relative orientation
between the two triangles matters and it is su�cient to
restrict to H1 and H3 as di↵erent cases.
Both Hamiltonians are odd under time-reversal sym-

metry (Si ! �Si), which results in T HiT �1 = �Hi.
The combination of two mirror symmetries (which is
equivalent to an inversion at the chain center) leaves
Hamiltonian H1 invariant, whereas H3 transforms as
PH3P�1 = �H3. This main di↵erence between the two
cases with di↵erent relative triangle orientations (H1 and
H3) results in di↵erent behaviour of the edge states:
while edge states for H1 are expected to be counter-
propagating, they propagate in the same direction for
H3, see the arrows in Fig. 2. In what follows we show
that this intuition is indeed true.

B. First intuition with Kadano↵ coarse-graining

The first approach we take to understand the dom-
inant physics of the model consists in a Kadano↵-like
coarse-graining procedure of the triangles into e↵ective
spin-1/2’s. In particular, we simply (i) project the 23-
dimensional Hilbert space of the triangle n starting at
site i = 3n� 2 onto the 2-dimensional subspace of lowest
energy via the isometry Wn : 1

2 ⌦ 1
2 ⌦ 1

2 �! 1
2 , (ii) con-

struct the representation of the operators WnSjW †
n and

Wn (Sj ⇥ Sj+1)W †
n in this subspace, and then (iii) look

for the emerging Hamiltonian.
The first step is rather easy, once we recall that the

SU(2)-invariant Hamiltonian triangle term of Eq. (1) has
to be proportional to the identity in the di↵erent sub-
spaces with definite total spin, that it has null trace and
that it will be vanishing once the three spins are all paral-
lel arranged. Indeed, a bit of algebra with Pauli matrices
and Levi-Civita symbols leads to the expression:

S1 · (S2 ⇥ S3) =
X

↵=±
↵

p
3

4
P1/2,↵ + 0P3/2, (2)

where 1
2⌦

1
2⌦

1
2 = 1

2+
� 1

2��
3
2 and P are the corresponding

projectors. 1
2± are the subspaces of the spin-1/2 states

with positive and negative energy. The searched isom-
etry will then be depending on the sign of the triangle
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FIG. 2: Di↵erent orientations of the chiral triple product re-
sult in di↵erent models. In the first two cases the orientation
is chosen to be the same whereas it is opposite in the last two
cases.

coupling, i.e.,

WnW
†
n = P1/2,�sgn(J3n�2) . (3)

Next we have to construct the coarse-grained expres-
sions of the spin operators involved in the interaction
between triangles n and n+ 1. It turns out that we can
choose the projectors such that 8j 2 {3n� 2, 3n� 1, 3n}
and ↵ 2 {±}:

W1/2,↵SjW
†
1/2,↵ =

1

3
eSn (4)

W1/2,↵ (Sj ⇥ Sj+1)W
†
1/2,↵ =

↵p
3
eSn (5)

with eSn the new e↵ective spin 1/2. The resulting e↵ective
Hamiltonian then reads:

He↵ = �sgn (J1J2)
|J1|+ |J2|

3
p
3

NX

n=1

eSn · eSn+1 , (6)

where N ' L/3 is the total number of e↵ective triangles,

and we neglected an additive term �
p
3
4

|J1|+|J2|
2 N . We

thus obtained an emerging spin-1/2 Heisenberg chain,
whose magnetic character (ferro- or antiferro-) depends
on the mutual signs of the triangle couplings J1 and J2,
and we can resort to a wealth of known facts to foresee
the behaviour of our triangle ladder.

If the triangles are all (anti-)clockwise oriented
(H1 and H2), then the e↵ective model (6) is anti-
ferromagnetic: we therefore predict that it will be gap-
less, with central charge c = 1, and that its ground state
would tend to minimize the total-spin of the chain, i.e.,
for even N will be in the zero total spin sector. Con-
versely, if the triangles have mixed character (H3 and
H4), then the e↵ective model (6) is ferromagnetic: we
have thus good reasons to expect that the system will try
to maximize its total spin, giving rise to a macroscopic
degeneracy of the ground state manifold, and without a
well-defined CFT character. Of course, such low-energy
projection is a very strong simplification and further cor-
rections would be needed to describe the full richness
of the model (e.g., the degeneracy counting of the case
J1 = J2 in finite systems will be non-trivial). But still,
we will see below that the main results obtained by this
simple analysis are in fact confirmed by more sophisti-
cated theoretical and numerical approaches.

C. Exact diagonalization of small systems

The intuition obtained from the Kadano↵ blocking in
the previous section can be further corroborated by a sim-
ple exact diagonalization exercise. Specifically, here we
perform exact diagonalization for small sizes, in partic-
ular for 16 spins. For this case, we compute the ground
state and low-energy excited states and evaluate some
observables. Of particular interest in order to assess chi-
rality are spin-current operators of the form

J z
i,i+1 = �Ji�1S
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i�1 (SiSi+1)� Ji (SiSi+1)S

z
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z
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(7)

which describe the flow of the z-component of magnetiza-
tion from sites i to site i+1 and i+2 respectively (notice
that, by SU(2) invariance, there is not a preferred spin-
component). J z

i,i+1 measures the currents on the rung
and slash links, to which there are contributions from
two triangles. J z

i,i+2 measures the currents in the chains
with only a single triangle contribution. The current op-
erators can be derived by taking the commutator of the
spin operator and the Hamiltonian, which is presented
in Appendix A for a general N -leg ladder. For the wave
functions obtained from our small-size exact diagonal-
ization, we evaluate the expectation value of this current
operator for the up, down, rung and slash pairs of sites.
Notice that in the chosen basis described below there are
no J x and J y current components, so that the plotted
current J z is the total current in the system.

For the Hamiltonian configuration H1 (or equivalently
H2), we find from our results that the ground state is a
singlet of SU(2) with total spin zero, i.e., hS2i = 0 with
S the total spin vector operator. Thus, we find that the
ground state does not carry any currents. However, in
the first excited state (an SU(2) triplet) the pattern of
currents for every pair of sites corresponds to the one in
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for the chiral ladder with 3-spin interactions. Then we
explain briefly the expected behaviour from Kadano↵
coarse-graining and small-size exact diagonalization re-
sults, before we discuss its bosonization. In Sec. III we
explain some details about the implementation of our
numerical method, namely, SU(2)-invariant iDMRG. In
Sec. IV we present the results of our simulation, where
we show that the ground state of the system corresponds
to a conformal field theory (CFT) with c = 1. We addi-
tionally study the algebraic decay of spin-spin and dimer-
dimer correlation functions, as well as the entanglement
spectrum and the convergence of the ground state energy.
Our results for the entanglement spectrum are remark-
ably similar to those of the spin-1/2 Heisenberg chain,
which we take as a strong indication that the CFT at
low energies is a SU(2)1 WZW theory. We wrap up our
conclusions in Sec. V. Finally, in Appendix we compute
the spin-current operators (Appendix A), review the con-
tinuum limit of the model by Huang et al. presented in
Ref. [11] (Appendix B) and explain the details of how
to construct the SU(2)-invariant MPO for the Hamilto-
nian that we want to simulate (Appendix C), focusing
on chiral 3-spin interactions. In Appendix D we provide
numerical data on the finite-entanglement scaling of the
entanglement spectrum.
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equivalent to an inversion at the chain center) leaves
Hamiltonian H1 invariant, whereas H3 transforms as
PH3P�1 = �H3. This main di↵erence between the two
cases with di↵erent relative triangle orientations (H1 and
H3) results in di↵erent behaviour of the edge states:
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propagating, they propagate in the same direction for
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for the chiral ladder with 3-spin interactions. Then we
explain briefly the expected behaviour from Kadano↵
coarse-graining and small-size exact diagonalization re-
sults, before we discuss its bosonization. In Sec. III we
explain some details about the implementation of our
numerical method, namely, SU(2)-invariant iDMRG. In
Sec. IV we present the results of our simulation, where
we show that the ground state of the system corresponds
to a conformal field theory (CFT) with c = 1. We addi-
tionally study the algebraic decay of spin-spin and dimer-
dimer correlation functions, as well as the entanglement
spectrum and the convergence of the ground state energy.
Our results for the entanglement spectrum are remark-
ably similar to those of the spin-1/2 Heisenberg chain,
which we take as a strong indication that the CFT at
low energies is a SU(2)1 WZW theory. We wrap up our
conclusions in Sec. V. Finally, in Appendix we compute
the spin-current operators (Appendix A), review the con-
tinuum limit of the model by Huang et al. presented in
Ref. [11] (Appendix B) and explain the details of how
to construct the SU(2)-invariant MPO for the Hamilto-
nian that we want to simulate (Appendix C), focusing
on chiral 3-spin interactions. In Appendix D we provide
numerical data on the finite-entanglement scaling of the
entanglement spectrum.
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PH3P�1 = �H3. This main di↵erence between the two
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while edge states for H1 are expected to be counter-
propagating, they propagate in the same direction for
H3, see the arrows in Fig. 2. In what follows we show
that this intuition is indeed true.
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The first approach we take to understand the dom-
inant physics of the model consists in a Kadano↵-like
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n in this subspace, and then (iii) look

for the emerging Hamiltonian.
The first step is rather easy, once we recall that the

SU(2)-invariant Hamiltonian triangle term of Eq. (1) has
to be proportional to the identity in the di↵erent sub-
spaces with definite total spin, that it has null trace and
that it will be vanishing once the three spins are all paral-
lel arranged. Indeed, a bit of algebra with Pauli matrices
and Levi-Civita symbols leads to the expression:

S1 · (S2 ⇥ S3) =
X

↵=±
↵

p
3

4
P1/2,↵ + 0P3/2, (2)

where 1
2⌦

1
2⌦

1
2 = 1

2+
� 1

2��
3
2 and P are the corresponding

projectors. 1
2± are the subspaces of the spin-1/2 states

with positive and negative energy. The searched isom-
etry will then be depending on the sign of the triangle

2

FIG. 1: 2-leg ladder made of triangles, for the model in
Eq. (1).

for the chiral ladder with 3-spin interactions. Then we
explain briefly the expected behaviour from Kadano↵
coarse-graining and small-size exact diagonalization re-
sults, before we discuss its bosonization. In Sec. III we
explain some details about the implementation of our
numerical method, namely, SU(2)-invariant iDMRG. In
Sec. IV we present the results of our simulation, where
we show that the ground state of the system corresponds
to a conformal field theory (CFT) with c = 1. We addi-
tionally study the algebraic decay of spin-spin and dimer-
dimer correlation functions, as well as the entanglement
spectrum and the convergence of the ground state energy.
Our results for the entanglement spectrum are remark-
ably similar to those of the spin-1/2 Heisenberg chain,
which we take as a strong indication that the CFT at
low energies is a SU(2)1 WZW theory. We wrap up our
conclusions in Sec. V. Finally, in Appendix we compute
the spin-current operators (Appendix A), review the con-
tinuum limit of the model by Huang et al. presented in
Ref. [11] (Appendix B) and explain the details of how
to construct the SU(2)-invariant MPO for the Hamilto-
nian that we want to simulate (Appendix C), focusing
on chiral 3-spin interactions. In Appendix D we provide
numerical data on the finite-entanglement scaling of the
entanglement spectrum.

II. CHIRAL LADDER

A. The model

The model that we analyze in this paper is a 2-leg
ladder with chiral interactions on triangles. Specifically,
it is a model of spins-1/2 on the sites of the ladder of
Fig. 1 via the three-spin interaction Hamiltonian

H =
X

i

Ji Si · (Si+1 ⇥ Si+2) , (1)

with Si the spin-1/2 operator at site i. The sites of the
ladder are labeled in a snake-like pattern as shown in the
details of the ladder in Fig. 2 and both triangles follow
this snake-like labelling (upper triangles 1-2-3, lower tri-
angles 2-3-4). We will consider the cases where Ji 2 {±1}
in which the coupling coe�cients depend on the traversal
of the triangle. A triangle formed by sites i, i+1, i+2 is
traversed in (against) the direction of the labels if Ji = 1
(Ji = �1). This can be rephrased to clockwise or anti-
clockwise configurations for each triangle. The triangles
of the full ladder are all clockwise configured if Ji = (�1)i

(anticlockwise if Ji = �(�1)i). Mixing the two scenarios
gives rise to Ji = 1 8 i (Ji = �1 8 i), which leads to a stag-
gered, anticlockwise/clockwise (clockwise/anticlockwise)
configuration pattern.
Playing with di↵erent clockwise/anticlockwise config-

urations of the triangles, we can get di↵erent Hamiltoni-
ans. For instance, for a unit cell of two triangles we can
get the four configurations presented in Fig. 2. In the
figure, two of the configurations (H1 and H2) have the
same orientation of the triangles (i.e., both clockwise or
both anticlockwise), and two (H3 and H4) have opposite
orientation (i.e., one clockwise and one anticlockwise).
Since we have H1 = �H2 and H3 = �H4, both pairs of
Hamiltonians have the same energy spectrum. Therefore,
for the physical properties only the relative orientation
between the two triangles matters and it is su�cient to
restrict to H1 and H3 as di↵erent cases.
Both Hamiltonians are odd under time-reversal sym-

metry (Si ! �Si), which results in T HiT �1 = �Hi.
The combination of two mirror symmetries (which is
equivalent to an inversion at the chain center) leaves
Hamiltonian H1 invariant, whereas H3 transforms as
PH3P�1 = �H3. This main di↵erence between the two
cases with di↵erent relative triangle orientations (H1 and
H3) results in di↵erent behaviour of the edge states:
while edge states for H1 are expected to be counter-
propagating, they propagate in the same direction for
H3, see the arrows in Fig. 2. In what follows we show
that this intuition is indeed true.

B. First intuition with Kadano↵ coarse-graining

The first approach we take to understand the dom-
inant physics of the model consists in a Kadano↵-like
coarse-graining procedure of the triangles into e↵ective
spin-1/2’s. In particular, we simply (i) project the 23-
dimensional Hilbert space of the triangle n starting at
site i = 3n� 2 onto the 2-dimensional subspace of lowest
energy via the isometry Wn : 1

2 ⌦ 1
2 ⌦ 1

2 �! 1
2 , (ii) con-

struct the representation of the operators WnSjW †
n and

Wn (Sj ⇥ Sj+1)W †
n in this subspace, and then (iii) look

for the emerging Hamiltonian.
The first step is rather easy, once we recall that the

SU(2)-invariant Hamiltonian triangle term of Eq. (1) has
to be proportional to the identity in the di↵erent sub-
spaces with definite total spin, that it has null trace and
that it will be vanishing once the three spins are all paral-
lel arranged. Indeed, a bit of algebra with Pauli matrices
and Levi-Civita symbols leads to the expression:

S1 · (S2 ⇥ S3) =
X

↵=±
↵

p
3

4
P1/2,↵ + 0P3/2, (2)

where 1
2⌦

1
2⌦

1
2 = 1

2+
� 1

2��
3
2 and P are the corresponding

projectors. 1
2± are the subspaces of the spin-1/2 states

with positive and negative energy. The searched isom-
etry will then be depending on the sign of the triangle

3

H1 H1 = +~S1 ·
⇣
~S2 ⇥ ~S3

⌘
� ~S2 ·

⇣
~S3 ⇥ ~S4

⌘

1

2

3

4

H2 H2 = �~S1 ·
⇣
~S2 ⇥ ~S3

⌘
+ ~S2 ·

⇣
~S3 ⇥ ~S4

⌘

1

2

3

4

H3 H3 = �~S1 ·
⇣
~S2 ⇥ ~S3

⌘
� ~S2 ·

⇣
~S3 ⇥ ~S4

⌘

1

2

3

4

H4 H4 = +~S1 ·
⇣
~S2 ⇥ ~S3

⌘
+ ~S2 ·

⇣
~S3 ⇥ ~S4

⌘

1

2

3

4

FIG. 2: Di↵erent orientations of the chiral triple product re-
sult in di↵erent models. In the first two cases the orientation
is chosen to be the same whereas it is opposite in the last two
cases.

coupling, i.e.,

WnW
†
n = P1/2,�sgn(J3n�2) . (3)

Next we have to construct the coarse-grained expres-
sions of the spin operators involved in the interaction
between triangles n and n+ 1. It turns out that we can
choose the projectors such that 8j 2 {3n� 2, 3n� 1, 3n}
and ↵ 2 {±}:

W1/2,↵SjW
†
1/2,↵ =

1

3
eSn (4)

W1/2,↵ (Sj ⇥ Sj+1)W
†
1/2,↵ =

↵p
3
eSn (5)

with eSn the new e↵ective spin 1/2. The resulting e↵ective
Hamiltonian then reads:

He↵ = �sgn (J1J2)
|J1|+ |J2|

3
p
3

NX

n=1

eSn · eSn+1 , (6)

where N ' L/3 is the total number of e↵ective triangles,

and we neglected an additive term �
p
3
4

|J1|+|J2|
2 N . We

thus obtained an emerging spin-1/2 Heisenberg chain,
whose magnetic character (ferro- or antiferro-) depends
on the mutual signs of the triangle couplings J1 and J2,
and we can resort to a wealth of known facts to foresee
the behaviour of our triangle ladder.

If the triangles are all (anti-)clockwise oriented
(H1 and H2), then the e↵ective model (6) is anti-
ferromagnetic: we therefore predict that it will be gap-
less, with central charge c = 1, and that its ground state
would tend to minimize the total-spin of the chain, i.e.,
for even N will be in the zero total spin sector. Con-
versely, if the triangles have mixed character (H3 and
H4), then the e↵ective model (6) is ferromagnetic: we
have thus good reasons to expect that the system will try
to maximize its total spin, giving rise to a macroscopic
degeneracy of the ground state manifold, and without a
well-defined CFT character. Of course, such low-energy
projection is a very strong simplification and further cor-
rections would be needed to describe the full richness
of the model (e.g., the degeneracy counting of the case
J1 = J2 in finite systems will be non-trivial). But still,
we will see below that the main results obtained by this
simple analysis are in fact confirmed by more sophisti-
cated theoretical and numerical approaches.

C. Exact diagonalization of small systems

The intuition obtained from the Kadano↵ blocking in
the previous section can be further corroborated by a sim-
ple exact diagonalization exercise. Specifically, here we
perform exact diagonalization for small sizes, in partic-
ular for 16 spins. For this case, we compute the ground
state and low-energy excited states and evaluate some
observables. Of particular interest in order to assess chi-
rality are spin-current operators of the form

J z
i,i+1 = �Ji�1S

z
i�1 (SiSi+1)� Ji (SiSi+1)S

z
i+2

J z
i,i+2 = �Ji (SiSi+2)S

z
i+1

(7)

which describe the flow of the z-component of magnetiza-
tion from sites i to site i+1 and i+2 respectively (notice
that, by SU(2) invariance, there is not a preferred spin-
component). J z

i,i+1 measures the currents on the rung
and slash links, to which there are contributions from
two triangles. J z

i,i+2 measures the currents in the chains
with only a single triangle contribution. The current op-
erators can be derived by taking the commutator of the
spin operator and the Hamiltonian, which is presented
in Appendix A for a general N -leg ladder. For the wave
functions obtained from our small-size exact diagonal-
ization, we evaluate the expectation value of this current
operator for the up, down, rung and slash pairs of sites.
Notice that in the chosen basis described below there are
no J x and J y current components, so that the plotted
current J z is the total current in the system.

For the Hamiltonian configuration H1 (or equivalently
H2), we find from our results that the ground state is a
singlet of SU(2) with total spin zero, i.e., hS2i = 0 with
S the total spin vector operator. Thus, we find that the
ground state does not carry any currents. However, in
the first excited state (an SU(2) triplet) the pattern of
currents for every pair of sites corresponds to the one in

• sign(𝐽"𝐽#) > 0: FH

• sign(𝐽"𝐽#) < 0: AFH

• 𝐽! = ±(−1)!: Effectively a spin-1/2 AFH => gapless
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for the chiral ladder with 3-spin interactions. Then we
explain briefly the expected behaviour from Kadano↵
coarse-graining and small-size exact diagonalization re-
sults, before we discuss its bosonization. In Sec. III we
explain some details about the implementation of our
numerical method, namely, SU(2)-invariant iDMRG. In
Sec. IV we present the results of our simulation, where
we show that the ground state of the system corresponds
to a conformal field theory (CFT) with c = 1. We addi-
tionally study the algebraic decay of spin-spin and dimer-
dimer correlation functions, as well as the entanglement
spectrum and the convergence of the ground state energy.
Our results for the entanglement spectrum are remark-
ably similar to those of the spin-1/2 Heisenberg chain,
which we take as a strong indication that the CFT at
low energies is a SU(2)1 WZW theory. We wrap up our
conclusions in Sec. V. Finally, in Appendix we compute
the spin-current operators (Appendix A), review the con-
tinuum limit of the model by Huang et al. presented in
Ref. [11] (Appendix B) and explain the details of how
to construct the SU(2)-invariant MPO for the Hamilto-
nian that we want to simulate (Appendix C), focusing
on chiral 3-spin interactions. In Appendix D we provide
numerical data on the finite-entanglement scaling of the
entanglement spectrum.
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of the full ladder are all clockwise configured if Ji = (�1)i
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gives rise to Ji = 1 8 i (Ji = �1 8 i), which leads to a stag-
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Playing with di↵erent clockwise/anticlockwise config-

urations of the triangles, we can get di↵erent Hamiltoni-
ans. For instance, for a unit cell of two triangles we can
get the four configurations presented in Fig. 2. In the
figure, two of the configurations (H1 and H2) have the
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both anticlockwise), and two (H3 and H4) have opposite
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Since we have H1 = �H2 and H3 = �H4, both pairs of
Hamiltonians have the same energy spectrum. Therefore,
for the physical properties only the relative orientation
between the two triangles matters and it is su�cient to
restrict to H1 and H3 as di↵erent cases.
Both Hamiltonians are odd under time-reversal sym-

metry (Si ! �Si), which results in T HiT �1 = �Hi.
The combination of two mirror symmetries (which is
equivalent to an inversion at the chain center) leaves
Hamiltonian H1 invariant, whereas H3 transforms as
PH3P�1 = �H3. This main di↵erence between the two
cases with di↵erent relative triangle orientations (H1 and
H3) results in di↵erent behaviour of the edge states:
while edge states for H1 are expected to be counter-
propagating, they propagate in the same direction for
H3, see the arrows in Fig. 2. In what follows we show
that this intuition is indeed true.

