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Symmetries in Quantum Many-Body Physics

o Lattice system with a finite-dimensional tensor product Hilbert space
H= ®}:1 C9 with a Hamiltonian H

e Symmetries/conserved quantities {Q, } are defined as operators that
commute with the Hamiltonian, [H, Q] = 0.

e Conventionally, additional structure is imposed on {Q,}.

@ Internal symmetries: On-site unitary representations of a (Lie) group G

el*? if G = U(1)

Qo=10d(g)®i(g)® --®0(g), eg. 0(g) =
i@ if G = SU(2)

@ Continuous symmetries: Conserved quantities are typically sums of
local operators, e.g. total charge, number of domain walls, etc.

@ Lattice symmetries: Unitary operators that implement translation,
rotation, reflection, etc.

2/22



Symmetries in Quantum Many-Body Physics

@ Symmetric Hamiltonians can be B
block-diagonalized into ]
symmetry quantum number
sectors.

Regular Quantum
Number Sectors

@ Sectors are uniquely labelled by
eigenvalues under (a maximally ]
commuting subset of) the {Q,}. B

@ Various generalizations of conventional symmetries are under active
exploration: Categorical symmetries, MPO symmetries, etc.?

e This talk: Different (?) generalization motivated by recent work on the
dynamics of certain quantum systems.

1J.McGreevy (2022)
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Quantum Many-Body Dynamics and Symmetries




Ergodicity in Isolated Quantum Systems

@ A quantum Hamiltonian is said to be ergodic if any initial state |¢(0))
evolves into a “thermal” state |¢(t)) = e~ |¢)(0))

@ Reduced density matrix of a thermal
state is the Gibbs density matrix of the B
subsystem

pP= |1/}> <¢| y PA= TI'B (p)7 PA ™~ eiﬁHlA

@ Eigenstate Thermalization Hypothesis
(ETH): Eigenstates |E,) in the middle of
the spectrum are thermal®

e Entanglement entropy obeys a volume
law S ~logD ~ L

o Eigenstate properties are a “smooth”
function of energy

m
4
I

}GS-like
GS

2J.M.Deutsch (1991), M. Srednicki (1994)
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Ergodicity in Symmetric Isolated Quantum Systems

(@) T T T

L=18,J=A,=1

o With symmetries: pa ~ e P(H-1N)la
ETH should hold for eigenstates within
each symmetry sector

@ Recent analytical and experimental

progress has identified two new types
of “weak’ violations®

o Hilbert Space Fragmentation 7.0
o Quantum Many-Body Scars o 50
@ Violations can be seen in several diag- %3,0 T
nostics, e.g., entanglement entropy of ;
. 1.0
the eigenstates.*

2M.Serbyn, D.A.Abanin, Z.Papic (2020); SM, B.A.Bernevig, N.Regnault (2021)
4Z.C.Yang, F.Liu, A.V.Gorshkov, T.ladecola (2020); M.Schecter, T.ladecola (2019)
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Hilbert Space Fragmentation

@ Dynamics under certain local Hamiltonians
splits the Hilbert space into exponentially
many dynamically disconnected subspaces
{K(H,|Rs)}, |Ra) being product states

K~exp(L)
H= @ K (H,|Ra))

j=1
K (M, |R)) = span, {e ™ |R)}

o Different subspaces are not distinguished by
obvious symmetry quantum numbers, can
show vastly different properties!®

@ Initial product states never thermalize w.r.t.
the full Hilbert space due to “hidden”
blocks after resolving known symmetries

5SM, A.Prem, R.Nandkishore, N.Regnault, B.A.Bernevig (2019)
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Hilbert Space Fragmentation

o Fragmentation generically occurs in one dimensional systems
conserving dipole moment (3_; jS7 with OBC)®7