B. First intuition with Kadano↵ coarse-graining

The first approach we take to understand the dom-
inant physics of the model consists in a Kadano↵-like
coarse-graining procedure of the triangles into e↵ective
spin-1/2’s. In particular, we simply (i) project the 23-
dimensional Hilbert space of the triangle n starting at
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for the emerging Hamiltonian.
The first step is rather easy, once we recall that the

SU(2)-invariant Hamiltonian triangle term of Eq. (1) has
to be proportional to the identity in the di↵erent sub-
spaces with definite total spin, that it has null trace and
that it will be vanishing once the three spins are all paral-
lel arranged. Indeed, a bit of algebra with Pauli matrices
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numerical method, namely, SU(2)-invariant iDMRG. In
Sec. IV we present the results of our simulation, where
we show that the ground state of the system corresponds
to a conformal field theory (CFT) with c = 1. We addi-
tionally study the algebraic decay of spin-spin and dimer-
dimer correlation functions, as well as the entanglement
spectrum and the convergence of the ground state energy.
Our results for the entanglement spectrum are remark-
ably similar to those of the spin-1/2 Heisenberg chain,
which we take as a strong indication that the CFT at
low energies is a SU(2)1 WZW theory. We wrap up our
conclusions in Sec. V. Finally, in Appendix we compute
the spin-current operators (Appendix A), review the con-
tinuum limit of the model by Huang et al. presented in
Ref. [11] (Appendix B) and explain the details of how
to construct the SU(2)-invariant MPO for the Hamilto-
nian that we want to simulate (Appendix C), focusing
on chiral 3-spin interactions. In Appendix D we provide
numerical data on the finite-entanglement scaling of the
entanglement spectrum.
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with Si the spin-1/2 operator at site i. The sites of the
ladder are labeled in a snake-like pattern as shown in the
details of the ladder in Fig. 2 and both triangles follow
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(Ji = �1). This can be rephrased to clockwise or anti-
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(anticlockwise if Ji = �(�1)i). Mixing the two scenarios
gives rise to Ji = 1 8 i (Ji = �1 8 i), which leads to a stag-
gered, anticlockwise/clockwise (clockwise/anticlockwise)
configuration pattern.
Playing with di↵erent clockwise/anticlockwise config-

urations of the triangles, we can get di↵erent Hamiltoni-
ans. For instance, for a unit cell of two triangles we can
get the four configurations presented in Fig. 2. In the
figure, two of the configurations (H1 and H2) have the
same orientation of the triangles (i.e., both clockwise or
both anticlockwise), and two (H3 and H4) have opposite
orientation (i.e., one clockwise and one anticlockwise).
Since we have H1 = �H2 and H3 = �H4, both pairs of
Hamiltonians have the same energy spectrum. Therefore,
for the physical properties only the relative orientation
between the two triangles matters and it is su�cient to
restrict to H1 and H3 as di↵erent cases.
Both Hamiltonians are odd under time-reversal sym-

metry (Si ! �Si), which results in T HiT �1 = �Hi.
The combination of two mirror symmetries (which is
equivalent to an inversion at the chain center) leaves
Hamiltonian H1 invariant, whereas H3 transforms as
PH3P�1 = �H3. This main di↵erence between the two
cases with di↵erent relative triangle orientations (H1 and
H3) results in di↵erent behaviour of the edge states:
while edge states for H1 are expected to be counter-
propagating, they propagate in the same direction for
H3, see the arrows in Fig. 2. In what follows we show
that this intuition is indeed true.

B. First intuition with Kadano↵ coarse-graining

The first approach we take to understand the dom-
inant physics of the model consists in a Kadano↵-like
coarse-graining procedure of the triangles into e↵ective
spin-1/2’s. In particular, we simply (i) project the 23-
dimensional Hilbert space of the triangle n starting at
site i = 3n� 2 onto the 2-dimensional subspace of lowest
energy via the isometry Wn : 1
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2 , (ii) con-

struct the representation of the operators WnSjW †
n and

Wn (Sj ⇥ Sj+1)W †
n in this subspace, and then (iii) look

for the emerging Hamiltonian.
The first step is rather easy, once we recall that the

SU(2)-invariant Hamiltonian triangle term of Eq. (1) has
to be proportional to the identity in the di↵erent sub-
spaces with definite total spin, that it has null trace and
that it will be vanishing once the three spins are all paral-
lel arranged. Indeed, a bit of algebra with Pauli matrices
and Levi-Civita symbols leads to the expression:

S1 · (S2 ⇥ S3) =
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FIG. 2: Di↵erent orientations of the chiral triple product re-
sult in di↵erent models. In the first two cases the orientation
is chosen to be the same whereas it is opposite in the last two
cases.

coupling, i.e.,

WnW
†
n = P1/2,�sgn(J3n�2) . (3)

Next we have to construct the coarse-grained expres-
sions of the spin operators involved in the interaction
between triangles n and n+ 1. It turns out that we can
choose the projectors such that 8j 2 {3n� 2, 3n� 1, 3n}
and ↵ 2 {±}:

W1/2,↵SjW
†
1/2,↵ =

1

3
eSn (4)

W1/2,↵ (Sj ⇥ Sj+1)W
†
1/2,↵ =

↵p
3
eSn (5)

with eSn the new e↵ective spin 1/2. The resulting e↵ective
Hamiltonian then reads:

He↵ = �sgn (J1J2)
|J1|+ |J2|

3
p
3

NX

n=1

eSn · eSn+1 , (6)

where N ' L/3 is the total number of e↵ective triangles,

and we neglected an additive term �
p
3
4

|J1|+|J2|
2 N . We

thus obtained an emerging spin-1/2 Heisenberg chain,
whose magnetic character (ferro- or antiferro-) depends
on the mutual signs of the triangle couplings J1 and J2,
and we can resort to a wealth of known facts to foresee
the behaviour of our triangle ladder.

If the triangles are all (anti-)clockwise oriented
(H1 and H2), then the e↵ective model (6) is anti-
ferromagnetic: we therefore predict that it will be gap-
less, with central charge c = 1, and that its ground state
would tend to minimize the total-spin of the chain, i.e.,
for even N will be in the zero total spin sector. Con-
versely, if the triangles have mixed character (H3 and
H4), then the e↵ective model (6) is ferromagnetic: we
have thus good reasons to expect that the system will try
to maximize its total spin, giving rise to a macroscopic
degeneracy of the ground state manifold, and without a
well-defined CFT character. Of course, such low-energy
projection is a very strong simplification and further cor-
rections would be needed to describe the full richness
of the model (e.g., the degeneracy counting of the case
J1 = J2 in finite systems will be non-trivial). But still,
we will see below that the main results obtained by this
simple analysis are in fact confirmed by more sophisti-
cated theoretical and numerical approaches.

C. Exact diagonalization of small systems

The intuition obtained from the Kadano↵ blocking in
the previous section can be further corroborated by a sim-
ple exact diagonalization exercise. Specifically, here we
perform exact diagonalization for small sizes, in partic-
ular for 16 spins. For this case, we compute the ground
state and low-energy excited states and evaluate some
observables. Of particular interest in order to assess chi-
rality are spin-current operators of the form

J z
i,i+1 = �Ji�1S

z
i�1 (SiSi+1)� Ji (SiSi+1)S

z
i+2

J z
i,i+2 = �Ji (SiSi+2)S

z
i+1

(7)

which describe the flow of the z-component of magnetiza-
tion from sites i to site i+1 and i+2 respectively (notice
that, by SU(2) invariance, there is not a preferred spin-
component). J z

i,i+1 measures the currents on the rung
and slash links, to which there are contributions from
two triangles. J z

i,i+2 measures the currents in the chains
with only a single triangle contribution. The current op-
erators can be derived by taking the commutator of the
spin operator and the Hamiltonian, which is presented
in Appendix A for a general N -leg ladder. For the wave
functions obtained from our small-size exact diagonal-
ization, we evaluate the expectation value of this current
operator for the up, down, rung and slash pairs of sites.
Notice that in the chosen basis described below there are
no J x and J y current components, so that the plotted
current J z is the total current in the system.

For the Hamiltonian configuration H1 (or equivalently
H2), we find from our results that the ground state is a
singlet of SU(2) with total spin zero, i.e., hS2i = 0 with
S the total spin vector operator. Thus, we find that the
ground state does not carry any currents. However, in
the first excited state (an SU(2) triplet) the pattern of
currents for every pair of sites corresponds to the one in

• sign(𝐽"𝐽#) > 0: FH

• sign(𝐽"𝐽#) < 0: AFH

• 𝐽! = ±(−1)!: Effectively a spin-1/2 AFH => gapless

Ø Numeric check (iDMRG) by [Schmoll et al. (’18)] confirmed low-energy 
states of H are described by a 𝑐 = 1 CFT, i.e. SU(2)1 WZW universality class 
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for the chiral ladder with 3-spin interactions. Then we
explain briefly the expected behaviour from Kadano↵
coarse-graining and small-size exact diagonalization re-
sults, before we discuss its bosonization. In Sec. III we
explain some details about the implementation of our
numerical method, namely, SU(2)-invariant iDMRG. In
Sec. IV we present the results of our simulation, where
we show that the ground state of the system corresponds
to a conformal field theory (CFT) with c = 1. We addi-
tionally study the algebraic decay of spin-spin and dimer-
dimer correlation functions, as well as the entanglement
spectrum and the convergence of the ground state energy.
Our results for the entanglement spectrum are remark-
ably similar to those of the spin-1/2 Heisenberg chain,
which we take as a strong indication that the CFT at
low energies is a SU(2)1 WZW theory. We wrap up our
conclusions in Sec. V. Finally, in Appendix we compute
the spin-current operators (Appendix A), review the con-
tinuum limit of the model by Huang et al. presented in
Ref. [11] (Appendix B) and explain the details of how
to construct the SU(2)-invariant MPO for the Hamilto-
nian that we want to simulate (Appendix C), focusing
on chiral 3-spin interactions. In Appendix D we provide
numerical data on the finite-entanglement scaling of the
entanglement spectrum.
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gives rise to Ji = 1 8 i (Ji = �1 8 i), which leads to a stag-
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ans. For instance, for a unit cell of two triangles we can
get the four configurations presented in Fig. 2. In the
figure, two of the configurations (H1 and H2) have the
same orientation of the triangles (i.e., both clockwise or
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Since we have H1 = �H2 and H3 = �H4, both pairs of
Hamiltonians have the same energy spectrum. Therefore,
for the physical properties only the relative orientation
between the two triangles matters and it is su�cient to
restrict to H1 and H3 as di↵erent cases.
Both Hamiltonians are odd under time-reversal sym-

metry (Si ! �Si), which results in T HiT �1 = �Hi.
The combination of two mirror symmetries (which is
equivalent to an inversion at the chain center) leaves
Hamiltonian H1 invariant, whereas H3 transforms as
PH3P�1 = �H3. This main di↵erence between the two
cases with di↵erent relative triangle orientations (H1 and
H3) results in di↵erent behaviour of the edge states:
while edge states for H1 are expected to be counter-
propagating, they propagate in the same direction for
H3, see the arrows in Fig. 2. In what follows we show
that this intuition is indeed true.

B. First intuition with Kadano↵ coarse-graining

The first approach we take to understand the dom-
inant physics of the model consists in a Kadano↵-like
coarse-graining procedure of the triangles into e↵ective
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dimensional Hilbert space of the triangle n starting at
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for the emerging Hamiltonian.
The first step is rather easy, once we recall that the

SU(2)-invariant Hamiltonian triangle term of Eq. (1) has
to be proportional to the identity in the di↵erent sub-
spaces with definite total spin, that it has null trace and
that it will be vanishing once the three spins are all paral-
lel arranged. Indeed, a bit of algebra with Pauli matrices
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coarse-graining and small-size exact diagonalization re-
sults, before we discuss its bosonization. In Sec. III we
explain some details about the implementation of our
numerical method, namely, SU(2)-invariant iDMRG. In
Sec. IV we present the results of our simulation, where
we show that the ground state of the system corresponds
to a conformal field theory (CFT) with c = 1. We addi-
tionally study the algebraic decay of spin-spin and dimer-
dimer correlation functions, as well as the entanglement
spectrum and the convergence of the ground state energy.
Our results for the entanglement spectrum are remark-
ably similar to those of the spin-1/2 Heisenberg chain,
which we take as a strong indication that the CFT at
low energies is a SU(2)1 WZW theory. We wrap up our
conclusions in Sec. V. Finally, in Appendix we compute
the spin-current operators (Appendix A), review the con-
tinuum limit of the model by Huang et al. presented in
Ref. [11] (Appendix B) and explain the details of how
to construct the SU(2)-invariant MPO for the Hamilto-
nian that we want to simulate (Appendix C), focusing
on chiral 3-spin interactions. In Appendix D we provide
numerical data on the finite-entanglement scaling of the
entanglement spectrum.
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numerical method, namely, SU(2)-invariant iDMRG. In
Sec. IV we present the results of our simulation, where
we show that the ground state of the system corresponds
to a conformal field theory (CFT) with c = 1. We addi-
tionally study the algebraic decay of spin-spin and dimer-
dimer correlation functions, as well as the entanglement
spectrum and the convergence of the ground state energy.
Our results for the entanglement spectrum are remark-
ably similar to those of the spin-1/2 Heisenberg chain,
which we take as a strong indication that the CFT at
low energies is a SU(2)1 WZW theory. We wrap up our
conclusions in Sec. V. Finally, in Appendix we compute
the spin-current operators (Appendix A), review the con-
tinuum limit of the model by Huang et al. presented in
Ref. [11] (Appendix B) and explain the details of how
to construct the SU(2)-invariant MPO for the Hamilto-
nian that we want to simulate (Appendix C), focusing
on chiral 3-spin interactions. In Appendix D we provide
numerical data on the finite-entanglement scaling of the
entanglement spectrum.

II. CHIRAL LADDER

A. The model

The model that we analyze in this paper is a 2-leg
ladder with chiral interactions on triangles. Specifically,
it is a model of spins-1/2 on the sites of the ladder of
Fig. 1 via the three-spin interaction Hamiltonian

H =
X

i

Ji Si · (Si+1 ⇥ Si+2) , (1)

with Si the spin-1/2 operator at site i. The sites of the
ladder are labeled in a snake-like pattern as shown in the
details of the ladder in Fig. 2 and both triangles follow
this snake-like labelling (upper triangles 1-2-3, lower tri-
angles 2-3-4). We will consider the cases where Ji 2 {±1}
in which the coupling coe�cients depend on the traversal
of the triangle. A triangle formed by sites i, i+1, i+2 is
traversed in (against) the direction of the labels if Ji = 1
(Ji = �1). This can be rephrased to clockwise or anti-
clockwise configurations for each triangle. The triangles
of the full ladder are all clockwise configured if Ji = (�1)i

(anticlockwise if Ji = �(�1)i). Mixing the two scenarios
gives rise to Ji = 1 8 i (Ji = �1 8 i), which leads to a stag-
gered, anticlockwise/clockwise (clockwise/anticlockwise)
configuration pattern.
Playing with di↵erent clockwise/anticlockwise config-

urations of the triangles, we can get di↵erent Hamiltoni-
ans. For instance, for a unit cell of two triangles we can
get the four configurations presented in Fig. 2. In the
figure, two of the configurations (H1 and H2) have the
same orientation of the triangles (i.e., both clockwise or
both anticlockwise), and two (H3 and H4) have opposite
orientation (i.e., one clockwise and one anticlockwise).
Since we have H1 = �H2 and H3 = �H4, both pairs of
Hamiltonians have the same energy spectrum. Therefore,
for the physical properties only the relative orientation
between the two triangles matters and it is su�cient to
restrict to H1 and H3 as di↵erent cases.
Both Hamiltonians are odd under time-reversal sym-

metry (Si ! �Si), which results in T HiT �1 = �Hi.
The combination of two mirror symmetries (which is
equivalent to an inversion at the chain center) leaves
Hamiltonian H1 invariant, whereas H3 transforms as
PH3P�1 = �H3. This main di↵erence between the two
cases with di↵erent relative triangle orientations (H1 and
H3) results in di↵erent behaviour of the edge states:
while edge states for H1 are expected to be counter-
propagating, they propagate in the same direction for
H3, see the arrows in Fig. 2. In what follows we show
that this intuition is indeed true.

B. First intuition with Kadano↵ coarse-graining

The first approach we take to understand the dom-
inant physics of the model consists in a Kadano↵-like
coarse-graining procedure of the triangles into e↵ective
spin-1/2’s. In particular, we simply (i) project the 23-
dimensional Hilbert space of the triangle n starting at
site i = 3n� 2 onto the 2-dimensional subspace of lowest
energy via the isometry Wn : 1

2 ⌦ 1
2 ⌦ 1

2 �! 1
2 , (ii) con-

struct the representation of the operators WnSjW †
n and

Wn (Sj ⇥ Sj+1)W †
n in this subspace, and then (iii) look

for the emerging Hamiltonian.
The first step is rather easy, once we recall that the

SU(2)-invariant Hamiltonian triangle term of Eq. (1) has
to be proportional to the identity in the di↵erent sub-
spaces with definite total spin, that it has null trace and
that it will be vanishing once the three spins are all paral-
lel arranged. Indeed, a bit of algebra with Pauli matrices
and Levi-Civita symbols leads to the expression:

S1 · (S2 ⇥ S3) =
X

↵=±
↵

p
3

4
P1/2,↵ + 0P3/2, (2)

where 1
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� 1
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3
2 and P are the corresponding

projectors. 1
2± are the subspaces of the spin-1/2 states

with positive and negative energy. The searched isom-
etry will then be depending on the sign of the triangle
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FIG. 1: 2-leg ladder made of triangles, for the model in
Eq. (1).
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FIG. 2: Di↵erent orientations of the chiral triple product re-
sult in di↵erent models. In the first two cases the orientation
is chosen to be the same whereas it is opposite in the last two
cases.

coupling, i.e.,

WnW
†
n = P1/2,�sgn(J3n�2) . (3)

Next we have to construct the coarse-grained expres-
sions of the spin operators involved in the interaction
between triangles n and n+ 1. It turns out that we can
choose the projectors such that 8j 2 {3n� 2, 3n� 1, 3n}
and ↵ 2 {±}:

W1/2,↵SjW
†
1/2,↵ =

1

3
eSn (4)

W1/2,↵ (Sj ⇥ Sj+1)W
†
1/2,↵ =

↵p
3
eSn (5)

with eSn the new e↵ective spin 1/2. The resulting e↵ective
Hamiltonian then reads:

He↵ = �sgn (J1J2)
|J1|+ |J2|

3
p
3

NX

n=1

eSn · eSn+1 , (6)

where N ' L/3 is the total number of e↵ective triangles,

and we neglected an additive term �
p
3
4

|J1|+|J2|
2 N . We

thus obtained an emerging spin-1/2 Heisenberg chain,
whose magnetic character (ferro- or antiferro-) depends
on the mutual signs of the triangle couplings J1 and J2,
and we can resort to a wealth of known facts to foresee
the behaviour of our triangle ladder.

If the triangles are all (anti-)clockwise oriented
(H1 and H2), then the e↵ective model (6) is anti-
ferromagnetic: we therefore predict that it will be gap-
less, with central charge c = 1, and that its ground state
would tend to minimize the total-spin of the chain, i.e.,
for even N will be in the zero total spin sector. Con-
versely, if the triangles have mixed character (H3 and
H4), then the e↵ective model (6) is ferromagnetic: we
have thus good reasons to expect that the system will try
to maximize its total spin, giving rise to a macroscopic
degeneracy of the ground state manifold, and without a
well-defined CFT character. Of course, such low-energy
projection is a very strong simplification and further cor-
rections would be needed to describe the full richness
of the model (e.g., the degeneracy counting of the case
J1 = J2 in finite systems will be non-trivial). But still,
we will see below that the main results obtained by this
simple analysis are in fact confirmed by more sophisti-
cated theoretical and numerical approaches.

C. Exact diagonalization of small systems

The intuition obtained from the Kadano↵ blocking in
the previous section can be further corroborated by a sim-
ple exact diagonalization exercise. Specifically, here we
perform exact diagonalization for small sizes, in partic-
ular for 16 spins. For this case, we compute the ground
state and low-energy excited states and evaluate some
observables. Of particular interest in order to assess chi-
rality are spin-current operators of the form

J z
i,i+1 = �Ji�1S

z
i�1 (SiSi+1)� Ji (SiSi+1)S

z
i+2

J z
i,i+2 = �Ji (SiSi+2)S

z
i+1

(7)

which describe the flow of the z-component of magnetiza-
tion from sites i to site i+1 and i+2 respectively (notice
that, by SU(2) invariance, there is not a preferred spin-
component). J z

i,i+1 measures the currents on the rung
and slash links, to which there are contributions from
two triangles. J z

i,i+2 measures the currents in the chains
with only a single triangle contribution. The current op-
erators can be derived by taking the commutator of the
spin operator and the Hamiltonian, which is presented
in Appendix A for a general N -leg ladder. For the wave
functions obtained from our small-size exact diagonal-
ization, we evaluate the expectation value of this current
operator for the up, down, rung and slash pairs of sites.
Notice that in the chosen basis described below there are
no J x and J y current components, so that the plotted
current J z is the total current in the system.

For the Hamiltonian configuration H1 (or equivalently
H2), we find from our results that the ground state is a
singlet of SU(2) with total spin zero, i.e., hS2i = 0 with
S the total spin vector operator. Thus, we find that the
ground state does not carry any currents. However, in
the first excited state (an SU(2) triplet) the pattern of
currents for every pair of sites corresponds to the one in

• sign(𝐽"𝐽#) > 0: FH

• sign(𝐽"𝐽#) < 0: AFH

• 𝐽! = ±(−1)!: Effectively a spin-1/2 AFH => gapless

Ø Numeric check (iDMRG) by [Schmoll et al. (’18)] confirmed low-energy 
states of H are described by a 𝑐 = 1 CFT, i.e. SU(2)1 WZW universality class 
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gJ Landé factor
Happ applied magnetic field (vector)
Happ applied magnetic field (magnitude)
Hm molecular field
J exchange integral
J total angular momentum
k0 propagation vector
l orbital quantum number
l orbital momentum
L orbital momentum
L Langevin function
m magnetic quantum number
m0 measured magnetic moment at 0K
m magnetic moment
ml orbital moment
ms spin moment
mz projection of m along Happ

M magnetization
Ms spontaneous magnetization

Ms,0 magnetization at absolute saturation
n molecular field coefficient
N number of moments per unit volume
ND demagnetizing field coefficient
NT total number of moments
S spin or spin angular momentum
T temperature
Tc critical temperature
TC Curie temperature
TN Néel temperature
vat atom volume
x argument of the Langevin or Brillouin

function
z number of first neighbors
w magnetic susceptibility
mB Bohr magneton
meff effective moment
m0 permittivity of vacuum
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Introduction

Magnetic groups – also known as antisymmetry
groups, Shubnikov groups, Heesch groups, Opechow-
ski–Guccione (OG) groups, as well as dichromatic,
2-color, or simply black-and-white groups – are the
simplest extension to standard point group and space
group theory. They allow directly to describe, clas-
sify, and study the consequences of the symmetry of
crystals, characterized by having a certain property,
associated with each crystal site, that can take one of
two possible values. This is done by introducing a
single external operation of order two that inter-
changes the two possible values everywhere through-
out the crystal. This operation can be applied to the
crystal along with any of the standard point group
or space group operations, and is denoted by adding
a prime to the original operation. Thus, any rota-
tion g followed by this external operation is denoted
by g0.

To start with, a few typical examples of this two-
valued property are given, some of which are illus-
trated in Figure 1. In the section ‘‘Magnetic point
groups’’ the notion of a magnetic point group is dis-
cussed, followed by a discussion on magnetic space
groups in the section ‘‘Magnetic space groups’’. The
section ‘‘Extinctions in neutron diffraction of anti-
ferromagnetic crystals’’ describes one of the most

(a)

(b)

(c)

(d)

(e)

ClNa Na Na Na Na NaCl Cl Cl Cl Cl

Figure 1 Several realizations of the simple 1D magnetic space
group pp!1. Note that the number of symmetry translations is
doubled if one introduces an operation e 0 that interchanges the
two possible values of the property, associated with each crystal
site. Also note that spatial inversion !1 can be performed without a
prime on each crystal site, and with a prime ð!10Þ between every
two sites. (a) An abstract representation of the two possible val-
ues as the two colors – black and white. The operation e 0 is the
nontrivial permutation of the two colors. (b) A simple antifer-
romagnetic arrangement of spins. The operation e 0 is time
inversion which reverses the signs of the spins. (c) A ferromagne-
tic arrangement of two types of spins, where e 0 exchanges them
as in the case of two colors. (d) A 1D version of salt. e 0 ex-
changes the chemical identities of the two atomic species. (e) A
function f(x) whose overall sign changes by application of the
operation e 0.
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Chiral Lieb-Schultz-Mattis theorem
under antiunitary translations and inversions

(Dated: December 21, 2021)

We study quantum many-body systems with spin-rotation symmetries and an exotic antiunitary
translation or inversion symmetry formed from time reversal and concentrate on a class of chiral
spin models of which the gaplessness cannot be understood by earlier works. Based on a symmetry-
twisting method and spectrum robustness, we propose that the half-integer spin systems respecting
these symmetries must either be gapless or possess degenerate ground states. We also relate this
ingappability to the quantum anomaly, and the anomaly-matching argument resolves the puzzling
criticality stability and the universality class of the chiral spin models. By the anomaly argument, we
also claim that the antiunitary inversion symmetry alone is su�cient to ensure the ingappability even
though the spin-rotation symmetry is completely broken. Furthermore, we apply our ingappability
and stability analyses to several hybridized Hamiltonian to obtain nontrivial constraints on the
possible phase diagram.
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Introduction.— Understanding and identifying vari-
ous phases and the transitions among them is an es-
sential topic in condensed matter and quantum many-
body physics. As a notable and useful concept, the
Lieb-Schultz-Mattis (LSM) theorem [1] and its gener-
alizations [2–5] impose general constraints on quantum
phases by the notion of ingappabilities — under a U(1)
symmetry and lattice translations with a fractional fill-
ing, the system must either be gapless or possess degen-
erate ground states. The theorem is recently extended
to the systems with richer symmetries, e.g., SO(3) spin-
rotation and SU(N) symmetry [2, 6–8] or even its discrete
subgroup [9–14]. Moreover, the translation symmetry is
also found to be not necessary for the ingappability if the
system respects a lattice inversion symmetry [11–13, 15–
17]. These ingappabilities are also related to quantum
anomaly in field theories and boundaries of topological
phases [7, 16, 18].
The LSM theorem and its extensions manifest the sta-

bility of critical phases observed in experiments and nu-
merical calculations due to the ingappabilities [6, 8]. Nev-
ertheless, there is a large class of critical systems with-
out the conventional LSM-type ingappability. The re-
cent iDMRG study [19] indicates the criticality of a class
of time-reversal breaking spin-1/2 ladders called chiral
triple-product spin model [19–21] with integer spin num-
bers per unit cell — such a gaplessness cannot be un-
derstood by the existing LSM-type theorems by lattice
translations/inversions. Furthermore, their universality
class is of SU(2) level-1, of which the stability is unex-
pected by the earlier argument that also generically does
not exclude an even level in case of integer spins per
unit cell [6, 8]. Moreover, the internal symmetries, such
as spin-rotation symmetries, are essential in the LSM-
type arguments. However, in the presence of a strong

• Assume H has (ℤ$×ℤ$)×ℤ(%,-%) symm:
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Introduction

Magnetic groups – also known as antisymmetry
groups, Shubnikov groups, Heesch groups, Opechow-
ski–Guccione (OG) groups, as well as dichromatic,
2-color, or simply black-and-white groups – are the
simplest extension to standard point group and space
group theory. They allow directly to describe, clas-
sify, and study the consequences of the symmetry of
crystals, characterized by having a certain property,
associated with each crystal site, that can take one of
two possible values. This is done by introducing a
single external operation of order two that inter-
changes the two possible values everywhere through-
out the crystal. This operation can be applied to the
crystal along with any of the standard point group
or space group operations, and is denoted by adding
a prime to the original operation. Thus, any rota-
tion g followed by this external operation is denoted
by g0.

To start with, a few typical examples of this two-
valued property are given, some of which are illus-
trated in Figure 1. In the section ‘‘Magnetic point
groups’’ the notion of a magnetic point group is dis-
cussed, followed by a discussion on magnetic space
groups in the section ‘‘Magnetic space groups’’. The
section ‘‘Extinctions in neutron diffraction of anti-
ferromagnetic crystals’’ describes one of the most
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(e)

ClNa Na Na Na Na NaCl Cl Cl Cl Cl

Figure 1 Several realizations of the simple 1D magnetic space
group pp!1. Note that the number of symmetry translations is
doubled if one introduces an operation e 0 that interchanges the
two possible values of the property, associated with each crystal
site. Also note that spatial inversion !1 can be performed without a
prime on each crystal site, and with a prime ð!10Þ between every
two sites. (a) An abstract representation of the two possible val-
ues as the two colors – black and white. The operation e 0 is the
nontrivial permutation of the two colors. (b) A simple antifer-
romagnetic arrangement of spins. The operation e 0 is time
inversion which reverses the signs of the spins. (c) A ferromagne-
tic arrangement of two types of spins, where e 0 exchanges them
as in the case of two colors. (d) A 1D version of salt. e 0 ex-
changes the chemical identities of the two atomic species. (e) A
function f(x) whose overall sign changes by application of the
operation e 0.
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Indeed, 1d quantum magnets w/ spin-rot = 𝑆𝑂 3 or ℤ/×ℤ/ and 
time-rev-transl = ℤ(0120) symm must be non-featureless

Chiral Lieb-Schultz-Mattis theorem
under antiunitary translations and inversions

(Dated: December 21, 2021)

We study quantum many-body systems with spin-rotation symmetries and an exotic antiunitary
translation or inversion symmetry formed from time reversal and concentrate on a class of chiral
spin models of which the gaplessness cannot be understood by earlier works. Based on a symmetry-
twisting method and spectrum robustness, we propose that the half-integer spin systems respecting
these symmetries must either be gapless or possess degenerate ground states. We also relate this
ingappability to the quantum anomaly, and the anomaly-matching argument resolves the puzzling
criticality stability and the universality class of the chiral spin models. By the anomaly argument, we
also claim that the antiunitary inversion symmetry alone is su�cient to ensure the ingappability even
though the spin-rotation symmetry is completely broken. Furthermore, we apply our ingappability
and stability analyses to several hybridized Hamiltonian to obtain nontrivial constraints on the
possible phase diagram.
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Introduction.— Understanding and identifying vari-
ous phases and the transitions among them is an es-
sential topic in condensed matter and quantum many-
body physics. As a notable and useful concept, the
Lieb-Schultz-Mattis (LSM) theorem [1] and its gener-
alizations [2–5] impose general constraints on quantum
phases by the notion of ingappabilities — under a U(1)
symmetry and lattice translations with a fractional fill-
ing, the system must either be gapless or possess degen-
erate ground states. The theorem is recently extended
to the systems with richer symmetries, e.g., SO(3) spin-
rotation and SU(N) symmetry [2, 6–8] or even its discrete
subgroup [9–14]. Moreover, the translation symmetry is
also found to be not necessary for the ingappability if the
system respects a lattice inversion symmetry [11–13, 15–
17]. These ingappabilities are also related to quantum
anomaly in field theories and boundaries of topological
phases [7, 16, 18].
The LSM theorem and its extensions manifest the sta-

bility of critical phases observed in experiments and nu-
merical calculations due to the ingappabilities [6, 8]. Nev-
ertheless, there is a large class of critical systems with-
out the conventional LSM-type ingappability. The re-
cent iDMRG study [19] indicates the criticality of a class
of time-reversal breaking spin-1/2 ladders called chiral
triple-product spin model [19–21] with integer spin num-
bers per unit cell — such a gaplessness cannot be un-
derstood by the existing LSM-type theorems by lattice
translations/inversions. Furthermore, their universality
class is of SU(2) level-1, of which the stability is unex-
pected by the earlier argument that also generically does
not exclude an even level in case of integer spins per
unit cell [6, 8]. Moreover, the internal symmetries, such
as spin-rotation symmetries, are essential in the LSM-
type arguments. However, in the presence of a strong
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ous phases and the transitions among them is an es-
sential topic in condensed matter and quantum many-
body physics. As a notable and useful concept, the
Lieb-Schultz-Mattis (LSM) theorem [1] and its gener-
alizations [2–5] impose general constraints on quantum
phases by the notion of ingappabilities — under a U(1)
symmetry and lattice translations with a fractional fill-
ing, the system must either be gapless or possess degen-
erate ground states. The theorem is recently extended
to the systems with richer symmetries, e.g., SO(3) spin-
rotation and SU(N) symmetry [2, 6–8] or even its discrete
subgroup [9–14]. Moreover, the translation symmetry is
also found to be not necessary for the ingappability if the
system respects a lattice inversion symmetry [11–13, 15–
17]. These ingappabilities are also related to quantum
anomaly in field theories and boundaries of topological
phases [7, 16, 18].
The LSM theorem and its extensions manifest the sta-

bility of critical phases observed in experiments and nu-
merical calculations due to the ingappabilities [6, 8]. Nev-
ertheless, there is a large class of critical systems with-
out the conventional LSM-type ingappability. The re-
cent iDMRG study [19] indicates the criticality of a class
of time-reversal breaking spin-1/2 ladders called chiral
triple-product spin model [19–21] with integer spin num-
bers per unit cell — such a gaplessness cannot be un-
derstood by the existing LSM-type theorems by lattice
translations/inversions. Furthermore, their universality
class is of SU(2) level-1, of which the stability is unex-
pected by the earlier argument that also generically does
not exclude an even level in case of integer spins per
unit cell [6, 8]. Moreover, the internal symmetries, such
as spin-rotation symmetries, are essential in the LSM-
type arguments. However, in the presence of a strong
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Introduction

Magnetic groups – also known as antisymmetry
groups, Shubnikov groups, Heesch groups, Opechow-
ski–Guccione (OG) groups, as well as dichromatic,
2-color, or simply black-and-white groups – are the
simplest extension to standard point group and space
group theory. They allow directly to describe, clas-
sify, and study the consequences of the symmetry of
crystals, characterized by having a certain property,
associated with each crystal site, that can take one of
two possible values. This is done by introducing a
single external operation of order two that inter-
changes the two possible values everywhere through-
out the crystal. This operation can be applied to the
crystal along with any of the standard point group
or space group operations, and is denoted by adding
a prime to the original operation. Thus, any rota-
tion g followed by this external operation is denoted
by g0.

To start with, a few typical examples of this two-
valued property are given, some of which are illus-
trated in Figure 1. In the section ‘‘Magnetic point
groups’’ the notion of a magnetic point group is dis-
cussed, followed by a discussion on magnetic space
groups in the section ‘‘Magnetic space groups’’. The
section ‘‘Extinctions in neutron diffraction of anti-
ferromagnetic crystals’’ describes one of the most

(a)

(b)

(c)

(d)

(e)

ClNa Na Na Na Na NaCl Cl Cl Cl Cl

Figure 1 Several realizations of the simple 1D magnetic space
group pp!1. Note that the number of symmetry translations is
doubled if one introduces an operation e 0 that interchanges the
two possible values of the property, associated with each crystal
site. Also note that spatial inversion !1 can be performed without a
prime on each crystal site, and with a prime ð!10Þ between every
two sites. (a) An abstract representation of the two possible val-
ues as the two colors – black and white. The operation e 0 is the
nontrivial permutation of the two colors. (b) A simple antifer-
romagnetic arrangement of spins. The operation e 0 is time
inversion which reverses the signs of the spins. (c) A ferromagne-
tic arrangement of two types of spins, where e 0 exchanges them
as in the case of two colors. (d) A 1D version of salt. e 0 ex-
changes the chemical identities of the two atomic species. (e) A
function f(x) whose overall sign changes by application of the
operation e 0.
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Claim: H, w/ half-integer s per site, has a doubly degenerate 
spectrum under the following twisted BC:
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cussed, followed by a discussion on magnetic space
groups in the section ‘‘Magnetic space groups’’. The
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group pp!1. Note that the number of symmetry translations is
doubled if one introduces an operation e 0 that interchanges the
two possible values of the property, associated with each crystal
site. Also note that spatial inversion !1 can be performed without a
prime on each crystal site, and with a prime ð!10Þ between every
two sites. (a) An abstract representation of the two possible val-
ues as the two colors – black and white. The operation e 0 is the
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U(R⇡
n̂)U(R⇡

n̂) = e2i⇡Sn = (�1)2s = (�1)2sU( )

U(T ) = ei⇡SyK, K : complex conj (13)

U(T )U(T ) = e2i⇡Sy = (�1)2s = (�1)2sU( )

!(h, k)!(g, hk) = !(g, h)!(gh, k) (14)

U(g) ! �(g)U(g) (15)

!(g, h) ! �(gh)�(g)�1�(h)�1!(g, h) (16)

Z2 ⇥ Z2 : R⇡
x = exp(i⇡

X

r

Sx
r ); R⇡

z = exp(i⇡
X

r

Sz
r )

Z(Tr·T ) : A ⌘ Tr · T, A~SrA
�1 = �~Sr+1; AiA�1 = �i

~Sr+L = R⇡
x
~Sr(R

⇡
x)

�1
⌘ ~̃Sr, L 2 2Z (17)

HPBC = J
L�1X

r=0

(�1)r ~Sr · (~Sr+1 ⇥
~Sr+2)

(18)

HTBC = J
L�3X

r=0

(�1)r ~Sr · (~Sr+1 ⇥
~Sr+2)

+ ~SL�2 · (~SL�1 ⇥
~̃S0)� ~SL�1 · ( ~̃S0 ⇥

~̃S1)

[A0, HTBC] = 0, A0R⇡
z = (�1)2sR⇡

zA
0 (19)

Introduction.— Understanding and identifying vari-
ous phases and the transitions among them is an es-
sential topic in condensed matter and quantum many-
body physics. As a notable and useful concept, the
Lieb-Schultz-Mattis (LSM) theorem [1] and its gener-
alizations [2–5] impose general constraints on quantum
phases by the notion of ingappabilities — under a U(1)
symmetry and lattice translations with a fractional fill-
ing, the system must either be gapless or possess degen-
erate ground states. The theorem is recently extended
to the systems with richer symmetries, e.g., SO(3) spin-
rotation and SU(N) symmetry [2, 6–8] or even its discrete
subgroup [9–14]. Moreover, the translation symmetry is
also found to be not necessary for the ingappability if the
system respects a lattice inversion symmetry [11–13, 15–
17]. These ingappabilities are also related to quantum
anomaly in field theories and boundaries of topological
phases [7, 16, 18].
The LSM theorem and its extensions manifest the sta-

bility of critical phases observed in experiments and nu-
merical calculations due to the ingappabilities [6, 8]. Nev-
ertheless, there is a large class of critical systems with-
out the conventional LSM-type ingappability. The re-
cent iDMRG study [19] indicates the criticality of a class
of time-reversal breaking spin-1/2 ladders called chiral
triple-product spin model [19–21] with integer spin num-
bers per unit cell — such a gaplessness cannot be un-
derstood by the existing LSM-type theorems by lattice
translations/inversions. Furthermore, their universality
class is of SU(2) level-1, of which the stability is unex-
pected by the earlier argument that also generically does
not exclude an even level in case of integer spins per
unit cell [6, 8]. Moreover, the internal symmetries, such
as spin-rotation symmetries, are essential in the LSM-
type arguments. However, in the presence of a strong
anisotropy which even breaks any discrete spin-rotation
symmetry, the critical phases are still numerically ob-
served when including staggered Dzyaloshinskii-Moriya
(DM) interactions [22–27]. Thus, the role of symmetries
in these criticalities remains unknown and it is important
in widening the application of LSM-type ingappabilities
on quantum criticalities.
In this Letter, we extend LSM-type ingappabilities to

such systems with integer filling per unit cell or inver-
sion center — without conventional LSM ingappability
— by considering antiunitary lattice translation and in-
version symmetries. As typical examples, we first con-
centrate on a class of chiral triple-product spin chains,
in which “chiral” means that the time reversal is bro-
ken. These triple-spin interactions naturally take place in
the third-order perturbation theory of half-filled spinful
Hubbard model [19, 21]. By combining the broken time
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Chiral Lieb-Schultz-Mattis theorem
under antiunitary translations and inversions

(Dated: December 21, 2021)

We study quantum many-body systems with spin-rotation symmetries and an exotic antiunitary
translation or inversion symmetry formed from time reversal and concentrate on a class of chiral
spin models of which the gaplessness cannot be understood by earlier works. Based on a symmetry-
twisting method and spectrum robustness, we propose that the half-integer spin systems respecting
these symmetries must either be gapless or possess degenerate ground states. We also relate this
ingappability to the quantum anomaly, and the anomaly-matching argument resolves the puzzling
criticality stability and the universality class of the chiral spin models. By the anomaly argument, we
also claim that the antiunitary inversion symmetry alone is su�cient to ensure the ingappability even
though the spin-rotation symmetry is completely broken. Furthermore, we apply our ingappability
and stability analyses to several hybridized Hamiltonian to obtain nontrivial constraints on the
possible phase diagram.
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Introduction.— Understanding and identifying vari-
ous phases and the transitions among them is an es-
sential topic in condensed matter and quantum many-
body physics. As a notable and useful concept, the
Lieb-Schultz-Mattis (LSM) theorem [1] and its gener-
alizations [2–5] impose general constraints on quantum
phases by the notion of ingappabilities — under a U(1)
symmetry and lattice translations with a fractional fill-
ing, the system must either be gapless or possess degen-
erate ground states. The theorem is recently extended
to the systems with richer symmetries, e.g., SO(3) spin-
rotation and SU(N) symmetry [2, 6–8] or even its discrete
subgroup [9–14]. Moreover, the translation symmetry is
also found to be not necessary for the ingappability if the
system respects a lattice inversion symmetry [11–13, 15–
17]. These ingappabilities are also related to quantum
anomaly in field theories and boundaries of topological
phases [7, 16, 18].

Chiral Lieb-Schultz-Mattis theorem
under antiunitary translations and inversions

(Dated: December 21, 2021)

We study quantum many-body systems with spin-rotation symmetries and an exotic antiunitary
translation or inversion symmetry formed from time reversal and concentrate on a class of chiral
spin models of which the gaplessness cannot be understood by earlier works. Based on a symmetry-
twisting method and spectrum robustness, we propose that the half-integer spin systems respecting
these symmetries must either be gapless or possess degenerate ground states. We also relate this
ingappability to the quantum anomaly, and the anomaly-matching argument resolves the puzzling
criticality stability and the universality class of the chiral spin models. By the anomaly argument, we
also claim that the antiunitary inversion symmetry alone is su�cient to ensure the ingappability even
though the spin-rotation symmetry is completely broken. Furthermore, we apply our ingappability
and stability analyses to several hybridized Hamiltonian to obtain nontrivial constraints on the
possible phase diagram.

U(gh) = !(g, h)U(g)U(h), g, h 2 G (1)

!(g, h) = e
i�(g,h) (2)

U(n̂, ✓) = e
i✓n̂·~S (3)

U(n̂, ✓)U(n̂, 2⇡ � ✓) = e
2⇡in̂·~S = (�1)s = (�1)sU(n̂, 2⇡)

U(R⇡
n̂) = e

i⇡Sn , n̂ = x̂, ẑ (4)
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Introduction.— Understanding and identifying vari-
ous phases and the transitions among them is an es-
sential topic in condensed matter and quantum many-
body physics. As a notable and useful concept, the Lieb-
Schultz-Mattis (LSM) theorem [? ] and its generaliza-
tions [? ? ? ? ] impose general constraints on quantum
phases by the notion of ingappabilities — under a U(1)
symmetry and lattice translations with a fractional fill-
ing, the system must either be gapless or possess degen-
erate ground states. The theorem is recently extended
to the systems with richer symmetries, e.g., SO(3) spin-
rotation and SU(N) symmetry [? ? ? ? ] or even
its discrete subgroup [? ? ? ? ? ? ]. Moreover, the
translation symmetry is also found to be not necessary
for the ingappability if the system respects a lattice in-
version symmetry [? ? ? ? ? ? ]. These ingappabilities
are also related to quantum anomaly in field theories and
boundaries of topological phases [? ? ? ].
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Introduction.— Understanding and identifying vari-
ous phases and the transitions among them is an es-
sential topic in condensed matter and quantum many-
body physics. As a notable and useful concept, the
Lieb-Schultz-Mattis (LSM) theorem [1] and its gener-
alizations [2–5] impose general constraints on quantum
phases by the notion of ingappabilities — under a U(1)
symmetry and lattice translations with a fractional fill-
ing, the system must either be gapless or possess degen-
erate ground states. The theorem is recently extended
to the systems with richer symmetries, e.g., SO(3) spin-
rotation and SU(N) symmetry [2, 6–8] or even its discrete
subgroup [9–14]. Moreover, the translation symmetry is
also found to be not necessary for the ingappability if the
system respects a lattice inversion symmetry [11–13, 15–
17]. These ingappabilities are also related to quantum
anomaly in field theories and boundaries of topological
phases [7, 16, 18].
The LSM theorem and its extensions manifest the sta-

bility of critical phases observed in experiments and nu-
merical calculations due to the ingappabilities [6, 8]. Nev-
ertheless, there is a large class of critical systems with-
out the conventional LSM-type ingappability. The re-
cent iDMRG study [19] indicates the criticality of a class
of time-reversal breaking spin-1/2 ladders called chiral
triple-product spin model [19–21] with integer spin num-
bers per unit cell — such a gaplessness cannot be un-
derstood by the existing LSM-type theorems by lattice
translations/inversions. Furthermore, their universality
class is of SU(2) level-1, of which the stability is unex-
pected by the earlier argument that also generically does
not exclude an even level in case of integer spins per
unit cell [6, 8]. Moreover, the internal symmetries, such
as spin-rotation symmetries, are essential in the LSM-
type arguments. However, in the presence of a strong
anisotropy which even breaks any discrete spin-rotation
symmetry, the critical phases are still numerically ob-
served when including staggered Dzyaloshinskii-Moriya
(DM) interactions [22–27]. Thus, the role of symmetries
in these criticalities remains unknown and it is important
in widening the application of LSM-type ingappabilities
on quantum criticalities.
In this Letter, we extend LSM-type ingappabilities to

such systems with integer filling per unit cell or inver-
sion center — without conventional LSM ingappability
— by considering antiunitary lattice translation and in-
version symmetries. As typical examples, we first con-
centrate on a class of chiral triple-product spin chains,
in which “chiral” means that the time reversal is bro-
ken. These triple-spin interactions naturally take place in
the third-order perturbation theory of half-filled spinful
Hubbard model [19, 21]. By combining the broken time
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Claim: H, w/ half-integer s per site, has a doubly degenerate 
spectrum under the following twisted BC:

gJ Landé factor
Happ applied magnetic field (vector)
Happ applied magnetic field (magnitude)
Hm molecular field
J exchange integral
J total angular momentum
k0 propagation vector
l orbital quantum number
l orbital momentum
L orbital momentum
L Langevin function
m magnetic quantum number
m0 measured magnetic moment at 0K
m magnetic moment
ml orbital moment
ms spin moment
mz projection of m along Happ

M magnetization
Ms spontaneous magnetization

Ms,0 magnetization at absolute saturation
n molecular field coefficient
N number of moments per unit volume
ND demagnetizing field coefficient
NT total number of moments
S spin or spin angular momentum
T temperature
Tc critical temperature
TC Curie temperature
TN Néel temperature
vat atom volume
x argument of the Langevin or Brillouin

function
z number of first neighbors
w magnetic susceptibility
mB Bohr magneton
meff effective moment
m0 permittivity of vacuum
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Introduction

Magnetic groups – also known as antisymmetry
groups, Shubnikov groups, Heesch groups, Opechow-
ski–Guccione (OG) groups, as well as dichromatic,
2-color, or simply black-and-white groups – are the
simplest extension to standard point group and space
group theory. They allow directly to describe, clas-
sify, and study the consequences of the symmetry of
crystals, characterized by having a certain property,
associated with each crystal site, that can take one of
two possible values. This is done by introducing a
single external operation of order two that inter-
changes the two possible values everywhere through-
out the crystal. This operation can be applied to the
crystal along with any of the standard point group
or space group operations, and is denoted by adding
a prime to the original operation. Thus, any rota-
tion g followed by this external operation is denoted
by g0.

To start with, a few typical examples of this two-
valued property are given, some of which are illus-
trated in Figure 1. In the section ‘‘Magnetic point
groups’’ the notion of a magnetic point group is dis-
cussed, followed by a discussion on magnetic space
groups in the section ‘‘Magnetic space groups’’. The
section ‘‘Extinctions in neutron diffraction of anti-
ferromagnetic crystals’’ describes one of the most

(a)

(b)

(c)

(d)

(e)

ClNa Na Na Na Na NaCl Cl Cl Cl Cl

Figure 1 Several realizations of the simple 1D magnetic space
group pp!1. Note that the number of symmetry translations is
doubled if one introduces an operation e 0 that interchanges the
two possible values of the property, associated with each crystal
site. Also note that spatial inversion !1 can be performed without a
prime on each crystal site, and with a prime ð!10Þ between every
two sites. (a) An abstract representation of the two possible val-
ues as the two colors – black and white. The operation e 0 is the
nontrivial permutation of the two colors. (b) A simple antifer-
romagnetic arrangement of spins. The operation e 0 is time
inversion which reverses the signs of the spins. (c) A ferromagne-
tic arrangement of two types of spins, where e 0 exchanges them
as in the case of two colors. (d) A 1D version of salt. e 0 ex-
changes the chemical identities of the two atomic species. (e) A
function f(x) whose overall sign changes by application of the
operation e 0.
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Chiral Lieb-Schultz-Mattis theorem
under antiunitary translations and inversions

(Dated: December 21, 2021)

We study quantum many-body systems with spin-rotation symmetries and an exotic antiunitary
translation or inversion symmetry formed from time reversal and concentrate on a class of chiral
spin models of which the gaplessness cannot be understood by earlier works. Based on a symmetry-
twisting method and spectrum robustness, we propose that the half-integer spin systems respecting
these symmetries must either be gapless or possess degenerate ground states. We also relate this
ingappability to the quantum anomaly, and the anomaly-matching argument resolves the puzzling
criticality stability and the universality class of the chiral spin models. By the anomaly argument, we
also claim that the antiunitary inversion symmetry alone is su�cient to ensure the ingappability even
though the spin-rotation symmetry is completely broken. Furthermore, we apply our ingappability
and stability analyses to several hybridized Hamiltonian to obtain nontrivial constraints on the
possible phase diagram.
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Introduction.— Understanding and identifying vari-
ous phases and the transitions among them is an es-
sential topic in condensed matter and quantum many-
body physics. As a notable and useful concept, the
Lieb-Schultz-Mattis (LSM) theorem [1] and its gener-
alizations [2–5] impose general constraints on quantum
phases by the notion of ingappabilities — under a U(1)
symmetry and lattice translations with a fractional fill-
ing, the system must either be gapless or possess degen-
erate ground states. The theorem is recently extended
to the systems with richer symmetries, e.g., SO(3) spin-
rotation and SU(N) symmetry [2, 6–8] or even its discrete
subgroup [9–14]. Moreover, the translation symmetry is
also found to be not necessary for the ingappability if the
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Introduction.— Understanding and identifying vari-
ous phases and the transitions among them is an es-
sential topic in condensed matter and quantum many-
body physics. As a notable and useful concept, the
Lieb-Schultz-Mattis (LSM) theorem [1] and its gener-
alizations [2–5] impose general constraints on quantum
phases by the notion of ingappabilities — under a U(1)
symmetry and lattice translations with a fractional fill-
ing, the system must either be gapless or possess degen-
erate ground states. The theorem is recently extended
to the systems with richer symmetries, e.g., SO(3) spin-
rotation and SU(N) symmetry [2, 6–8] or even its discrete
subgroup [9–14]. Moreover, the translation symmetry is
also found to be not necessary for the ingappability if the
system respects a lattice inversion symmetry [11–13, 15–
17]. These ingappabilities are also related to quantum
anomaly in field theories and boundaries of topological
phases [7, 16, 18].
The LSM theorem and its extensions manifest the sta-

bility of critical phases observed in experiments and nu-
merical calculations due to the ingappabilities [6, 8]. Nev-
ertheless, there is a large class of critical systems with-
out the conventional LSM-type ingappability. The re-
cent iDMRG study [19] indicates the criticality of a class
of time-reversal breaking spin-1/2 ladders called chiral
triple-product spin model [19–21] with integer spin num-
bers per unit cell — such a gaplessness cannot be un-
derstood by the existing LSM-type theorems by lattice
translations/inversions. Furthermore, their universality
class is of SU(2) level-1, of which the stability is unex-
pected by the earlier argument that also generically does
not exclude an even level in case of integer spins per
unit cell [6, 8]. Moreover, the internal symmetries, such
as spin-rotation symmetries, are essential in the LSM-
type arguments. However, in the presence of a strong
anisotropy which even breaks any discrete spin-rotation
symmetry, the critical phases are still numerically ob-
served when including staggered Dzyaloshinskii-Moriya
(DM) interactions [22–27]. Thus, the role of symmetries
in these criticalities remains unknown and it is important
in widening the application of LSM-type ingappabilities
on quantum criticalities.
In this Letter, we extend LSM-type ingappabilities to

such systems with integer filling per unit cell or inver-
sion center — without conventional LSM ingappability
— by considering antiunitary lattice translation and in-
version symmetries. As typical examples, we first con-
centrate on a class of chiral triple-product spin chains,
in which “chiral” means that the time reversal is bro-
ken. These triple-spin interactions naturally take place in
the third-order perturbation theory of half-filled spinful
Hubbard model [19, 21]. By combining the broken time
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ms spin moment
mz projection of m along Happ

M magnetization
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N number of moments per unit volume
ND demagnetizing field coefficient
NT total number of moments
S spin or spin angular momentum
T temperature
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Introduction

Magnetic groups – also known as antisymmetry
groups, Shubnikov groups, Heesch groups, Opechow-
ski–Guccione (OG) groups, as well as dichromatic,
2-color, or simply black-and-white groups – are the
simplest extension to standard point group and space
group theory. They allow directly to describe, clas-
sify, and study the consequences of the symmetry of
crystals, characterized by having a certain property,
associated with each crystal site, that can take one of
two possible values. This is done by introducing a
single external operation of order two that inter-
changes the two possible values everywhere through-
out the crystal. This operation can be applied to the
crystal along with any of the standard point group
or space group operations, and is denoted by adding
a prime to the original operation. Thus, any rota-
tion g followed by this external operation is denoted
by g0.

To start with, a few typical examples of this two-
valued property are given, some of which are illus-
trated in Figure 1. In the section ‘‘Magnetic point
groups’’ the notion of a magnetic point group is dis-
cussed, followed by a discussion on magnetic space
groups in the section ‘‘Magnetic space groups’’. The
section ‘‘Extinctions in neutron diffraction of anti-
ferromagnetic crystals’’ describes one of the most

(a)

(b)

(c)

(d)

(e)

ClNa Na Na Na Na NaCl Cl Cl Cl Cl

Figure 1 Several realizations of the simple 1D magnetic space
group pp!1. Note that the number of symmetry translations is
doubled if one introduces an operation e 0 that interchanges the
two possible values of the property, associated with each crystal
site. Also note that spatial inversion !1 can be performed without a
prime on each crystal site, and with a prime ð!10Þ between every
two sites. (a) An abstract representation of the two possible val-
ues as the two colors – black and white. The operation e 0 is the
nontrivial permutation of the two colors. (b) A simple antifer-
romagnetic arrangement of spins. The operation e 0 is time
inversion which reverses the signs of the spins. (c) A ferromagne-
tic arrangement of two types of spins, where e 0 exchanges them
as in the case of two colors. (d) A 1D version of salt. e 0 ex-
changes the chemical identities of the two atomic species. (e) A
function f(x) whose overall sign changes by application of the
operation e 0.
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Chiral Lieb-Schultz-Mattis theorem
under antiunitary translations and inversions

(Dated: December 21, 2021)

We study quantum many-body systems with spin-rotation symmetries and an exotic antiunitary
translation or inversion symmetry formed from time reversal and concentrate on a class of chiral
spin models of which the gaplessness cannot be understood by earlier works. Based on a symmetry-
twisting method and spectrum robustness, we propose that the half-integer spin systems respecting
these symmetries must either be gapless or possess degenerate ground states. We also relate this
ingappability to the quantum anomaly, and the anomaly-matching argument resolves the puzzling
criticality stability and the universality class of the chiral spin models. By the anomaly argument, we
also claim that the antiunitary inversion symmetry alone is su�cient to ensure the ingappability even
though the spin-rotation symmetry is completely broken. Furthermore, we apply our ingappability
and stability analyses to several hybridized Hamiltonian to obtain nontrivial constraints on the
possible phase diagram.
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Introduction.— Understanding and identifying vari-
ous phases and the transitions among them is an es-
sential topic in condensed matter and quantum many-
body physics. As a notable and useful concept, the
Lieb-Schultz-Mattis (LSM) theorem [1] and its gener-
alizations [2–5] impose general constraints on quantum
phases by the notion of ingappabilities — under a U(1)
symmetry and lattice translations with a fractional fill-
ing, the system must either be gapless or possess degen-
erate ground states. The theorem is recently extended
to the systems with richer symmetries, e.g., SO(3) spin-
rotation and SU(N) symmetry [2, 6–8] or even its discrete
subgroup [9–14]. Moreover, the translation symmetry is
also found to be not necessary for the ingappability if the
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We study quantum many-body systems with spin-rotation symmetries and an exotic antiunitary
translation or inversion symmetry formed from time reversal and concentrate on a class of chiral
spin models of which the gaplessness cannot be understood by earlier works. Based on a symmetry-
twisting method and spectrum robustness, we propose that the half-integer spin systems respecting
these symmetries must either be gapless or possess degenerate ground states. We also relate this
ingappability to the quantum anomaly, and the anomaly-matching argument resolves the puzzling
criticality stability and the universality class of the chiral spin models. By the anomaly argument, we
also claim that the antiunitary inversion symmetry alone is su�cient to ensure the ingappability even
though the spin-rotation symmetry is completely broken. Furthermore, we apply our ingappability
and stability analyses to several hybridized Hamiltonian to obtain nontrivial constraints on the
possible phase diagram.
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Introduction.— Understanding and identifying vari-
ous phases and the transitions among them is an es-
sential topic in condensed matter and quantum many-
body physics. As a notable and useful concept, the
Lieb-Schultz-Mattis (LSM) theorem [1] and its gener-
alizations [2–5] impose general constraints on quantum
phases by the notion of ingappabilities — under a U(1)
symmetry and lattice translations with a fractional fill-
ing, the system must either be gapless or possess degen-
erate ground states. The theorem is recently extended
to the systems with richer symmetries, e.g., SO(3) spin-
rotation and SU(N) symmetry [2, 6–8] or even its discrete
subgroup [9–14]. Moreover, the translation symmetry is
also found to be not necessary for the ingappability if the
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U(R⇡
n̂)U(R⇡

n̂) = e2i⇡Sn = (�1)2s = (�1)2sU( )

U(T ) = ei⇡SyK, K : complex conj (13)

U(T )U(T ) = e2i⇡Sy = (�1)2s = (�1)2sU( )

!(h, k)!(g, hk) = !(g, h)!(gh, k) (14)

U(g) ! �(g)U(g) (15)

!(g, h) ! �(gh)�(g)�1�(h)�1!(g, h) (16)

Z2 ⇥ Z2 : R⇡
x = exp(i⇡

X

r

Sx
r ); R⇡

z = exp(i⇡
X

r

Sz
r )

Z(Tr·T ) : A ⌘ Tr · T, A~SrA
�1 = �~Sr+1; AiA�1 = �i

~Sr+L = R⇡
x
~Sr(R

⇡
x)

�1
⌘ ~̃Sr, L 2 2Z (17)

HPBC = J
L�1X

r=0

(�1)r ~Sr · (~Sr+1 ⇥
~Sr+2)

(18)

HTBC = J
L�3X

r=0

(�1)r ~Sr · (~Sr+1 ⇥
~Sr+2)

+ ~SL�2 · (~SL�1 ⇥
~̃S0)� ~SL�1 · ( ~̃S0 ⇥

~̃S1)

[A0, HTBC] = 0, A0R⇡
z = (�1)2sR⇡

zA
0 (19)

Introduction.— Understanding and identifying vari-
ous phases and the transitions among them is an es-
sential topic in condensed matter and quantum many-
body physics. As a notable and useful concept, the
Lieb-Schultz-Mattis (LSM) theorem [1] and its gener-
alizations [2–5] impose general constraints on quantum
phases by the notion of ingappabilities — under a U(1)
symmetry and lattice translations with a fractional fill-
ing, the system must either be gapless or possess degen-
erate ground states. The theorem is recently extended
to the systems with richer symmetries, e.g., SO(3) spin-
rotation and SU(N) symmetry [2, 6–8] or even its discrete
subgroup [9–14]. Moreover, the translation symmetry is
also found to be not necessary for the ingappability if the
system respects a lattice inversion symmetry [11–13, 15–
17]. These ingappabilities are also related to quantum
anomaly in field theories and boundaries of topological
phases [7, 16, 18].
The LSM theorem and its extensions manifest the sta-

bility of critical phases observed in experiments and nu-
merical calculations due to the ingappabilities [6, 8]. Nev-
ertheless, there is a large class of critical systems with-
out the conventional LSM-type ingappability. The re-
cent iDMRG study [19] indicates the criticality of a class
of time-reversal breaking spin-1/2 ladders called chiral
triple-product spin model [19–21] with integer spin num-
bers per unit cell — such a gaplessness cannot be un-
derstood by the existing LSM-type theorems by lattice
translations/inversions. Furthermore, their universality
class is of SU(2) level-1, of which the stability is unex-
pected by the earlier argument that also generically does
not exclude an even level in case of integer spins per
unit cell [6, 8]. Moreover, the internal symmetries, such
as spin-rotation symmetries, are essential in the LSM-
type arguments. However, in the presence of a strong
anisotropy which even breaks any discrete spin-rotation
symmetry, the critical phases are still numerically ob-
served when including staggered Dzyaloshinskii-Moriya
(DM) interactions [22–27]. Thus, the role of symmetries
in these criticalities remains unknown and it is important
in widening the application of LSM-type ingappabilities
on quantum criticalities.
In this Letter, we extend LSM-type ingappabilities to

such systems with integer filling per unit cell or inver-
sion center — without conventional LSM ingappability
— by considering antiunitary lattice translation and in-
version symmetries. As typical examples, we first con-
centrate on a class of chiral triple-product spin chains,
in which “chiral” means that the time reversal is bro-
ken. These triple-spin interactions naturally take place in
the third-order perturbation theory of half-filled spinful
Hubbard model [19, 21]. By combining the broken time
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Claim: H, w/ half-integer s per site, has a doubly degenerate 
spectrum under the following twisted BC:

gJ Landé factor
Happ applied magnetic field (vector)
Happ applied magnetic field (magnitude)
Hm molecular field
J exchange integral
J total angular momentum
k0 propagation vector
l orbital quantum number
l orbital momentum
L orbital momentum
L Langevin function
m magnetic quantum number
m0 measured magnetic moment at 0K
m magnetic moment
ml orbital moment
ms spin moment
mz projection of m along Happ

M magnetization
Ms spontaneous magnetization

Ms,0 magnetization at absolute saturation
n molecular field coefficient
N number of moments per unit volume
ND demagnetizing field coefficient
NT total number of moments
S spin or spin angular momentum
T temperature
Tc critical temperature
TC Curie temperature
TN Néel temperature
vat atom volume
x argument of the Langevin or Brillouin

function
z number of first neighbors
w magnetic susceptibility
mB Bohr magneton
meff effective moment
m0 permittivity of vacuum

Magnetic Point Groups and Space Groups
R Lifshitz, Tel Aviv University, Tel Aviv, Israel

& 2005, Elsevier Ltd. All Rights Reserved.

Introduction

Magnetic groups – also known as antisymmetry
groups, Shubnikov groups, Heesch groups, Opechow-
ski–Guccione (OG) groups, as well as dichromatic,
2-color, or simply black-and-white groups – are the
simplest extension to standard point group and space
group theory. They allow directly to describe, clas-
sify, and study the consequences of the symmetry of
crystals, characterized by having a certain property,
associated with each crystal site, that can take one of
two possible values. This is done by introducing a
single external operation of order two that inter-
changes the two possible values everywhere through-
out the crystal. This operation can be applied to the
crystal along with any of the standard point group
or space group operations, and is denoted by adding
a prime to the original operation. Thus, any rota-
tion g followed by this external operation is denoted
by g0.

To start with, a few typical examples of this two-
valued property are given, some of which are illus-
trated in Figure 1. In the section ‘‘Magnetic point
groups’’ the notion of a magnetic point group is dis-
cussed, followed by a discussion on magnetic space
groups in the section ‘‘Magnetic space groups’’. The
section ‘‘Extinctions in neutron diffraction of anti-
ferromagnetic crystals’’ describes one of the most

(a)

(b)

(c)

(d)

(e)

ClNa Na Na Na Na NaCl Cl Cl Cl Cl

Figure 1 Several realizations of the simple 1D magnetic space
group pp!1. Note that the number of symmetry translations is
doubled if one introduces an operation e 0 that interchanges the
two possible values of the property, associated with each crystal
site. Also note that spatial inversion !1 can be performed without a
prime on each crystal site, and with a prime ð!10Þ between every
two sites. (a) An abstract representation of the two possible val-
ues as the two colors – black and white. The operation e 0 is the
nontrivial permutation of the two colors. (b) A simple antifer-
romagnetic arrangement of spins. The operation e 0 is time
inversion which reverses the signs of the spins. (c) A ferromagne-
tic arrangement of two types of spins, where e 0 exchanges them
as in the case of two colors. (d) A 1D version of salt. e 0 ex-
changes the chemical identities of the two atomic species. (e) A
function f(x) whose overall sign changes by application of the
operation e 0.
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We study quantum many-body systems with spin-rotation symmetries and an exotic antiunitary
translation or inversion symmetry formed from time reversal and concentrate on a class of chiral
spin models of which the gaplessness cannot be understood by earlier works. Based on a symmetry-
twisting method and spectrum robustness, we propose that the half-integer spin systems respecting
these symmetries must either be gapless or possess degenerate ground states. We also relate this
ingappability to the quantum anomaly, and the anomaly-matching argument resolves the puzzling
criticality stability and the universality class of the chiral spin models. By the anomaly argument, we
also claim that the antiunitary inversion symmetry alone is su�cient to ensure the ingappability even
though the spin-rotation symmetry is completely broken. Furthermore, we apply our ingappability
and stability analyses to several hybridized Hamiltonian to obtain nontrivial constraints on the
possible phase diagram.
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Introduction.— Understanding and identifying vari-
ous phases and the transitions among them is an es-
sential topic in condensed matter and quantum many-
body physics. As a notable and useful concept, the
Lieb-Schultz-Mattis (LSM) theorem [1] and its gener-
alizations [2–5] impose general constraints on quantum
phases by the notion of ingappabilities — under a U(1)
symmetry and lattice translations with a fractional fill-
ing, the system must either be gapless or possess degen-
erate ground states. The theorem is recently extended
to the systems with richer symmetries, e.g., SO(3) spin-
rotation and SU(N) symmetry [2, 6–8] or even its discrete
subgroup [9–14]. Moreover, the translation symmetry is
also found to be not necessary for the ingappability if the
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translation or inversion symmetry formed from time reversal and concentrate on a class of chiral
spin models of which the gaplessness cannot be understood by earlier works. Based on a symmetry-
twisting method and spectrum robustness, we propose that the half-integer spin systems respecting
these symmetries must either be gapless or possess degenerate ground states. We also relate this
ingappability to the quantum anomaly, and the anomaly-matching argument resolves the puzzling
criticality stability and the universality class of the chiral spin models. By the anomaly argument, we
also claim that the antiunitary inversion symmetry alone is su�cient to ensure the ingappability even
though the spin-rotation symmetry is completely broken. Furthermore, we apply our ingappability
and stability analyses to several hybridized Hamiltonian to obtain nontrivial constraints on the
possible phase diagram.
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Lieb-Schultz-Mattis (LSM) theorem [1] and its gener-
alizations [2–5] impose general constraints on quantum
phases by the notion of ingappabilities — under a U(1)
symmetry and lattice translations with a fractional fill-
ing, the system must either be gapless or possess degen-
erate ground states. The theorem is recently extended
to the systems with richer symmetries, e.g., SO(3) spin-
rotation and SU(N) symmetry [2, 6–8] or even its discrete
subgroup [9–14]. Moreover, the translation symmetry is
also found to be not necessary for the ingappability if the
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Introduction.— Understanding and identifying vari-
ous phases and the transitions among them is an es-
sential topic in condensed matter and quantum many-
body physics. As a notable and useful concept, the
Lieb-Schultz-Mattis (LSM) theorem [1] and its gener-
alizations [2–5] impose general constraints on quantum
phases by the notion of ingappabilities — under a U(1)
symmetry and lattice translations with a fractional fill-
ing, the system must either be gapless or possess degen-
erate ground states. The theorem is recently extended
to the systems with richer symmetries, e.g., SO(3) spin-
rotation and SU(N) symmetry [2, 6–8] or even its discrete
subgroup [9–14]. Moreover, the translation symmetry is
also found to be not necessary for the ingappability if the
system respects a lattice inversion symmetry [11–13, 15–
17]. These ingappabilities are also related to quantum
anomaly in field theories and boundaries of topological
phases [7, 16, 18].
The LSM theorem and its extensions manifest the sta-

bility of critical phases observed in experiments and nu-
merical calculations due to the ingappabilities [6, 8]. Nev-
ertheless, there is a large class of critical systems with-
out the conventional LSM-type ingappability. The re-
cent iDMRG study [19] indicates the criticality of a class
of time-reversal breaking spin-1/2 ladders called chiral
triple-product spin model [19–21] with integer spin num-
bers per unit cell — such a gaplessness cannot be un-
derstood by the existing LSM-type theorems by lattice
translations/inversions. Furthermore, their universality
class is of SU(2) level-1, of which the stability is unex-
pected by the earlier argument that also generically does
not exclude an even level in case of integer spins per
unit cell [6, 8]. Moreover, the internal symmetries, such
as spin-rotation symmetries, are essential in the LSM-
type arguments. However, in the presence of a strong
anisotropy which even breaks any discrete spin-rotation
symmetry, the critical phases are still numerically ob-
served when including staggered Dzyaloshinskii-Moriya
(DM) interactions [22–27]. Thus, the role of symmetries
in these criticalities remains unknown and it is important
in widening the application of LSM-type ingappabilities
on quantum criticalities.
In this Letter, we extend LSM-type ingappabilities to

such systems with integer filling per unit cell or inver-
sion center — without conventional LSM ingappability
— by considering antiunitary lattice translation and in-
version symmetries. As typical examples, we first con-
centrate on a class of chiral triple-product spin chains,
in which “chiral” means that the time reversal is bro-
ken. These triple-spin interactions naturally take place in
the third-order perturbation theory of half-filled spinful
Hubbard model [19, 21]. By combining the broken time
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gJ Landé factor
Happ applied magnetic field (vector)
Happ applied magnetic field (magnitude)
Hm molecular field
J exchange integral
J total angular momentum
k0 propagation vector
l orbital quantum number
l orbital momentum
L orbital momentum
L Langevin function
m magnetic quantum number
m0 measured magnetic moment at 0K
m magnetic moment
ml orbital moment
ms spin moment
mz projection of m along Happ

M magnetization
Ms spontaneous magnetization

Ms,0 magnetization at absolute saturation
n molecular field coefficient
N number of moments per unit volume
ND demagnetizing field coefficient
NT total number of moments
S spin or spin angular momentum
T temperature
Tc critical temperature
TC Curie temperature
TN Néel temperature
vat atom volume
x argument of the Langevin or Brillouin

function
z number of first neighbors
w magnetic susceptibility
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meff effective moment
m0 permittivity of vacuum
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Introduction

Magnetic groups – also known as antisymmetry
groups, Shubnikov groups, Heesch groups, Opechow-
ski–Guccione (OG) groups, as well as dichromatic,
2-color, or simply black-and-white groups – are the
simplest extension to standard point group and space
group theory. They allow directly to describe, clas-
sify, and study the consequences of the symmetry of
crystals, characterized by having a certain property,
associated with each crystal site, that can take one of
two possible values. This is done by introducing a
single external operation of order two that inter-
changes the two possible values everywhere through-
out the crystal. This operation can be applied to the
crystal along with any of the standard point group
or space group operations, and is denoted by adding
a prime to the original operation. Thus, any rota-
tion g followed by this external operation is denoted
by g0.

To start with, a few typical examples of this two-
valued property are given, some of which are illus-
trated in Figure 1. In the section ‘‘Magnetic point
groups’’ the notion of a magnetic point group is dis-
cussed, followed by a discussion on magnetic space
groups in the section ‘‘Magnetic space groups’’. The
section ‘‘Extinctions in neutron diffraction of anti-
ferromagnetic crystals’’ describes one of the most

(a)

(b)

(c)

(d)

(e)

ClNa Na Na Na Na NaCl Cl Cl Cl Cl

Figure 1 Several realizations of the simple 1D magnetic space
group pp!1. Note that the number of symmetry translations is
doubled if one introduces an operation e 0 that interchanges the
two possible values of the property, associated with each crystal
site. Also note that spatial inversion !1 can be performed without a
prime on each crystal site, and with a prime ð!10Þ between every
two sites. (a) An abstract representation of the two possible val-
ues as the two colors – black and white. The operation e 0 is the
nontrivial permutation of the two colors. (b) A simple antifer-
romagnetic arrangement of spins. The operation e 0 is time
inversion which reverses the signs of the spins. (c) A ferromagne-
tic arrangement of two types of spins, where e 0 exchanges them
as in the case of two colors. (d) A 1D version of salt. e 0 ex-
changes the chemical identities of the two atomic species. (e) A
function f(x) whose overall sign changes by application of the
operation e 0.
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• Spectrum robustness: 
𝐻612 has a unique gapped GS ó 𝐻012 has a unique gapped GS 

[Watanabe (’18); Yao-Oshikawa (’20)]
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Introduction.— Understanding and identifying vari-
ous phases and the transitions among them is an es-
sential topic in condensed matter and quantum many-
body physics. As a notable and useful concept, the
Lieb-Schultz-Mattis (LSM) theorem [1] and its gener-
alizations [2–5] impose general constraints on quantum
phases by the notion of ingappabilities — under a U(1)
symmetry and lattice translations with a fractional fill-
ing, the system must either be gapless or possess degen-
erate ground states. The theorem is recently extended
to the systems with richer symmetries, e.g., SO(3) spin-
rotation and SU(N) symmetry [2, 6–8] or even its discrete
subgroup [9–14]. Moreover, the translation symmetry is
also found to be not necessary for the ingappability if the
system respects a lattice inversion symmetry [11–13, 15–
17]. These ingappabilities are also related to quantum
anomaly in field theories and boundaries of topological
phases [7, 16, 18].
The LSM theorem and its extensions manifest the sta-

bility of critical phases observed in experiments and nu-
merical calculations due to the ingappabilities [6, 8]. Nev-
ertheless, there is a large class of critical systems with-
out the conventional LSM-type ingappability. The re-
cent iDMRG study [19] indicates the criticality of a class
of time-reversal breaking spin-1/2 ladders called chiral
triple-product spin model [19–21] with integer spin num-
bers per unit cell — such a gaplessness cannot be un-
derstood by the existing LSM-type theorems by lattice
translations/inversions. Furthermore, their universality
class is of SU(2) level-1, of which the stability is unex-
pected by the earlier argument that also generically does
not exclude an even level in case of integer spins per
unit cell [6, 8]. Moreover, the internal symmetries, such
as spin-rotation symmetries, are essential in the LSM-
type arguments. However, in the presence of a strong
anisotropy which even breaks any discrete spin-rotation
symmetry, the critical phases are still numerically ob-
served when including staggered Dzyaloshinskii-Moriya
(DM) interactions [22–27]. Thus, the role of symmetries
in these criticalities remains unknown and it is important
in widening the application of LSM-type ingappabilities
on quantum criticalities.
In this Letter, we extend LSM-type ingappabilities to

such systems with integer filling per unit cell or inver-
sion center — without conventional LSM ingappability
— by considering antiunitary lattice translation and in-
version symmetries. As typical examples, we first con-
centrate on a class of chiral triple-product spin chains,
in which “chiral” means that the time reversal is bro-
ken. These triple-spin interactions naturally take place in
the third-order perturbation theory of half-filled spinful
Hubbard model [19, 21]. By combining the broken time
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Claim: H, w/ half-integer s per site, has a doubly degenerate 
spectrum under the following twisted BC:

gJ Landé factor
Happ applied magnetic field (vector)
Happ applied magnetic field (magnitude)
Hm molecular field
J exchange integral
J total angular momentum
k0 propagation vector
l orbital quantum number
l orbital momentum
L orbital momentum
L Langevin function
m magnetic quantum number
m0 measured magnetic moment at 0K
m magnetic moment
ml orbital moment
ms spin moment
mz projection of m along Happ

M magnetization
Ms spontaneous magnetization

Ms,0 magnetization at absolute saturation
n molecular field coefficient
N number of moments per unit volume
ND demagnetizing field coefficient
NT total number of moments
S spin or spin angular momentum
T temperature
Tc critical temperature
TC Curie temperature
TN Néel temperature
vat atom volume
x argument of the Langevin or Brillouin

function
z number of first neighbors
w magnetic susceptibility
mB Bohr magneton
meff effective moment
m0 permittivity of vacuum
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Introduction

Magnetic groups – also known as antisymmetry
groups, Shubnikov groups, Heesch groups, Opechow-
ski–Guccione (OG) groups, as well as dichromatic,
2-color, or simply black-and-white groups – are the
simplest extension to standard point group and space
group theory. They allow directly to describe, clas-
sify, and study the consequences of the symmetry of
crystals, characterized by having a certain property,
associated with each crystal site, that can take one of
two possible values. This is done by introducing a
single external operation of order two that inter-
changes the two possible values everywhere through-
out the crystal. This operation can be applied to the
crystal along with any of the standard point group
or space group operations, and is denoted by adding
a prime to the original operation. Thus, any rota-
tion g followed by this external operation is denoted
by g0.

To start with, a few typical examples of this two-
valued property are given, some of which are illus-
trated in Figure 1. In the section ‘‘Magnetic point
groups’’ the notion of a magnetic point group is dis-
cussed, followed by a discussion on magnetic space
groups in the section ‘‘Magnetic space groups’’. The
section ‘‘Extinctions in neutron diffraction of anti-
ferromagnetic crystals’’ describes one of the most

(a)

(b)

(c)

(d)

(e)

ClNa Na Na Na Na NaCl Cl Cl Cl Cl

Figure 1 Several realizations of the simple 1D magnetic space
group pp!1. Note that the number of symmetry translations is
doubled if one introduces an operation e 0 that interchanges the
two possible values of the property, associated with each crystal
site. Also note that spatial inversion !1 can be performed without a
prime on each crystal site, and with a prime ð!10Þ between every
two sites. (a) An abstract representation of the two possible val-
ues as the two colors – black and white. The operation e 0 is the
nontrivial permutation of the two colors. (b) A simple antifer-
romagnetic arrangement of spins. The operation e 0 is time
inversion which reverses the signs of the spins. (c) A ferromagne-
tic arrangement of two types of spins, where e 0 exchanges them
as in the case of two colors. (d) A 1D version of salt. e 0 ex-
changes the chemical identities of the two atomic species. (e) A
function f(x) whose overall sign changes by application of the
operation e 0.
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• Spectrum robustness: 
𝐻612 has a unique gapped GS ó 𝐻012 has a unique gapped GS 

𝐻345 cannot have a unique gapped GS as well!  

[Watanabe (’18); Yao-Oshikawa (’20)]
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Introduction.— Understanding and identifying vari-
ous phases and the transitions among them is an es-
sential topic in condensed matter and quantum many-
body physics. As a notable and useful concept, the
Lieb-Schultz-Mattis (LSM) theorem [1] and its gener-
alizations [2–5] impose general constraints on quantum
phases by the notion of ingappabilities — under a U(1)
symmetry and lattice translations with a fractional fill-
ing, the system must either be gapless or possess degen-
erate ground states. The theorem is recently extended
to the systems with richer symmetries, e.g., SO(3) spin-
rotation and SU(N) symmetry [2, 6–8] or even its discrete
subgroup [9–14]. Moreover, the translation symmetry is
also found to be not necessary for the ingappability if the
system respects a lattice inversion symmetry [11–13, 15–
17]. These ingappabilities are also related to quantum
anomaly in field theories and boundaries of topological
phases [7, 16, 18].
The LSM theorem and its extensions manifest the sta-

bility of critical phases observed in experiments and nu-
merical calculations due to the ingappabilities [6, 8]. Nev-
ertheless, there is a large class of critical systems with-
out the conventional LSM-type ingappability. The re-
cent iDMRG study [19] indicates the criticality of a class
of time-reversal breaking spin-1/2 ladders called chiral
triple-product spin model [19–21] with integer spin num-
bers per unit cell — such a gaplessness cannot be un-
derstood by the existing LSM-type theorems by lattice
translations/inversions. Furthermore, their universality
class is of SU(2) level-1, of which the stability is unex-
pected by the earlier argument that also generically does
not exclude an even level in case of integer spins per
unit cell [6, 8]. Moreover, the internal symmetries, such
as spin-rotation symmetries, are essential in the LSM-
type arguments. However, in the presence of a strong
anisotropy which even breaks any discrete spin-rotation
symmetry, the critical phases are still numerically ob-
served when including staggered Dzyaloshinskii-Moriya
(DM) interactions [22–27]. Thus, the role of symmetries
in these criticalities remains unknown and it is important
in widening the application of LSM-type ingappabilities
on quantum criticalities.
In this Letter, we extend LSM-type ingappabilities to

such systems with integer filling per unit cell or inver-
sion center — without conventional LSM ingappability
— by considering antiunitary lattice translation and in-
version symmetries. As typical examples, we first con-
centrate on a class of chiral triple-product spin chains,
in which “chiral” means that the time reversal is bro-
ken. These triple-spin interactions naturally take place in
the third-order perturbation theory of half-filled spinful
Hubbard model [19, 21]. By combining the broken time
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LSM thm for magnetic space groups

• We’d like to explore all 1d LSM thm for magnetic space groups 
(spin-rot + transl + time-rev + inv)

• Not sure all can be argued based on the above symm-twisting method

• Nevertheless, all these cases can be understood from lattice homotopy

(and also from bulk-bdry corresp of 2d crystalline SPTs)

Ø E.g., systems w/ only 𝐼" * 𝑇 symm are also subject to to a LSM constraint 
(as we’ll see later), but it seems symm-twisting method doesn’t work

[Po et al. (’17); Else-Po-Watanabe (’18); Else-Thorngren (’19)]
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Projective rep and anomalous texture
A representation U of G satisfies

• If 𝜔(𝑔, ℎ) is trivial (= 1), U is called a linear rep
• If 𝜔(𝑔, ℎ) is nontrivial, U is called a proj rep

Chiral Lieb-Schultz-Mattis theorem
under antiunitary translations and inversions

(Dated: December 20, 2021)

We study quantum many-body systems with spin-rotation symmetries and an exotic antiunitary
translation or inversion symmetry formed from time reversal and concentrate on a class of chiral
spin models of which the gaplessness cannot be understood by earlier works. Based on a symmetry-
twisting method and spectrum robustness, we propose that the half-integer spin systems respecting
these symmetries must either be gapless or possess degenerate ground states. We also relate this
ingappability to the quantum anomaly, and the anomaly-matching argument resolves the puzzling
criticality stability and the universality class of the chiral spin models. By the anomaly argument, we
also claim that the antiunitary inversion symmetry alone is su�cient to ensure the ingappability even
though the spin-rotation symmetry is completely broken. Furthermore, we apply our ingappability
and stability analyses to several hybridized Hamiltonian to obtain nontrivial constraints on the
possible phase diagram.

U(gh) = !(g, h)U(g)U(h), g, h 2 G (1)

!(g, h) = e
i✓(g,h) (2)

Introduction.— Understanding and identifying vari-
ous phases and the transitions among them is an es-
sential topic in condensed matter and quantum many-
body physics. As a notable and useful concept, the
Lieb-Schultz-Mattis (LSM) theorem [1] and its gener-
alizations [2–5] impose general constraints on quantum
phases by the notion of ingappabilities — under a U(1)
symmetry and lattice translations with a fractional fill-
ing, the system must either be gapless or possess degen-
erate ground states. The theorem is recently extended
to the systems with richer symmetries, e.g., SO(3) spin-
rotation and SU(N) symmetry [2, 6–8] or even its discrete
subgroup [9–14]. Moreover, the translation symmetry is
also found to be not necessary for the ingappability if the
system respects a lattice inversion symmetry [11–13, 15–
17]. These ingappabilities are also related to quantum
anomaly in field theories and boundaries of topological
phases [7, 16, 18].

The LSM theorem and its extensions manifest the sta-
bility of critical phases observed in experiments and nu-
merical calculations due to the ingappabilities [6, 8]. Nev-
ertheless, there is a large class of critical systems with-
out the conventional LSM-type ingappability. The re-
cent iDMRG study [19] indicates the criticality of a class
of time-reversal breaking spin-1/2 ladders called chiral
triple-product spin model [19–21] with integer spin num-
bers per unit cell — such a gaplessness cannot be un-
derstood by the existing LSM-type theorems by lattice
translations/inversions. Furthermore, their universality
class is of SU(2) level-1, of which the stability is unex-
pected by the earlier argument that also generically does
not exclude an even level in case of integer spins per
unit cell [6, 8]. Moreover, the internal symmetries, such
as spin-rotation symmetries, are essential in the LSM-
type arguments. However, in the presence of a strong

anisotropy which even breaks any discrete spin-rotation
symmetry, the critical phases are still numerically ob-
served when including staggered Dzyaloshinskii-Moriya
(DM) interactions [22–27]. Thus, the role of symmetries
in these criticalities remains unknown and it is important
in widening the application of LSM-type ingappabilities
on quantum criticalities.

In this Letter, we extend LSM-type ingappabilities to
such systems with integer filling per unit cell or inver-
sion center — without conventional LSM ingappability
— by considering antiunitary lattice translation and in-
version symmetries. As typical examples, we first con-
centrate on a class of chiral triple-product spin chains,
in which “chiral” means that the time reversal is bro-
ken. These triple-spin interactions naturally take place in
the third-order perturbation theory of half-filled spinful
Hubbard model [19, 21]. By combining the broken time
reversal and the lattice translation/inversion symmetry
to form the antiunitary correspondences, we find that
the systems are invariant and ingappable under these
exotic symmetries and a discrete spin-rotation symme-
try. We derive such ingappabilities by a simple geometric
method of twisted boundary conditions [14, 17] based on
the notion of spectrum robustness against the twisting
by discrete symmetry operators [14, 28]. Furthermore,
based on field-theory approach of quantum anomaly, we
obtain a general constraint on the universality class of
the critical chiral spin models to manifest the criticality
stability, which cannot be understood by conventional
methods [6, 8]. Motivated by the field-theory results, we
claim that the derived ingappability by the antiunitary
inversion can be still ensured when the spin-rotation sym-
metry is completely broken. It is applicable to the chiral
system with a staggered DM interaction [22–27].

Chiral triple-product spin chains and antiunitary lat-
tice symmetries.— To illustrate and motivate the antiu-
nitary lattice translation/inversion, let us consider the

Chiral Lieb-Schultz-Mattis theorem
under antiunitary translations and inversions

(Dated: December 20, 2021)

We study quantum many-body systems with spin-rotation symmetries and an exotic antiunitary
translation or inversion symmetry formed from time reversal and concentrate on a class of chiral
spin models of which the gaplessness cannot be understood by earlier works. Based on a symmetry-
twisting method and spectrum robustness, we propose that the half-integer spin systems respecting
these symmetries must either be gapless or possess degenerate ground states. We also relate this
ingappability to the quantum anomaly, and the anomaly-matching argument resolves the puzzling
criticality stability and the universality class of the chiral spin models. By the anomaly argument, we
also claim that the antiunitary inversion symmetry alone is su�cient to ensure the ingappability even
though the spin-rotation symmetry is completely broken. Furthermore, we apply our ingappability
and stability analyses to several hybridized Hamiltonian to obtain nontrivial constraints on the
possible phase diagram.

U(gh) = !(g, h)U(g)U(h), g, h 2 G (1)

!(g, h) = e
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Introduction.— Understanding and identifying vari-
ous phases and the transitions among them is an es-
sential topic in condensed matter and quantum many-
body physics. As a notable and useful concept, the
Lieb-Schultz-Mattis (LSM) theorem [1] and its gener-
alizations [2–5] impose general constraints on quantum
phases by the notion of ingappabilities — under a U(1)
symmetry and lattice translations with a fractional fill-
ing, the system must either be gapless or possess degen-
erate ground states. The theorem is recently extended
to the systems with richer symmetries, e.g., SO(3) spin-
rotation and SU(N) symmetry [2, 6–8] or even its discrete
subgroup [9–14]. Moreover, the translation symmetry is
also found to be not necessary for the ingappability if the
system respects a lattice inversion symmetry [11–13, 15–
17]. These ingappabilities are also related to quantum
anomaly in field theories and boundaries of topological
phases [7, 16, 18].

The LSM theorem and its extensions manifest the sta-
bility of critical phases observed in experiments and nu-
merical calculations due to the ingappabilities [6, 8]. Nev-
ertheless, there is a large class of critical systems with-
out the conventional LSM-type ingappability. The re-
cent iDMRG study [19] indicates the criticality of a class
of time-reversal breaking spin-1/2 ladders called chiral
triple-product spin model [19–21] with integer spin num-
bers per unit cell — such a gaplessness cannot be un-
derstood by the existing LSM-type theorems by lattice
translations/inversions. Furthermore, their universality
class is of SU(2) level-1, of which the stability is unex-
pected by the earlier argument that also generically does

not exclude an even level in case of integer spins per
unit cell [6, 8]. Moreover, the internal symmetries, such
as spin-rotation symmetries, are essential in the LSM-
type arguments. However, in the presence of a strong
anisotropy which even breaks any discrete spin-rotation
symmetry, the critical phases are still numerically ob-
served when including staggered Dzyaloshinskii-Moriya
(DM) interactions [22–27]. Thus, the role of symmetries
in these criticalities remains unknown and it is important
in widening the application of LSM-type ingappabilities
on quantum criticalities.

In this Letter, we extend LSM-type ingappabilities to
such systems with integer filling per unit cell or inver-
sion center — without conventional LSM ingappability
— by considering antiunitary lattice translation and in-
version symmetries. As typical examples, we first con-
centrate on a class of chiral triple-product spin chains,
in which “chiral” means that the time reversal is bro-
ken. These triple-spin interactions naturally take place in
the third-order perturbation theory of half-filled spinful
Hubbard model [19, 21]. By combining the broken time
reversal and the lattice translation/inversion symmetry
to form the antiunitary correspondences, we find that
the systems are invariant and ingappable under these
exotic symmetries and a discrete spin-rotation symme-
try. We derive such ingappabilities by a simple geometric
method of twisted boundary conditions [14, 17] based on
the notion of spectrum robustness against the twisting
by discrete symmetry operators [14, 28]. Furthermore,
based on field-theory approach of quantum anomaly, we
obtain a general constraint on the universality class of
the critical chiral spin models to manifest the criticality
stability, which cannot be understood by conventional
methods [6, 8]. Motivated by the field-theory results, we
claim that the derived ingappability by the antiunitary
inversion can be still ensured when the spin-rotation sym-
metry is completely broken. It is applicable to the chiral
system with a staggered DM interaction [22–27].

Chiral triple-product spin chains and antiunitary lat-
tice symmetries.— To illustrate and motivate the antiu-
nitary lattice translation/inversion, let us consider the



Projective rep and anomalous texture
A representation U of G satisfies

• If 𝜔(𝑔, ℎ) is trivial (= 1), U is called a linear rep
• If 𝜔(𝑔, ℎ) is nontrivial, U is called a proj rep

Ex1: 𝐺 = 𝑆𝑂 3 , one can choose

Chiral Lieb-Schultz-Mattis theorem
under antiunitary translations and inversions

(Dated: December 20, 2021)

We study quantum many-body systems with spin-rotation symmetries and an exotic antiunitary
translation or inversion symmetry formed from time reversal and concentrate on a class of chiral
spin models of which the gaplessness cannot be understood by earlier works. Based on a symmetry-
twisting method and spectrum robustness, we propose that the half-integer spin systems respecting
these symmetries must either be gapless or possess degenerate ground states. We also relate this
ingappability to the quantum anomaly, and the anomaly-matching argument resolves the puzzling
criticality stability and the universality class of the chiral spin models. By the anomaly argument, we
also claim that the antiunitary inversion symmetry alone is su�cient to ensure the ingappability even
though the spin-rotation symmetry is completely broken. Furthermore, we apply our ingappability
and stability analyses to several hybridized Hamiltonian to obtain nontrivial constraints on the
possible phase diagram.

U(gh) = !(g, h)U(g)U(h), g, h 2 G (1)

!(g, h) = e
i✓(g,h) (2)

Introduction.— Understanding and identifying vari-
ous phases and the transitions among them is an es-
sential topic in condensed matter and quantum many-
body physics. As a notable and useful concept, the
Lieb-Schultz-Mattis (LSM) theorem [1] and its gener-
alizations [2–5] impose general constraints on quantum
phases by the notion of ingappabilities — under a U(1)
symmetry and lattice translations with a fractional fill-
ing, the system must either be gapless or possess degen-
erate ground states. The theorem is recently extended
to the systems with richer symmetries, e.g., SO(3) spin-
rotation and SU(N) symmetry [2, 6–8] or even its discrete
subgroup [9–14]. Moreover, the translation symmetry is
also found to be not necessary for the ingappability if the
system respects a lattice inversion symmetry [11–13, 15–
17]. These ingappabilities are also related to quantum
anomaly in field theories and boundaries of topological
phases [7, 16, 18].

The LSM theorem and its extensions manifest the sta-
bility of critical phases observed in experiments and nu-
merical calculations due to the ingappabilities [6, 8]. Nev-
ertheless, there is a large class of critical systems with-
out the conventional LSM-type ingappability. The re-
cent iDMRG study [19] indicates the criticality of a class
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in which “chiral” means that the time reversal is bro-
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Hubbard model [19, 21]. By combining the broken time
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pected by the earlier argument that also generically does
not exclude an even level in case of integer spins per
unit cell [6, 8]. Moreover, the internal symmetries, such
as spin-rotation symmetries, are essential in the LSM-
type arguments. However, in the presence of a strong
anisotropy which even breaks any discrete spin-rotation
symmetry, the critical phases are still numerically ob-
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translations/inversions. Furthermore, their universality
class is of SU(2) level-1, of which the stability is unex-
pected by the earlier argument that also generically does
not exclude an even level in case of integer spins per
unit cell [6, 8]. Moreover, the internal symmetries, such
as spin-rotation symmetries, are essential in the LSM-
type arguments. However, in the presence of a strong
anisotropy which even breaks any discrete spin-rotation
symmetry, the critical phases are still numerically ob-
served when including staggered Dzyaloshinskii-Moriya
(DM) interactions [22–27]. Thus, the role of symmetries
in these criticalities remains unknown and it is important
in widening the application of LSM-type ingappabilities
on quantum criticalities.

In this Letter, we extend LSM-type ingappabilities to
such systems with integer filling per unit cell or inver-
sion center — without conventional LSM ingappability
— by considering antiunitary lattice translation and in-
version symmetries. As typical examples, we first con-
centrate on a class of chiral triple-product spin chains,
in which “chiral” means that the time reversal is bro-
ken. These triple-spin interactions naturally take place in
the third-order perturbation theory of half-filled spinful
Hubbard model [19, 21]. By combining the broken time
reversal and the lattice translation/inversion symmetry
to form the antiunitary correspondences, we find that
the systems are invariant and ingappable under these
exotic symmetries and a discrete spin-rotation symme-
try. We derive such ingappabilities by a simple geometric
method of twisted boundary conditions [14, 17] based on
the notion of spectrum robustness against the twisting
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Introduction.— Understanding and identifying vari-
ous phases and the transitions among them is an es-
sential topic in condensed matter and quantum many-
body physics. As a notable and useful concept, the
Lieb-Schultz-Mattis (LSM) theorem [1] and its gener-
alizations [2–5] impose general constraints on quantum
phases by the notion of ingappabilities — under a U(1)
symmetry and lattice translations with a fractional fill-
ing, the system must either be gapless or possess degen-
erate ground states. The theorem is recently extended
to the systems with richer symmetries, e.g., SO(3) spin-
rotation and SU(N) symmetry [2, 6–8] or even its discrete
subgroup [9–14]. Moreover, the translation symmetry is
also found to be not necessary for the ingappability if the
system respects a lattice inversion symmetry [11–13, 15–
17]. These ingappabilities are also related to quantum
anomaly in field theories and boundaries of topological
phases [7, 16, 18].
The LSM theorem and its extensions manifest the sta-

bility of critical phases observed in experiments and nu-
merical calculations due to the ingappabilities [6, 8]. Nev-
ertheless, there is a large class of critical systems with-
out the conventional LSM-type ingappability. The re-
cent iDMRG study [19] indicates the criticality of a class
of time-reversal breaking spin-1/2 ladders called chiral
triple-product spin model [19–21] with integer spin num-
bers per unit cell — such a gaplessness cannot be un-
derstood by the existing LSM-type theorems by lattice
translations/inversions. Furthermore, their universality
class is of SU(2) level-1, of which the stability is unex-
pected by the earlier argument that also generically does
not exclude an even level in case of integer spins per
unit cell [6, 8]. Moreover, the internal symmetries, such
as spin-rotation symmetries, are essential in the LSM-
type arguments. However, in the presence of a strong
anisotropy which even breaks any discrete spin-rotation
symmetry, the critical phases are still numerically ob-
served when including staggered Dzyaloshinskii-Moriya
(DM) interactions [22–27]. Thus, the role of symmetries
in these criticalities remains unknown and it is important
in widening the application of LSM-type ingappabilities
on quantum criticalities.
In this Letter, we extend LSM-type ingappabilities to

such systems with integer filling per unit cell or inver-
sion center — without conventional LSM ingappability
— by considering antiunitary lattice translation and in-
version symmetries. As typical examples, we first con-
centrate on a class of chiral triple-product spin chains,
in which “chiral” means that the time reversal is bro-
ken. These triple-spin interactions naturally take place in
the third-order perturbation theory of half-filled spinful
Hubbard model [19, 21]. By combining the broken time
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We study quantum many-body systems with spin-rotation symmetries and an exotic antiunitary
translation or inversion symmetry formed from time reversal and concentrate on a class of chiral
spin models of which the gaplessness cannot be understood by earlier works. Based on a symmetry-
twisting method and spectrum robustness, we propose that the half-integer spin systems respecting
these symmetries must either be gapless or possess degenerate ground states. We also relate this
ingappability to the quantum anomaly, and the anomaly-matching argument resolves the puzzling
criticality stability and the universality class of the chiral spin models. By the anomaly argument, we
also claim that the antiunitary inversion symmetry alone is su�cient to ensure the ingappability even
though the spin-rotation symmetry is completely broken. Furthermore, we apply our ingappability
and stability analyses to several hybridized Hamiltonian to obtain nontrivial constraints on the
possible phase diagram.
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Introduction.— Understanding and identifying vari-
ous phases and the transitions among them is an es-
sential topic in condensed matter and quantum many-
body physics. As a notable and useful concept, the
Lieb-Schultz-Mattis (LSM) theorem [1] and its gener-
alizations [2–5] impose general constraints on quantum
phases by the notion of ingappabilities — under a U(1)
symmetry and lattice translations with a fractional fill-
ing, the system must either be gapless or possess degen-
erate ground states. The theorem is recently extended
to the systems with richer symmetries, e.g., SO(3) spin-
rotation and SU(N) symmetry [2, 6–8] or even its discrete
subgroup [9–14]. Moreover, the translation symmetry is
also found to be not necessary for the ingappability if the
system respects a lattice inversion symmetry [11–13, 15–
17]. These ingappabilities are also related to quantum
anomaly in field theories and boundaries of topological
phases [7, 16, 18].

The LSM theorem and its extensions manifest the sta-
bility of critical phases observed in experiments and nu-
merical calculations due to the ingappabilities [6, 8]. Nev-
ertheless, there is a large class of critical systems with-
out the conventional LSM-type ingappability. The re-
cent iDMRG study [19] indicates the criticality of a class
of time-reversal breaking spin-1/2 ladders called chiral
triple-product spin model [19–21] with integer spin num-
bers per unit cell — such a gaplessness cannot be un-
derstood by the existing LSM-type theorems by lattice
translations/inversions. Furthermore, their universality
class is of SU(2) level-1, of which the stability is unex-
pected by the earlier argument that also generically does
not exclude an even level in case of integer spins per
unit cell [6, 8]. Moreover, the internal symmetries, such
as spin-rotation symmetries, are essential in the LSM-
type arguments. However, in the presence of a strong

anisotropy which even breaks any discrete spin-rotation
symmetry, the critical phases are still numerically ob-
served when including staggered Dzyaloshinskii-Moriya
(DM) interactions [22–27]. Thus, the role of symmetries
in these criticalities remains unknown and it is important
in widening the application of LSM-type ingappabilities
on quantum criticalities.

In this Letter, we extend LSM-type ingappabilities to
such systems with integer filling per unit cell or inver-
sion center — without conventional LSM ingappability
— by considering antiunitary lattice translation and in-
version symmetries. As typical examples, we first con-
centrate on a class of chiral triple-product spin chains,
in which “chiral” means that the time reversal is bro-
ken. These triple-spin interactions naturally take place in
the third-order perturbation theory of half-filled spinful
Hubbard model [19, 21]. By combining the broken time
reversal and the lattice translation/inversion symmetry
to form the antiunitary correspondences, we find that
the systems are invariant and ingappable under these
exotic symmetries and a discrete spin-rotation symme-
try. We derive such ingappabilities by a simple geometric
method of twisted boundary conditions [14, 17] based on
the notion of spectrum robustness against the twisting
by discrete symmetry operators [14, 28]. Furthermore,
based on field-theory approach of quantum anomaly, we
obtain a general constraint on the universality class of
the critical chiral spin models to manifest the criticality
stability, which cannot be understood by conventional
methods [6, 8]. Motivated by the field-theory results, we
claim that the derived ingappability by the antiunitary
inversion can be still ensured when the spin-rotation sym-
metry is completely broken. It is applicable to the chiral
system with a staggered DM interaction [22–27].

Chiral triple-product spin chains and antiunitary lat-
tice symmetries.— To illustrate and motivate the antiu-
nitary lattice translation/inversion, let us consider the
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sential topic in condensed matter and quantum many-
body physics. As a notable and useful concept, the
Lieb-Schultz-Mattis (LSM) theorem [1] and its gener-
alizations [2–5] impose general constraints on quantum
phases by the notion of ingappabilities — under a U(1)
symmetry and lattice translations with a fractional fill-
ing, the system must either be gapless or possess degen-
erate ground states. The theorem is recently extended
to the systems with richer symmetries, e.g., SO(3) spin-
rotation and SU(N) symmetry [2, 6–8] or even its discrete
subgroup [9–14]. Moreover, the translation symmetry is
also found to be not necessary for the ingappability if the
system respects a lattice inversion symmetry [11–13, 15–
17]. These ingappabilities are also related to quantum
anomaly in field theories and boundaries of topological
phases [7, 16, 18].

The LSM theorem and its extensions manifest the sta-
bility of critical phases observed in experiments and nu-
merical calculations due to the ingappabilities [6, 8]. Nev-
ertheless, there is a large class of critical systems with-
out the conventional LSM-type ingappability. The re-
cent iDMRG study [19] indicates the criticality of a class
of time-reversal breaking spin-1/2 ladders called chiral
triple-product spin model [19–21] with integer spin num-
bers per unit cell — such a gaplessness cannot be un-
derstood by the existing LSM-type theorems by lattice
translations/inversions. Furthermore, their universality
class is of SU(2) level-1, of which the stability is unex-
pected by the earlier argument that also generically does

not exclude an even level in case of integer spins per
unit cell [6, 8]. Moreover, the internal symmetries, such
as spin-rotation symmetries, are essential in the LSM-
type arguments. However, in the presence of a strong
anisotropy which even breaks any discrete spin-rotation
symmetry, the critical phases are still numerically ob-
served when including staggered Dzyaloshinskii-Moriya
(DM) interactions [22–27]. Thus, the role of symmetries
in these criticalities remains unknown and it is important
in widening the application of LSM-type ingappabilities
on quantum criticalities.

In this Letter, we extend LSM-type ingappabilities to
such systems with integer filling per unit cell or inver-
sion center — without conventional LSM ingappability
— by considering antiunitary lattice translation and in-
version symmetries. As typical examples, we first con-
centrate on a class of chiral triple-product spin chains,
in which “chiral” means that the time reversal is bro-
ken. These triple-spin interactions naturally take place in
the third-order perturbation theory of half-filled spinful
Hubbard model [19, 21]. By combining the broken time
reversal and the lattice translation/inversion symmetry
to form the antiunitary correspondences, we find that
the systems are invariant and ingappable under these
exotic symmetries and a discrete spin-rotation symme-
try. We derive such ingappabilities by a simple geometric
method of twisted boundary conditions [14, 17] based on
the notion of spectrum robustness against the twisting
by discrete symmetry operators [14, 28]. Furthermore,
based on field-theory approach of quantum anomaly, we
obtain a general constraint on the universality class of
the critical chiral spin models to manifest the criticality
stability, which cannot be understood by conventional
methods [6, 8]. Motivated by the field-theory results, we
claim that the derived ingappability by the antiunitary
inversion can be still ensured when the spin-rotation sym-
metry is completely broken. It is applicable to the chiral
system with a staggered DM interaction [22–27].

Chiral triple-product spin chains and antiunitary lat-
tice symmetries.— To illustrate and motivate the antiu-
nitary lattice translation/inversion, let us consider the
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Introduction.— Understanding and identifying vari-
ous phases and the transitions among them is an es-
sential topic in condensed matter and quantum many-
body physics. As a notable and useful concept, the
Lieb-Schultz-Mattis (LSM) theorem [1] and its gener-
alizations [2–5] impose general constraints on quantum
phases by the notion of ingappabilities — under a U(1)
symmetry and lattice translations with a fractional fill-
ing, the system must either be gapless or possess degen-
erate ground states. The theorem is recently extended
to the systems with richer symmetries, e.g., SO(3) spin-
rotation and SU(N) symmetry [2, 6–8] or even its discrete
subgroup [9–14]. Moreover, the translation symmetry is

also found to be not necessary for the ingappability if the
system respects a lattice inversion symmetry [11–13, 15–
17]. These ingappabilities are also related to quantum
anomaly in field theories and boundaries of topological
phases [7, 16, 18].

The LSM theorem and its extensions manifest the sta-
bility of critical phases observed in experiments and nu-
merical calculations due to the ingappabilities [6, 8]. Nev-
ertheless, there is a large class of critical systems with-
out the conventional LSM-type ingappability. The re-
cent iDMRG study [19] indicates the criticality of a class
of time-reversal breaking spin-1/2 ladders called chiral
triple-product spin model [19–21] with integer spin num-
bers per unit cell — such a gaplessness cannot be un-
derstood by the existing LSM-type theorems by lattice
translations/inversions. Furthermore, their universality
class is of SU(2) level-1, of which the stability is unex-
pected by the earlier argument that also generically does
not exclude an even level in case of integer spins per
unit cell [6, 8]. Moreover, the internal symmetries, such
as spin-rotation symmetries, are essential in the LSM-
type arguments. However, in the presence of a strong
anisotropy which even breaks any discrete spin-rotation
symmetry, the critical phases are still numerically ob-
served when including staggered Dzyaloshinskii-Moriya
(DM) interactions [22–27]. Thus, the role of symmetries
in these criticalities remains unknown and it is important
in widening the application of LSM-type ingappabilities
on quantum criticalities.
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such systems with integer filling per unit cell or inver-
sion center — without conventional LSM ingappability
— by considering antiunitary lattice translation and in-
version symmetries. As typical examples, we first con-
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in which “chiral” means that the time reversal is bro-
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ous phases and the transitions among them is an es-
sential topic in condensed matter and quantum many-
body physics. As a notable and useful concept, the
Lieb-Schultz-Mattis (LSM) theorem [1] and its gener-
alizations [2–5] impose general constraints on quantum
phases by the notion of ingappabilities — under a U(1)
symmetry and lattice translations with a fractional fill-
ing, the system must either be gapless or possess degen-
erate ground states. The theorem is recently extended
to the systems with richer symmetries, e.g., SO(3) spin-
rotation and SU(N) symmetry [2, 6–8] or even its discrete
subgroup [9–14]. Moreover, the translation symmetry is
also found to be not necessary for the ingappability if the
system respects a lattice inversion symmetry [11–13, 15–
17]. These ingappabilities are also related to quantum
anomaly in field theories and boundaries of topological
phases [7, 16, 18].
The LSM theorem and its extensions manifest the sta-

bility of critical phases observed in experiments and nu-
merical calculations due to the ingappabilities [6, 8]. Nev-
ertheless, there is a large class of critical systems with-
out the conventional LSM-type ingappability. The re-
cent iDMRG study [19] indicates the criticality of a class
of time-reversal breaking spin-1/2 ladders called chiral
triple-product spin model [19–21] with integer spin num-
bers per unit cell — such a gaplessness cannot be un-
derstood by the existing LSM-type theorems by lattice
translations/inversions. Furthermore, their universality
class is of SU(2) level-1, of which the stability is unex-
pected by the earlier argument that also generically does
not exclude an even level in case of integer spins per
unit cell [6, 8]. Moreover, the internal symmetries, such
as spin-rotation symmetries, are essential in the LSM-
type arguments. However, in the presence of a strong
anisotropy which even breaks any discrete spin-rotation
symmetry, the critical phases are still numerically ob-
served when including staggered Dzyaloshinskii-Moriya
(DM) interactions [22–27]. Thus, the role of symmetries
in these criticalities remains unknown and it is important
in widening the application of LSM-type ingappabilities
on quantum criticalities.
In this Letter, we extend LSM-type ingappabilities to

such systems with integer filling per unit cell or inver-
sion center — without conventional LSM ingappability
— by considering antiunitary lattice translation and in-
version symmetries. As typical examples, we first con-
centrate on a class of chiral triple-product spin chains,
in which “chiral” means that the time reversal is bro-
ken. These triple-spin interactions naturally take place in
the third-order perturbation theory of half-filled spinful
Hubbard model [19, 21]. By combining the broken time
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ingappability to the quantum anomaly, and the anomaly-matching argument resolves the puzzling
criticality stability and the universality class of the chiral spin models. By the anomaly argument, we
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though the spin-rotation symmetry is completely broken. Furthermore, we apply our ingappability
and stability analyses to several hybridized Hamiltonian to obtain nontrivial constraints on the
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Introduction.— Understanding and identifying vari-
ous phases and the transitions among them is an es-
sential topic in condensed matter and quantum many-
body physics. As a notable and useful concept, the
Lieb-Schultz-Mattis (LSM) theorem [1] and its gener-
alizations [2–5] impose general constraints on quantum
phases by the notion of ingappabilities — under a U(1)
symmetry and lattice translations with a fractional fill-
ing, the system must either be gapless or possess degen-
erate ground states. The theorem is recently extended
to the systems with richer symmetries, e.g., SO(3) spin-
rotation and SU(N) symmetry [2, 6–8] or even its discrete
subgroup [9–14]. Moreover, the translation symmetry is
also found to be not necessary for the ingappability if the
system respects a lattice inversion symmetry [11–13, 15–
17]. These ingappabilities are also related to quantum
anomaly in field theories and boundaries of topological
phases [7, 16, 18].

The LSM theorem and its extensions manifest the sta-
bility of critical phases observed in experiments and nu-
merical calculations due to the ingappabilities [6, 8]. Nev-
ertheless, there is a large class of critical systems with-
out the conventional LSM-type ingappability. The re-
cent iDMRG study [19] indicates the criticality of a class
of time-reversal breaking spin-1/2 ladders called chiral
triple-product spin model [19–21] with integer spin num-
bers per unit cell — such a gaplessness cannot be un-
derstood by the existing LSM-type theorems by lattice
translations/inversions. Furthermore, their universality
class is of SU(2) level-1, of which the stability is unex-
pected by the earlier argument that also generically does
not exclude an even level in case of integer spins per
unit cell [6, 8]. Moreover, the internal symmetries, such
as spin-rotation symmetries, are essential in the LSM-
type arguments. However, in the presence of a strong

anisotropy which even breaks any discrete spin-rotation
symmetry, the critical phases are still numerically ob-
served when including staggered Dzyaloshinskii-Moriya
(DM) interactions [22–27]. Thus, the role of symmetries
in these criticalities remains unknown and it is important
in widening the application of LSM-type ingappabilities
on quantum criticalities.

In this Letter, we extend LSM-type ingappabilities to
such systems with integer filling per unit cell or inver-
sion center — without conventional LSM ingappability
— by considering antiunitary lattice translation and in-
version symmetries. As typical examples, we first con-
centrate on a class of chiral triple-product spin chains,
in which “chiral” means that the time reversal is bro-
ken. These triple-spin interactions naturally take place in
the third-order perturbation theory of half-filled spinful
Hubbard model [19, 21]. By combining the broken time
reversal and the lattice translation/inversion symmetry
to form the antiunitary correspondences, we find that
the systems are invariant and ingappable under these
exotic symmetries and a discrete spin-rotation symme-
try. We derive such ingappabilities by a simple geometric
method of twisted boundary conditions [14, 17] based on
the notion of spectrum robustness against the twisting
by discrete symmetry operators [14, 28]. Furthermore,
based on field-theory approach of quantum anomaly, we
obtain a general constraint on the universality class of
the critical chiral spin models to manifest the criticality
stability, which cannot be understood by conventional
methods [6, 8]. Motivated by the field-theory results, we
claim that the derived ingappability by the antiunitary
inversion can be still ensured when the spin-rotation sym-
metry is completely broken. It is applicable to the chiral
system with a staggered DM interaction [22–27].

Chiral triple-product spin chains and antiunitary lat-
tice symmetries.— To illustrate and motivate the antiu-
nitary lattice translation/inversion, let us consider the

Chiral Lieb-Schultz-Mattis theorem
under antiunitary translations and inversions

(Dated: December 20, 2021)

We study quantum many-body systems with spin-rotation symmetries and an exotic antiunitary
translation or inversion symmetry formed from time reversal and concentrate on a class of chiral
spin models of which the gaplessness cannot be understood by earlier works. Based on a symmetry-
twisting method and spectrum robustness, we propose that the half-integer spin systems respecting
these symmetries must either be gapless or possess degenerate ground states. We also relate this
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U(R⇡
n̂)U(R⇡

n̂) = e
2i⇡Sn = (�1)s = (�1)sU(R2⇡

n̂ )

U(T ) = e
i⇡SyK, K : complex conj (5)

U(T )U(T ) = e
2i⇡Sy = (�1)s = (�1)sU(T 2)

!(h, k)!(g, hk) = !(g, h)!(gh, k) (6)

U(g) ! �(g)U(g) (7)

!(g, h) ! �(gh)�(g)�1
�(h)�1

!(g, h) (8)

Introduction.— Understanding and identifying vari-
ous phases and the transitions among them is an es-
sential topic in condensed matter and quantum many-
body physics. As a notable and useful concept, the
Lieb-Schultz-Mattis (LSM) theorem [1] and its gener-
alizations [2–5] impose general constraints on quantum
phases by the notion of ingappabilities — under a U(1)
symmetry and lattice translations with a fractional fill-
ing, the system must either be gapless or possess degen-
erate ground states. The theorem is recently extended
to the systems with richer symmetries, e.g., SO(3) spin-
rotation and SU(N) symmetry [2, 6–8] or even its discrete
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pected by the earlier argument that also generically does
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also found to be not necessary for the ingappability if the
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17]. These ingappabilities are also related to quantum
anomaly in field theories and boundaries of topological
phases [7, 16, 18].

The LSM theorem and its extensions manifest the sta-
bility of critical phases observed in experiments and nu-
merical calculations due to the ingappabilities [6, 8]. Nev-
ertheless, there is a large class of critical systems with-
out the conventional LSM-type ingappability. The re-
cent iDMRG study [19] indicates the criticality of a class
of time-reversal breaking spin-1/2 ladders called chiral
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bers per unit cell — such a gaplessness cannot be un-
derstood by the existing LSM-type theorems by lattice
translations/inversions. Furthermore, their universality
class is of SU(2) level-1, of which the stability is unex-
pected by the earlier argument that also generically does
not exclude an even level in case of integer spins per
unit cell [6, 8]. Moreover, the internal symmetries, such
as spin-rotation symmetries, are essential in the LSM-
type arguments. However, in the presence of a strong
anisotropy which even breaks any discrete spin-rotation
symmetry, the critical phases are still numerically ob-
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body physics. As a notable and useful concept, the
Lieb-Schultz-Mattis (LSM) theorem [1] and its gener-
alizations [2–5] impose general constraints on quantum
phases by the notion of ingappabilities — under a U(1)
symmetry and lattice translations with a fractional fill-
ing, the system must either be gapless or possess degen-
erate ground states. The theorem is recently extended
to the systems with richer symmetries, e.g., SO(3) spin-
rotation and SU(N) symmetry [2, 6–8] or even its discrete
subgroup [9–14]. Moreover, the translation symmetry is
also found to be not necessary for the ingappability if the
system respects a lattice inversion symmetry [11–13, 15–
17]. These ingappabilities are also related to quantum
anomaly in field theories and boundaries of topological
phases [7, 16, 18].

The LSM theorem and its extensions manifest the sta-
bility of critical phases observed in experiments and nu-
merical calculations due to the ingappabilities [6, 8]. Nev-
ertheless, there is a large class of critical systems with-
out the conventional LSM-type ingappability. The re-
cent iDMRG study [19] indicates the criticality of a class
of time-reversal breaking spin-1/2 ladders called chiral
triple-product spin model [19–21] with integer spin num-
bers per unit cell — such a gaplessness cannot be un-
derstood by the existing LSM-type theorems by lattice
translations/inversions. Furthermore, their universality
class is of SU(2) level-1, of which the stability is unex-
pected by the earlier argument that also generically does
not exclude an even level in case of integer spins per
unit cell [6, 8]. Moreover, the internal symmetries, such
as spin-rotation symmetries, are essential in the LSM-
type arguments. However, in the presence of a strong
anisotropy which even breaks any discrete spin-rotation
symmetry, the critical phases are still numerically ob-
served when including staggered Dzyaloshinskii-Moriya
(DM) interactions [22–27]. Thus, the role of symmetries
in these criticalities remains unknown and it is important
in widening the application of LSM-type ingappabilities
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ingappability to the quantum anomaly, and the anomaly-matching argument resolves the puzzling
criticality stability and the universality class of the chiral spin models. By the anomaly argument, we
also claim that the antiunitary inversion symmetry alone is su�cient to ensure the ingappability even
though the spin-rotation symmetry is completely broken. Furthermore, we apply our ingappability
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subgroup [9–14]. Moreover, the translation symmetry is
also found to be not necessary for the ingappability if the
system respects a lattice inversion symmetry [11–13, 15–
17]. These ingappabilities are also related to quantum
anomaly in field theories and boundaries of topological
phases [7, 16, 18].
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bility of critical phases observed in experiments and nu-
merical calculations due to the ingappabilities [6, 8]. Nev-
ertheless, there is a large class of critical systems with-
out the conventional LSM-type ingappability. The re-
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of time-reversal breaking spin-1/2 ladders called chiral
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not exclude an even level in case of integer spins per
unit cell [6, 8]. Moreover, the internal symmetries, such
as spin-rotation symmetries, are essential in the LSM-
type arguments. However, in the presence of a strong
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served when including staggered Dzyaloshinskii-Moriya
(DM) interactions [22–27]. Thus, the role of symmetries
in these criticalities remains unknown and it is important
in widening the application of LSM-type ingappabilities
on quantum criticalities.

In this Letter, we extend LSM-type ingappabilities to
such systems with integer filling per unit cell or inver-
sion center — without conventional LSM ingappability
— by considering antiunitary lattice translation and in-
version symmetries. As typical examples, we first con-
centrate on a class of chiral triple-product spin chains,
in which “chiral” means that the time reversal is bro-
ken. These triple-spin interactions naturally take place in
the third-order perturbation theory of half-filled spinful
Hubbard model [19, 21]. By combining the broken time
reversal and the lattice translation/inversion symmetry
to form the antiunitary correspondences, we find that
the systems are invariant and ingappable under these
exotic symmetries and a discrete spin-rotation symme-
try. We derive such ingappabilities by a simple geometric
method of twisted boundary conditions [14, 17] based on
the notion of spectrum robustness against the twisting
by discrete symmetry operators [14, 28]. Furthermore,
based on field-theory approach of quantum anomaly, we
obtain a general constraint on the universality class of
the critical chiral spin models to manifest the criticality
stability, which cannot be understood by conventional
methods [6, 8]. Motivated by the field-theory results, we
claim that the derived ingappability by the antiunitary
inversion can be still ensured when the spin-rotation sym-
metry is completely broken. It is applicable to the chiral
system with a staggered DM interaction [22–27].

Chiral triple-product spin chains and antiunitary lat-
tice symmetries.— To illustrate and motivate the antiu-
nitary lattice translation/inversion, let us consider the
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Introduction.— Understanding and identifying vari-
ous phases and the transitions among them is an es-
sential topic in condensed matter and quantum many-
body physics. As a notable and useful concept, the
Lieb-Schultz-Mattis (LSM) theorem [1] and its gener-
alizations [2–5] impose general constraints on quantum
phases by the notion of ingappabilities — under a U(1)
symmetry and lattice translations with a fractional fill-
ing, the system must either be gapless or possess degen-
erate ground states. The theorem is recently extended
to the systems with richer symmetries, e.g., SO(3) spin-
rotation and SU(N) symmetry [2, 6–8] or even its discrete
subgroup [9–14]. Moreover, the translation symmetry is
also found to be not necessary for the ingappability if the
system respects a lattice inversion symmetry [11–13, 15–
17]. These ingappabilities are also related to quantum
anomaly in field theories and boundaries of topological
phases [7, 16, 18].

The LSM theorem and its extensions manifest the sta-
bility of critical phases observed in experiments and nu-
merical calculations due to the ingappabilities [6, 8]. Nev-
ertheless, there is a large class of critical systems with-
out the conventional LSM-type ingappability. The re-
cent iDMRG study [19] indicates the criticality of a class
of time-reversal breaking spin-1/2 ladders called chiral
triple-product spin model [19–21] with integer spin num-
bers per unit cell — such a gaplessness cannot be un-
derstood by the existing LSM-type theorems by lattice
translations/inversions. Furthermore, their universality
class is of SU(2) level-1, of which the stability is unex-
pected by the earlier argument that also generically does
not exclude an even level in case of integer spins per
unit cell [6, 8]. Moreover, the internal symmetries, such
as spin-rotation symmetries, are essential in the LSM-
type arguments. However, in the presence of a strong
anisotropy which even breaks any discrete spin-rotation
symmetry, the critical phases are still numerically ob-
served when including staggered Dzyaloshinskii-Moriya
(DM) interactions [22–27]. Thus, the role of symmetries
in these criticalities remains unknown and it is important
in widening the application of LSM-type ingappabilities
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though the spin-rotation symmetry is completely broken. Furthermore, we apply our ingappability
and stability analyses to several hybridized Hamiltonian to obtain nontrivial constraints on the
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Existence of proj rep reveals certain property of the spectrum

• 0d system of spins w/ 𝐺 = 𝑆𝑂 3 , ℤ/×ℤ/, or ℤ/0:

If the # of total spins is a half-integer, then the system 
must not have a unique symmetric gapped ground state
(For 𝐺 = ℤ$%, we have the Kramers degeneracy) 

Proj rep of symm G =>  0d LSM theorem

Higher-dim system of spins? 



Projective rep and anomalous texture
A “proj rep” of 𝐺 = 𝐺!"#×𝐺&'()* acting on a d-dim system is defined 
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Projective rep and anomalous texture
A “proj rep” of 𝐺 = 𝐺!"#×𝐺&'()* acting on a d-dim system is defined 
as an anomalous texture which corresp to consistent assignments of 
proj rep of the isotropy group at each site r
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Projective rep and anomalous texture
A “proj rep” of 𝐺 = 𝐺!"#×𝐺&'()* acting on a d-dim system is defined 
as an anomalous texture which corresp to consistent assignments of 
proj rep of the isotropy group at each site r
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[Else-Thorngren (’19)]
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Introduction

Magnetic groups – also known as antisymmetry
groups, Shubnikov groups, Heesch groups, Opechow-
ski–Guccione (OG) groups, as well as dichromatic,
2-color, or simply black-and-white groups – are the
simplest extension to standard point group and space
group theory. They allow directly to describe, clas-
sify, and study the consequences of the symmetry of
crystals, characterized by having a certain property,
associated with each crystal site, that can take one of
two possible values. This is done by introducing a
single external operation of order two that inter-
changes the two possible values everywhere through-
out the crystal. This operation can be applied to the
crystal along with any of the standard point group
or space group operations, and is denoted by adding
a prime to the original operation. Thus, any rota-
tion g followed by this external operation is denoted
by g0.

To start with, a few typical examples of this two-
valued property are given, some of which are illus-
trated in Figure 1. In the section ‘‘Magnetic point
groups’’ the notion of a magnetic point group is dis-
cussed, followed by a discussion on magnetic space
groups in the section ‘‘Magnetic space groups’’. The
section ‘‘Extinctions in neutron diffraction of anti-
ferromagnetic crystals’’ describes one of the most

(a)

(b)

(c)

(d)

(e)

ClNa Na Na Na Na NaCl Cl Cl Cl Cl

Figure 1 Several realizations of the simple 1D magnetic space
group pp!1. Note that the number of symmetry translations is
doubled if one introduces an operation e 0 that interchanges the
two possible values of the property, associated with each crystal
site. Also note that spatial inversion !1 can be performed without a
prime on each crystal site, and with a prime ð!10Þ between every
two sites. (a) An abstract representation of the two possible val-
ues as the two colors – black and white. The operation e 0 is the
nontrivial permutation of the two colors. (b) A simple antifer-
romagnetic arrangement of spins. The operation e 0 is time
inversion which reverses the signs of the spins. (c) A ferromagne-
tic arrangement of two types of spins, where e 0 exchanges them
as in the case of two colors. (d) A 1D version of salt. e 0 ex-
changes the chemical identities of the two atomic species. (e) A
function f(x) whose overall sign changes by application of the
operation e 0.
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gJ Landé factor
Happ applied magnetic field (vector)
Happ applied magnetic field (magnitude)
Hm molecular field
J exchange integral
J total angular momentum
k0 propagation vector
l orbital quantum number
l orbital momentum
L orbital momentum
L Langevin function
m magnetic quantum number
m0 measured magnetic moment at 0K
m magnetic moment
ml orbital moment
ms spin moment
mz projection of m along Happ

M magnetization
Ms spontaneous magnetization

Ms,0 magnetization at absolute saturation
n molecular field coefficient
N number of moments per unit volume
ND demagnetizing field coefficient
NT total number of moments
S spin or spin angular momentum
T temperature
Tc critical temperature
TC Curie temperature
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TN Néel temperature
vat atom volume
x argument of the Langevin or Brillouin

function
z number of first neighbors
w magnetic susceptibility
mB Bohr magneton
meff effective moment
m0 permittivity of vacuum

Magnetic Point Groups and Space Groups
R Lifshitz, Tel Aviv University, Tel Aviv, Israel

& 2005, Elsevier Ltd. All Rights Reserved.

Introduction

Magnetic groups – also known as antisymmetry
groups, Shubnikov groups, Heesch groups, Opechow-
ski–Guccione (OG) groups, as well as dichromatic,
2-color, or simply black-and-white groups – are the
simplest extension to standard point group and space
group theory. They allow directly to describe, clas-
sify, and study the consequences of the symmetry of
crystals, characterized by having a certain property,
associated with each crystal site, that can take one of
two possible values. This is done by introducing a
single external operation of order two that inter-
changes the two possible values everywhere through-
out the crystal. This operation can be applied to the
crystal along with any of the standard point group
or space group operations, and is denoted by adding
a prime to the original operation. Thus, any rota-
tion g followed by this external operation is denoted
by g0.

To start with, a few typical examples of this two-
valued property are given, some of which are illus-
trated in Figure 1. In the section ‘‘Magnetic point
groups’’ the notion of a magnetic point group is dis-
cussed, followed by a discussion on magnetic space
groups in the section ‘‘Magnetic space groups’’. The
section ‘‘Extinctions in neutron diffraction of anti-
ferromagnetic crystals’’ describes one of the most

(a)

(b)

(c)

(d)

(e)

ClNa Na Na Na Na NaCl Cl Cl Cl Cl

Figure 1 Several realizations of the simple 1D magnetic space
group pp!1. Note that the number of symmetry translations is
doubled if one introduces an operation e 0 that interchanges the
two possible values of the property, associated with each crystal
site. Also note that spatial inversion !1 can be performed without a
prime on each crystal site, and with a prime ð!10Þ between every
two sites. (a) An abstract representation of the two possible val-
ues as the two colors – black and white. The operation e 0 is the
nontrivial permutation of the two colors. (b) A simple antifer-
romagnetic arrangement of spins. The operation e 0 is time
inversion which reverses the signs of the spins. (c) A ferromagne-
tic arrangement of two types of spins, where e 0 exchanges them
as in the case of two colors. (d) A 1D version of salt. e 0 ex-
changes the chemical identities of the two atomic species. (e) A
function f(x) whose overall sign changes by application of the
operation e 0.

Magnetic Point Groups and Space Groups 219

gJ Landé factor
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valuedpropertyaregiven,someofwhichareillus-
tratedinFigure1.Inthesection‘‘Magneticpoint
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cussed,followedbyadiscussiononmagneticspace
groupsinthesection‘‘Magneticspacegroups’’.The
section‘‘Extinctionsinneutrondiffractionofanti-
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Figure1Severalrealizationsofthesimple1Dmagneticspace
grouppp!1.Notethatthenumberofsymmetrytranslationsis
doubledifoneintroducesanoperatione0thatinterchangesthe
twopossiblevaluesoftheproperty,associatedwitheachcrystal
site.Alsonotethatspatialinversion!1canbeperformedwithouta
primeoneachcrystalsite,andwithaprimeð!10Þbetweenevery
twosites.(a)Anabstractrepresentationofthetwopossibleval-
uesasthetwocolors–blackandwhite.Theoperatione0isthe
nontrivialpermutationofthetwocolors.(b)Asimpleantifer-
romagneticarrangementofspins.Theoperatione0istime
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changesthechemicalidentitiesofthetwoatomicspecies.(e)A
functionf(x)whoseoverallsignchangesbyapplicationofthe
operatione0.
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gJLandéfactor
Happappliedmagneticfield(vector)
Happappliedmagneticfield(magnitude)
Hmmolecularfield
Jexchangeintegral
Jtotalangularmomentum
k0propagationvector
lorbitalquantumnumber
lorbitalmomentum
Lorbitalmomentum
LLangevinfunction
mmagneticquantumnumber
m0measuredmagneticmomentat0K
mmagneticmoment
mlorbitalmoment
msspinmoment
mzprojectionofmalongHapp

Mmagnetization
Msspontaneousmagnetization

Ms,0magnetizationatabsolutesaturation
nmolecularfieldcoefficient
Nnumberofmomentsperunitvolume
NDdemagnetizingfieldcoefficient
NTtotalnumberofmoments
Sspinorspinangularmomentum
Ttemperature
Tccriticaltemperature
TCCurietemperature
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associatedwitheachcrystalsite,thatcantakeoneof
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groups’’thenotionofamagneticpointgroupisdis-
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section‘‘Extinctionsinneutrondiffractionofanti-
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Figure1Severalrealizationsofthesimple1Dmagneticspace
grouppp!1.Notethatthenumberofsymmetrytranslationsis
doubledifoneintroducesanoperatione0thatinterchangesthe
twopossiblevaluesoftheproperty,associatedwitheachcrystal
site.Alsonotethatspatialinversion!1canbeperformedwithouta
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romagneticarrangementofspins.Theoperatione0istime
inversionwhichreversesthesignsofthespins.(c)Aferromagne-
ticarrangementoftwotypesofspins,wheree0exchangesthem
asinthecaseoftwocolors.(d)A1Dversionofsalt.e0ex-
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functionf(x)whoseoverallsignchangesbyapplicationofthe
operatione0.
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Introduction

M
agnetic

groups
–

also
known

as
antisymmetry

groups, Shubnikov groups, Heesch groups, Opechow-

ski–Guccione (OG) groups, as well as dichromatic,

2-color, or simply black-and-white groups – are the

simplest extension to standard point group and space

group theory. They allow
directly to describe, clas-

sify, and study the consequences of the symmetry of

crystals, characterized by having a certain property,

associated with each crystal site, that can take one of

two
possible values. This is done by introducing a

single
external operation

of order two
that inter-

changes the two possible values everywhere through-

out the crystal. This operation can be applied to the

crystal along with any of the standard point group

or space group operations, and is denoted by adding

a prime to
the original operation. Thus, any rota-

tion g followed by this external operation is denoted

by g 0.To start with, a few
typical examples of this two-

valued property are given, some of which are illus-

trated
in

Figure 1. In
the section

‘‘M
agnetic point

groups’’ the notion of a magnetic point group is dis-

cussed, followed by a discussion on magnetic space

groups in the section ‘‘M
agnetic space groups’’. The

section
‘‘Extinctions in

neutron
diffraction

of anti-

ferromagnetic
crystals’’ describes one

of the
most

(a)

(b)

(c)

(d)

(e)
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Cl

Figure 1
Several realizations of the simple 1D

magnetic space

group
p
p !1. Note

that the
number of symmetry

translations
is

doubled if one introduces an operation e 0
that interchanges the

two possible values of the property, associated with each crystal

site. Also note that spatial inversion !1 can be performed without a

prime on each crystal site, and with a prime ð !1 0Þ between every

two sites. (a) An abstract representation of the two possible val-

ues as the two colors – black and white. The operation e 0
is the

nontrivial permutation
of the

two
colors. (b) A

simple
antifer-

romagnetic
arrangement of spins. The

operation
e 0

is
time

inversion which reverses the signs of the spins. (c) A ferromagne-

tic arrangement of two types of spins, where e 0
exchanges them

as in
the

case
of two

colors. (d) A
1D

version
of salt. e 0

ex-

changes the chemical identities of the two atomic species. (e) A

function
f(x) whose

overall sign
changes by application

of the

operation e 0.
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TN Néel temperature
vat atom volume
x argument of the Langevin or Brillouin

function
z number of first neighbors
w magnetic susceptibility
mB Bohr magneton
meff effective moment
m0 permittivity of vacuum

Magnetic Point Groups and Space Groups
R Lifshitz, Tel Aviv University, Tel Aviv, Israel

& 2005, Elsevier Ltd. All Rights Reserved.

Introduction

Magnetic groups – also known as antisymmetry
groups, Shubnikov groups, Heesch groups, Opechow-
ski–Guccione (OG) groups, as well as dichromatic,
2-color, or simply black-and-white groups – are the
simplest extension to standard point group and space
group theory. They allow directly to describe, clas-
sify, and study the consequences of the symmetry of
crystals, characterized by having a certain property,
associated with each crystal site, that can take one of
two possible values. This is done by introducing a
single external operation of order two that inter-
changes the two possible values everywhere through-
out the crystal. This operation can be applied to the
crystal along with any of the standard point group
or space group operations, and is denoted by adding
a prime to the original operation. Thus, any rota-
tion g followed by this external operation is denoted
by g0.

To start with, a few typical examples of this two-
valued property are given, some of which are illus-
trated in Figure 1. In the section ‘‘Magnetic point
groups’’ the notion of a magnetic point group is dis-
cussed, followed by a discussion on magnetic space
groups in the section ‘‘Magnetic space groups’’. The
section ‘‘Extinctions in neutron diffraction of anti-
ferromagnetic crystals’’ describes one of the most

(a)

(b)

(c)

(d)

(e)

ClNa Na Na Na Na NaCl Cl Cl Cl Cl

Figure 1 Several realizations of the simple 1D magnetic space
group pp!1. Note that the number of symmetry translations is
doubled if one introduces an operation e 0 that interchanges the
two possible values of the property, associated with each crystal
site. Also note that spatial inversion !1 can be performed without a
prime on each crystal site, and with a prime ð!10Þ between every
two sites. (a) An abstract representation of the two possible val-
ues as the two colors – black and white. The operation e 0 is the
nontrivial permutation of the two colors. (b) A simple antifer-
romagnetic arrangement of spins. The operation e 0 is time
inversion which reverses the signs of the spins. (c) A ferromagne-
tic arrangement of two types of spins, where e 0 exchanges them
as in the case of two colors. (d) A 1D version of salt. e 0 ex-
changes the chemical identities of the two atomic species. (e) A
function f(x) whose overall sign changes by application of the
operation e 0.
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Introduction

Magnetic groups – also known as antisymmetry
groups, Shubnikov groups, Heesch groups, Opechow-
ski–Guccione (OG) groups, as well as dichromatic,
2-color, or simply black-and-white groups – are the
simplest extension to standard point group and space
group theory. They allow directly to describe, clas-
sify, and study the consequences of the symmetry of
crystals, characterized by having a certain property,
associated with each crystal site, that can take one of
two possible values. This is done by introducing a
single external operation of order two that inter-
changes the two possible values everywhere through-
out the crystal. This operation can be applied to the
crystal along with any of the standard point group
or space group operations, and is denoted by adding
a prime to the original operation. Thus, any rota-
tion g followed by this external operation is denoted
by g0.

To start with, a few typical examples of this two-
valued property are given, some of which are illus-
trated in Figure 1. In the section ‘‘Magnetic point
groups’’ the notion of a magnetic point group is dis-
cussed, followed by a discussion on magnetic space
groups in the section ‘‘Magnetic space groups’’. The
section ‘‘Extinctions in neutron diffraction of anti-
ferromagnetic crystals’’ describes one of the most

(a)

(b)

(c)

(d)

(e)

ClNa Na Na Na Na NaCl Cl Cl Cl Cl

Figure 1 Several realizations of the simple 1D magnetic space
group pp!1. Note that the number of symmetry translations is
doubled if one introduces an operation e 0 that interchanges the
two possible values of the property, associated with each crystal
site. Also note that spatial inversion !1 can be performed without a
prime on each crystal site, and with a prime ð!10Þ between every
two sites. (a) An abstract representation of the two possible val-
ues as the two colors – black and white. The operation e 0 is the
nontrivial permutation of the two colors. (b) A simple antifer-
romagnetic arrangement of spins. The operation e 0 is time
inversion which reverses the signs of the spins. (c) A ferromagne-
tic arrangement of two types of spins, where e 0 exchanges them
as in the case of two colors. (d) A 1D version of salt. e 0 ex-
changes the chemical identities of the two atomic species. (e) A
function f(x) whose overall sign changes by application of the
operation e 0.
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ski–Guccione (OG) groups, as well as dichromatic,
2-color, or simply black-and-white groups – are the
simplest extension to standard point group and space
group theory. They allow directly to describe, clas-
sify, and study the consequences of the symmetry of
crystals, characterized by having a certain property,
associated with each crystal site, that can take one of
two possible values. This is done by introducing a
single external operation of order two that inter-
changes the two possible values everywhere through-
out the crystal. This operation can be applied to the
crystal along with any of the standard point group
or space group operations, and is denoted by adding
a prime to the original operation. Thus, any rota-
tion g followed by this external operation is denoted
by g0.

To start with, a few typical examples of this two-
valued property are given, some of which are illus-
trated in Figure 1. In the section ‘‘Magnetic point
groups’’ the notion of a magnetic point group is dis-
cussed, followed by a discussion on magnetic space
groups in the section ‘‘Magnetic space groups’’. The
section ‘‘Extinctions in neutron diffraction of anti-
ferromagnetic crystals’’ describes one of the most
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TN Néel temperature
vat atom volume
x argument of the Langevin or Brillouin

function
z number of first neighbors
w magnetic susceptibility
mB Bohr magneton
meff effective moment
m0 permittivity of vacuum

Magnetic Point Groups and Space Groups
R Lifshitz, Tel Aviv University, Tel Aviv, Israel

& 2005, Elsevier Ltd. All Rights Reserved.

Introduction

Magnetic groups – also known as antisymmetry
groups, Shubnikov groups, Heesch groups, Opechow-
ski–Guccione (OG) groups, as well as dichromatic,
2-color, or simply black-and-white groups – are the
simplest extension to standard point group and space
group theory. They allow directly to describe, clas-
sify, and study the consequences of the symmetry of
crystals, characterized by having a certain property,
associated with each crystal site, that can take one of
two possible values. This is done by introducing a
single external operation of order two that inter-
changes the two possible values everywhere through-
out the crystal. This operation can be applied to the
crystal along with any of the standard point group
or space group operations, and is denoted by adding
a prime to the original operation. Thus, any rota-
tion g followed by this external operation is denoted
by g0.

To start with, a few typical examples of this two-
valued property are given, some of which are illus-
trated in Figure 1. In the section ‘‘Magnetic point
groups’’ the notion of a magnetic point group is dis-
cussed, followed by a discussion on magnetic space
groups in the section ‘‘Magnetic space groups’’. The
section ‘‘Extinctions in neutron diffraction of anti-
ferromagnetic crystals’’ describes one of the most

(a)

(b)

(c)

(d)

(e)

ClNa Na Na Na Na NaCl Cl Cl Cl Cl

Figure 1 Several realizations of the simple 1D magnetic space
group pp!1. Note that the number of symmetry translations is
doubled if one introduces an operation e 0 that interchanges the
two possible values of the property, associated with each crystal
site. Also note that spatial inversion !1 can be performed without a
prime on each crystal site, and with a prime ð!10Þ between every
two sites. (a) An abstract representation of the two possible val-
ues as the two colors – black and white. The operation e 0 is the
nontrivial permutation of the two colors. (b) A simple antifer-
romagnetic arrangement of spins. The operation e 0 is time
inversion which reverses the signs of the spins. (c) A ferromagne-
tic arrangement of two types of spins, where e 0 exchanges them
as in the case of two colors. (d) A 1D version of salt. e 0 ex-
changes the chemical identities of the two atomic species. (e) A
function f(x) whose overall sign changes by application of the
operation e 0.

Magnetic Point Groups and Space Groups 219

gJ

La
nd
éf
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TNNéeltemperature
vatatomvolume
xargumentoftheLangevinorBrillouin

function
znumberoffirstneighbors
wmagneticsusceptibility
mBBohrmagneton
meffeffectivemoment
m0permittivityofvacuum

MagneticPointGroupsandSpaceGroups
RLifshitz,TelAvivUniversity,TelAviv,Israel

&2005,ElsevierLtd.AllRightsReserved.

Introduction

Magneticgroups–alsoknownasantisymmetry
groups,Shubnikovgroups,Heeschgroups,Opechow-
ski–Guccione(OG)groups,aswellasdichromatic,
2-color,orsimplyblack-and-whitegroups–arethe
simplestextensiontostandardpointgroupandspace
grouptheory.Theyallowdirectlytodescribe,clas-
sify,andstudytheconsequencesofthesymmetryof
crystals,characterizedbyhavingacertainproperty,
associatedwitheachcrystalsite,thatcantakeoneof
twopossiblevalues.Thisisdonebyintroducinga
singleexternaloperationofordertwothatinter-
changesthetwopossiblevalueseverywherethrough-
outthecrystal.Thisoperationcanbeappliedtothe
crystalalongwithanyofthestandardpointgroup
orspacegroupoperations,andisdenotedbyadding
aprimetotheoriginaloperation.Thus,anyrota-
tiongfollowedbythisexternaloperationisdenoted
byg0.

Tostartwith,afewtypicalexamplesofthistwo-
valuedpropertyaregiven,someofwhichareillus-
tratedinFigure1.Inthesection‘‘Magneticpoint
groups’’thenotionofamagneticpointgroupisdis-
cussed,followedbyadiscussiononmagneticspace
groupsinthesection‘‘Magneticspacegroups’’.The
section‘‘Extinctionsinneutrondiffractionofanti-
ferromagneticcrystals’’describesoneofthemost

(a)

(b)

(c)

(d)

(e)

Cl NaNaNaNaNaNa ClClClClCl

Figure1Severalrealizationsofthesimple1Dmagneticspace
grouppp!1.Notethatthenumberofsymmetrytranslationsis
doubledifoneintroducesanoperatione0thatinterchangesthe
twopossiblevaluesoftheproperty,associatedwitheachcrystal
site.Alsonotethatspatialinversion!1canbeperformedwithouta
primeoneachcrystalsite,andwithaprimeð!10Þbetweenevery
twosites.(a)Anabstractrepresentationofthetwopossibleval-
uesasthetwocolors–blackandwhite.Theoperatione0isthe
nontrivialpermutationofthetwocolors.(b)Asimpleantifer-
romagneticarrangementofspins.Theoperatione0istime
inversionwhichreversesthesignsofthespins.(c)Aferromagne-
ticarrangementoftwotypesofspins,wheree0exchangesthem
asinthecaseoftwocolors.(d)A1Dversionofsalt.e0ex-
changesthechemicalidentitiesofthetwoatomicspecies.(e)A
functionf(x)whoseoverallsignchangesbyapplicationofthe
operatione0.
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Introduction

Magnetic groups – also known as antisymmetry
groups, Shubnikov groups, Heesch groups, Opechow-
ski–Guccione (OG) groups, as well as dichromatic,
2-color, or simply black-and-white groups – are the
simplest extension to standard point group and space
group theory. They allow directly to describe, clas-
sify, and study the consequences of the symmetry of
crystals, characterized by having a certain property,
associated with each crystal site, that can take one of
two possible values. This is done by introducing a
single external operation of order two that inter-
changes the two possible values everywhere through-
out the crystal. This operation can be applied to the
crystal along with any of the standard point group
or space group operations, and is denoted by adding
a prime to the original operation. Thus, any rota-
tion g followed by this external operation is denoted
by g0.

To start with, a few typical examples of this two-
valued property are given, some of which are illus-
trated in Figure 1. In the section ‘‘Magnetic point
groups’’ the notion of a magnetic point group is dis-
cussed, followed by a discussion on magnetic space
groups in the section ‘‘Magnetic space groups’’. The
section ‘‘Extinctions in neutron diffraction of anti-
ferromagnetic crystals’’ describes one of the most

(a)

(b)

(c)

(d)

(e)

ClNa Na Na Na Na NaCl Cl Cl Cl Cl

Figure 1 Several realizations of the simple 1D magnetic space
group pp!1. Note that the number of symmetry translations is
doubled if one introduces an operation e 0 that interchanges the
two possible values of the property, associated with each crystal
site. Also note that spatial inversion !1 can be performed without a
prime on each crystal site, and with a prime ð!10Þ between every
two sites. (a) An abstract representation of the two possible val-
ues as the two colors – black and white. The operation e 0 is the
nontrivial permutation of the two colors. (b) A simple antifer-
romagnetic arrangement of spins. The operation e 0 is time
inversion which reverses the signs of the spins. (c) A ferromagne-
tic arrangement of two types of spins, where e 0 exchanges them
as in the case of two colors. (d) A 1D version of salt. e 0 ex-
changes the chemical identities of the two atomic species. (e) A
function f(x) whose overall sign changes by application of the
operation e 0.
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Introduction

Magneticgroups–alsoknownasantisymmetry
groups,Shubnikovgroups,Heeschgroups,Opechow-
ski–Guccione(OG)groups,aswellasdichromatic,
2-color,orsimplyblack-and-whitegroups–arethe
simplestextensiontostandardpointgroupandspace
grouptheory.Theyallowdirectlytodescribe,clas-
sify,andstudytheconsequencesofthesymmetryof
crystals,characterizedbyhavingacertainproperty,
associatedwitheachcrystalsite,thatcantakeoneof
twopossiblevalues.Thisisdonebyintroducinga
singleexternaloperationofordertwothatinter-
changesthetwopossiblevalueseverywherethrough-
outthecrystal.Thisoperationcanbeappliedtothe
crystalalongwithanyofthestandardpointgroup
orspacegroupoperations,andisdenotedbyadding
aprimetotheoriginaloperation.Thus,anyrota-
tiongfollowedbythisexternaloperationisdenoted
byg0.

Tostartwith,afewtypicalexamplesofthistwo-
valuedpropertyaregiven,someofwhichareillus-
tratedinFigure1.Inthesection‘‘Magneticpoint
groups’’thenotionofamagneticpointgroupisdis-
cussed,followedbyadiscussiononmagneticspace
groupsinthesection‘‘Magneticspacegroups’’.The
section‘‘Extinctionsinneutrondiffractionofanti-
ferromagneticcrystals’’describesoneofthemost

(a)

(b)

(c)

(d)

(e)

Cl NaNaNaNaNaNa ClClClClCl

Figure1Severalrealizationsofthesimple1Dmagneticspace
grouppp!1.Notethatthenumberofsymmetrytranslationsis
doubledifoneintroducesanoperatione0thatinterchangesthe
twopossiblevaluesoftheproperty,associatedwitheachcrystal
site.Alsonotethatspatialinversion!1canbeperformedwithouta
primeoneachcrystalsite,andwithaprimeð!10Þbetweenevery
twosites.(a)Anabstractrepresentationofthetwopossibleval-
uesasthetwocolors–blackandwhite.Theoperatione0isthe
nontrivialpermutationofthetwocolors.(b)Asimpleantifer-
romagneticarrangementofspins.Theoperatione0istime
inversionwhichreversesthesignsofthespins.(c)Aferromagne-
ticarrangementoftwotypesofspins,wheree0exchangesthem
asinthecaseoftwocolors.(d)A1Dversionofsalt.e0ex-
changesthechemicalidentitiesofthetwoatomicspecies.(e)A
functionf(x)whoseoverallsignchangesbyapplicationofthe
operatione0.
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(𝜋-rotation)×(site-centered inversion)



Non-featureless spin interactions in 1d

u: uniform     s: staggered     DM: Dzyaloshinskii-Moriya     TP: (scalar-)triple-product
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TABLE I. Column: Five minimal symmetry classes which give rise to 1d LSM ingappability. Row: Typical spin interactions
which respect at least one of these symmetry classes. Some non-featureless combinations: i) XYZ+xDM/xTP where x =u or
s; ii) XYZ+sDM+uTP+sTP.
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TABLE II. Column: Five minimal symmetry classes which give rise to 1d LSM ingappability. Row: Typical spin interactions
which respect at least one of these symmetry classes. Some non-featureless combinations: i) XYZ+xDM/xTP where x =u or
s; ii) XYZ+sDM+uTP+sTP.

fore HuTP =
P

r J✏SrSr+1Sr+2, which is invariant un-
der the conventional lattice translation T1 but breaks T2.
The combination �HXYZ-sTP + �HuTP with the prefac-
tors �,� is the general triple-product model with two spin
1/2’s per unit cell. In addition, The LSM-type ingappa-
bilities based on T1, T2 and I1 do not exclude a uniquely
gapped phase for nonzero �,� in general, where it ex-
plicitly breaks I1, T1 and T2. However, our result on the
LSM-type ingappabilities by (Z2⇥Z2)⇥I2 su�ciently for-
bids such a featureless phase and the �-� phase diagram is
generally gapless or spontaneously breaking symmetries.
Since HXYZ-sTP favors the algebraic long-range antifer-
romagnetic order while HuTP the ferromagnetic order at
their isotropic points, we conjecture a phase transition in
the �-� phase diagram separating these two orders.

LSM-type ingappability without spin-rotation
symmetries.— Let us relax the symmetry require-
ment for the LSM ingappability further in the sense that
even the discrete spin-rotation symmetry can be explic-
itly broken. This situation is relevant in the presence
of anistropic spin-orbit coupling that induces the DM
interaction. The symmetry T2 alone cannot ensure the
ingappability similarly as T1 and I1. In constrast, I2

alone can guarantee the ingappability, e.g., there existing
no gapping term preserving Eq. (12) in the field theory.
More precisely, the symmetry I2 is anomalous by itself,
and indeed our lattice theory is realizable as a boundary
of a nontrivial I2-symmetry-protected topological bulk
consisting of paralleling Haldane chains. This bulk is
nontrivial due to the following dimensional reduction
argument [34, 35]. Except for the Haldane chain exactly

along the reflection fixed line, the remaining bulk can
be trivialized in a I2-symmetric way. I2 symmetry is
reduced to (internal) TR along the inversion fixed line,
under which the center Haldane chain is nontrivial. It
is stable in that adjoining/coupling the center Haldane
chain from the left/right bulk parts must be in pair and
the SPT classification of TR is precisely Z2. Therefore,
the featureless phase is forbidden as long as I2 is re-
spected. We can propose that the I2-preserving spin-1/2
chiral model with a staggered Dzyaloshinskii-Moriya

(sDM) interaction HsDM =
P

r(�1)r ~D ·

⇣
~Sr ⇥

~Sr+1

⌘

must be gapless or spontaneously breaking I2, where ~D

is a constant vector. Notably, a generic ~D completely
breaks the spin-rotation symmetry, which makes the
traditional LSM theorems inapplicable. Numerically,
critical XY or HAF models with the staggered DM
interaction [22–27] have been observed, of which the
stability can be attributed to the above LSM-type
ingappability of I2 alone while it cannot be understood
by the traditional LSM arguments. It is also consistent
with the proposal that HAF+sDM can be mapped to
XXZ model [36].

The above dimensional reduction argument can be sim-
ilarly used to shown that the spin-1/2 chain is ingap-
pable if it has a modified site-centered inversion sym-
metry Ĩ which is reduced to an internal symmetry Ic =
Z2 ⇥Z2 or TR at the inversion center. Such a symmetry
G can be the group generated by R

⇡
z and another ⇡ rota-

tion but combined with the reflection I1. It is respected
by a uniform Dzyaloshinskii-Moriya (uDM) interaction
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alone can guarantee the ingappability, e.g., there existing
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(sDM) interaction HsDM =
P
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must be gapless or spontaneously breaking I2, where ~D

is a constant vector. Notably, a generic ~D completely
breaks the spin-rotation symmetry, which makes the
traditional LSM theorems inapplicable. Numerically,
critical XY or HAF models with the staggered DM
interaction [22–27] have been observed, of which the
stability can be attributed to the above LSM-type
ingappability of I2 alone while it cannot be understood
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XXZ model [36].
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pable if it has a modified site-centered inversion sym-
metry Ĩ which is reduced to an internal symmetry Ic =
Z2 ⇥Z2 or TR at the inversion center. Such a symmetry
G can be the group generated by R

⇡
z and another ⇡ rota-

tion but combined with the reflection I1. It is respected
by a uniform Dzyaloshinskii-Moriya (uDM) interaction
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We study quantum many-body systems with spin-rotation symmetries and an exotic antiunitary
translation or inversion symmetry formed from time reversal and concentrate on a class of chiral
spin models of which the gaplessness cannot be understood by earlier works. Based on a symmetry-
twisting method and spectrum robustness, we propose that the half-integer spin systems respecting
these symmetries must either be gapless or possess degenerate ground states. We also relate this
ingappability to the quantum anomaly, and the anomaly-matching argument resolves the puzzling
criticality stability and the universality class of the chiral spin models. By the anomaly argument, we
also claim that the antiunitary inversion symmetry alone is su�cient to ensure the ingappability even
though the spin-rotation symmetry is completely broken. Furthermore, we apply our ingappability
and stability analyses to several hybridized Hamiltonian to obtain nontrivial constraints on the
possible phase diagram.
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sDMI 7 7 7 7 3

u(3-spin) 3 7 7 7 3

s(3-spin) 7 7 3 7 3

TABLE I. The symmetry preserving and breaking of the mod-
els: all these models have LSM ingappabilities ensured by
their symmetries, and I2 is respected by the general combi-
nation HchHAF-DM.

HNF({J↵}) + hH
NF

({J 0
�}) (1)

HHAF = J
X

r

~Sr ·
~Sr+1

(2)

HXYZ =
X

r,↵

J↵S
↵
r S

↵
r+1

(3)

HuDMI =
X

r

~D ·

⇣
~Sr ⇥

~Sr+1

⌘
,

(4)

HsDMI =
X

r

(�1)r ~D ·

⇣
~Sr ⇥

~Sr+1

⌘
,

(5)

Hu(3-spin) = J
X

r

~Sr · (~Sr+1 ⇥
~Sr+2)

(6)

Hs(3-spin) = J
X

r

(�1)r ~Sr · (~Sr+1 ⇥
~Sr+2)

(7)

U(gh) = !(g, h)U(g)U(h), g, h 2 G (8)

!(g, h) = ei�(g,h) (9)

U(n̂, ✓) = ei✓n̂·
~S (10)

U(n̂, ✓)U(n̂, 2⇡ � ✓) = e2⇡in̂·
~S = (�1)s = (�1)sU(n̂, 2⇡)

NF: non-featureless          NF: not non-featureless

QPT of Ginzburg-Landau, BKT, etc.

FM/AFM/gapless PM/SPT
external field (Z), 
cluster model (XZX), 
etc.

XYZ, DM, STP, etc.

2

tool for characterizing QPTs and ground-state factoriza-
tion. Exploring both criticality and factorization using
the tools of quantum information has proven fruitful in
a number of contexts, e.g., low-dimensional spin models,
fermionic systems, cold atom system, and open quantum
systems.

In this work, we focus on the one-dimensional (1D)
Heisenberg model with nearest neighbor exchange cou-
pling, which has long served as an archetype for the study
of quantum magnetism in low dimensions. Strong fluc-
tuations of interacting spins are of particular importance
at low dimension, where the Mermin-Wagner theorem
states that thermal fluctuations prevent long-range order
at any finite temperature when the Hamiltonian obeys
a continuous rotational symmetry in spin space. Even
at absolute zero temperature, the zero-point fluctuations
may also prevent long-range order by incorporating addi-
tional interactions. The e↵ects induced by external elec-
tric and magnetic fields have been of particular interest
since the magnetic state can be qualitatively di↵erent de-
pending on the magnitude and direction of the external
fields. This has led to interest in the study of QPTs at
finite fields [25–27].

Recently, Radhakrishnan, Ermakov, and Byrnes [28]
studied the quantum coherence in the XY chain with
Dzyaloshinsky-Moriya (DM) interaction and indicated
that quantum Jensen-Shannon divergence can e�ciently
probe the second-order QPT. Moreover, the local and
intrinsic ingredient among the total quantum coherence
can be discriminated to characterize the first-order QPTs
in spin-1/2 XXZ chain [29] and the topological QPTs in
the extended XY model [30]. The QPTs and the quan-
tum coherence in Heisenberg XYZ systems were not in-
vestigated carefully until now. While most studies con-
sider the ground-state factorization in symmetric spin
system, the knowledge is lacking in wondering the ex-
istence of factorized ground states in more complex mul-
tipartite systems. The primary motivation of the present
work is to try to elucidate the role of DM interaction in
Heisenberg XYZ model, and explore whether quantum
criticality and factorization can be captured by emerg-
ing coherence. Exploiting favorable figures of merit of
quantum information measures allows extracting the full
ground-state phase diagram of the spin-1/2 Heisenberg
XYZ chain. We remark that especially two-qubit reduced
density matrices adopted in Ref. [28] are improper.

The remainder of this paper is organized as follows.
We introduce the 1D anisotropic Heisenberg model with
DM interactions in Sec. II. In Sec. III, we present the
analytical approach and calculate quantum entanglement
and quantum coherence. In Sec. IV, we discuss the scal-
ing behavior of the local quantum coherence in the XY
model, and the factorization phenomena under the inter-
play of DM interactions and magnetic field. Finally, in
Sec. V we give the summary and conclusion.

II. THE MODEL

We consider the anisotropic Heisenberg chain de-
scribed by the following Hamiltonian:

H = J
NX

j=1

✓
1 + �

2
�x
j �

x
j+1 +

1� �

2
�y
j �

y
j+1 +��z

j�
z
j+1

◆

+
NX

j=1

~D · (~�j ⇥ ~�j+1)� h
NX

j=1

�z
j , , (1)

where N is the number of the spins in the chain, and the
periodic boundary condition is assumed, i.e., ~�N+j = ~�j ,
and ~�j = {�x

j ,�
y
j ,�

z
j }. The model has AFM exchange

coupling (J � 0), anisotropy �, DM vector ~D, and uni-
form magnetic field strength h acting on {�z

j }. Here we

presume that the ~D vector is along the direction perpen-
dicular to the plane, i.e., ~D = Dẑ and we take D as a
unit of ~D. The parameter � � 0 measures the anisotropy
of spin-spin interactions in the xy plane which typically
varies from 0 (isotropic XY model) to 1 (Ising model).
Several types of model interactions are currently being

explored for simulating e↵ective spin systems like Ising,
XY, and XYZ, which may stand for systems of trapped
ions [31] or polaritons [32]. An important extension of
the e↵ective models is the DM interaction which can
be interpreted as an electric field. The DM interaction
was introduced by Dzyaloshinskii and Moriya in a phe-
nomenological model [33] and a microscopic model [34],
respectively. The DM interactions exist in solids, such as
ferrimagnetic insulator Cu2OSeO3 [35–37] or multiferroic
BiFeO3 [38], and are synthesized in optical lattices for
both fermions [39, 40] and bosons [41, 42].

A microscopic mechanism arises from that the elec-
tric polarization generated by the displacement of op-
positely charged ions is driven by non-collinear spiral
magnetic structures with a cycloidal component as de-
scribed by Tokura [43], ~P / êij ⇥ (~�i ⇥ ~�j), where êij
is the unit vector connecting the neighboring spins ~�i

and ~�j . The coupling coe�cient of macroscopic polar-
ization is material-dependent [44], and the sign depends
on the vector spin chirality. In this respect, an energy
shift, � ~D · ~P , by applying an electric field ~D prevails
over the Heisenberg exchange and the QPT occurs in
this system. The supplemented DM interaction can be
gauged away by performing a spin rotation with respect
to a twist phase, � = tan�1(D/J) of spin operators,
�+
j �

�
j+1 ! �+

j �
�
j+1e

i�, for � = 0 [45]. So, in this way the
XXZ model has been changed to the XYZ model after
rotation. Note that the absence of inversion symmetry
in DM interaction introduces anisotropy to the system.

III. THE INFORMATION MEASURES

For general parameters, Hamiltonian (1) is not inte-
grable except at specific points in parameter space. In
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FIG. 8. Di↵erent parameter regimes of the 1D Heisenberg
model in the (h, �) plane obtained: (a) phase diagram; the
color map represents the strength of the LQCx I(⇢i,i+1,�

x
i );

(b) two-qubit correlation function h�x
i �

y
i+1i; the color map

represents the strength of the correlation function. The white
zone in the AFM phase and the chiral phase delegates the
factorization line and the factorization region, respectively.
Parameters: D = 0.2 , � = 0.2, and J = 1.

romagnetic) phase [26]. In the following, we concentrate
on the planar regime (|�| < 1). Figure 5 shows the corre-
sponding behavior of the entanglement and the quantum
coherence with � = 0.6, � = 0.2 and D = 0.2. One
observes that comparing with Fig. 3, the presence of the
term / � merely increases the values of field at the criti-
cal point hc and the factorized point hf . Meanwhile, the
hopping parameters µ and t are found to be complex,
but the pairing parameter � remains a real number, as is
disclosed in Fig. 6.

The first-order derivative of the LQCz still follows a
logarithmic divergence across the critical point, as is
shown in the inset of Fig. 7. The calculations are sum-
marized by the ground-state phase diagram shown in

Fig. 8(a). One finds that h�x
i �

y
i+1i = 0 in the gapped

phase [see Fig. 8(b)], and these three self-consistent pa-
rameters are found to be real numbers as a function of h.
On the other hand, when the system is in the gapless
phase, h�x

i �
y
i+1i becomes finite. Such a feature implies

that h�x
i �

y
i+1i is an order parameter to identify the chi-

ral phase for general Heisenberg XYZ model.

V. CONCLUSION AND SUMMARY

In this article, we studied the one-dimensional XYZ
model with Dzyaloshinskii-Moriya interaction, which in-
duces a gapless chiral phase. We point out a few di↵er-
ences in deriving the exact correlation functions in this
chiral phase and the associated density matrix in systems
with broken reflection symmetry, which then give rise
to the misleading message about the quantum critical-
ity. We firstly scrutinize the limiting situation, where the
XY chain is rigorously solvable by applying the Jordan-
Wigner transformation. Knowledge of exact solutions
endowed with precisely determined properties of separa-
bility or criticality can be of great relevance in the study
of general cases, that are not exactly solvable. For models
not admitting exact general solutions, we carry on an an-
alytical approach that combines a Jordan-Wigner trans-
formation with a mean-field approximation. We find the
Wigner-Yanase skew information as a quantum coher-
ence witness which may well identify the quantum phase
transitions.
Besides, the logarithmic scaling behavior for the infor-

mation measures are found around quantum criticality.
Quantum coherence arising from the quantum superposi-
tion acts as one of perspective towards a kaleidoscope of
quantum correlations, and it is the key resource for ap-
plications of quantum technology besides entanglement
and other types of quantum correlations. We have seen
that the ground states of complex quantum systems are
typically entangled. Nevertheless, for some specific val-
ues of the parameters, a ground state may be completely
separable.
We also discussed the occurrence of the separable

ground state in the antiferromagnetic phase, which is
marked by the vanishing of the concurrence. Such fac-
torization points can be also sensed by the discontinuous
jump of the first derivative of the Wigner-Yanase skew
information measure. In the gapless chiral phase, the fac-
torization line becomes the factorization volume, which
is implied by the extinguishment of ground-state pairwise
concurrence. A merit of the concurrence and local quan-
tum coherence is that the property emerges for a finite
chain, in contrast to the signal of global entanglement
can be observed in the thermodynamics limit after taking
the phase-flip symmetry breaking into account [57]. As
most multipartite measures are exhaustively expensive
to obtain, the bipartite measures are comparably easy
to calculate, and especially can be determined without a
full tomography of the state. Nevertheless, the vanishing

E.g. 
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Summary
• Conventional LSM thm: 1d spin chain w/ lattice-transl and spin-rot 

symm cannot have a unique gapped ground state if the spin per unit cell 
is half-integral.

• In this talk, we discuss various versions of 1d LSM thm for magnetic 
space groups (spin-rot + transl + time-rev + inv), basing on a symm-
twisting method as well as lattice homotopy.

• The extended LSM constraints apply to systems with a broader class of 
spin interactions, such as Dzyaloshinskii-Moriya and scalar-triple-product 
3-spin interactions.
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