@ Example: spin-1 dipole conserving Hamiltonian that implements the
following rules (H =3 _; (Sj__l(SjJr)zsjj_1 + h.c.))
4+ —-0) < [0+—), [0—+) < |-+0)
4+ —+) < [04+0), |-+ —)«[0-0)

e Exponentially many one-dimensional subspaces (“frozen” eigenstates)
+4+—-—=4++—-=), 0++0++---0++)

@ Subspaces with non-local conserved quantities, e.g. a product state
|0---0+0---0) can only evolve to states with “string-order”
0---0+0---0—0---0+---0)

6P.Sa|a, T.Rakovszky, R.Verresen, M.Knap, F.Pollmann (2019)
7V.Khemani, M.Hermele, R.Nandkishore (2019)
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Quantum Many-Body Scars

@ Non-integrable models with quasiparticle towers of eigenstates deep in
the spectrum have been discovered?®

o AKLT spin chain:® P = > (—1)1'(51*)2, states with N quasiparticles
dispersing with k = 7 are exact eigenstates for finite system sizes L!

G) B s s g e s s S T anoany
20 =P[6) 030006 @Y @-ooroo-oo
[Se) = P*16) ool ¢ @»@ &) Go~co

sy=Pilc)=|F) @& & ¢ @ @ & & & &

8SM, B.A.Bernevig, N.Regnault (2021)
9D.P.Arovas (1989); SM, S.Rachel, B.A.Bernevig, N.Regnault (2017)
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Quantum Many-Body Scars

@ States have entanglement entropy S ~ logL — Violation of Strong
ETH!

@ Equally spaced tower: leads to exact revivals from simple initial

states!0

o Alternate view: Existence of small dynamically disconnected subspace!!

1.0
4 0.8 —|e=0.1)
. —~ 0.6 — |€ =0.25)
Solvable xz- ETH R/ 0 4 ‘{ = l.(J)
’ —[£=5.0)
- 0.2 — 000011010010}
0.0 N~
}GS-like 0.0 2.0 4.0 6.0 8.0

10T Jadecola, M.Schecter (2019)

11 M.Serbyn, D.A.Abanin, Z.Papic (2020)
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Dynamically Disconnected Subspaces

@ Weak ergodicity breaking = existence of unexpected “dynamically
disconnected subspaces”

=
- Bl

@ While on-site or other conventional symmetries do not explain these

blocks, allowing arbitrary operators to be conserved quantities is
problematic

(c)

Regular Quantum
Number Sectors

Thermal

Qvss

[H,|En) (En]] =0 == exponentially many conserved quantities?!

What is an appropriate definition of a conserved quantity?!?

12Gimilar problems exist in defining integrability in finite-dimensional systems: E.A.Yuzbashyan, B.S.Shastry (2013)
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Symmetries and Commutant Algebras




Commutant algebras

o Key observation: Same block structure appears for entire classes of
Hamiltonians {3; Jihj 41}
@ Natural to look for operators that commute with this entire family.

[0, Zthj,jH] =0 v{J}.

J

o Commutant Algebra C: algebra of operators 0 (not necessarily local)
such that [hjj11,0] =0 Vj

a151 +a252 € C for any ai,ap € C

0) eC, 0,cC =— SO A
! 2 { 0:0,,0,0; € C

e C commutes with the full "bond algebra” A generated by {h; j;1}

(A= ({hjj+1})).
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Commutant Algebras

e A and C are unital f-closed (von
Neumann) algebras, centralizers
of each other (Double
Commutant Theorem)

L(H)

@ Representation theory: Can
unitarily transform into a basis in
which h4 € A and he € C have

the matrix representations ' 4,
) LS
WihaW = 5 (Mp, ® 14,) [ ]

A '\,‘1;.3

; "

WiheW = (1p, ® Na,) -
A

e {D,} and {d,}: dimensions of
irreducible representations of A
and C.
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Dynamically Disconnected Subspaces

@ Equivalently: Basis in which all elements of A are maximally block
diagonal

o Hamiltonian H =}, Jihj ji1 € A, block diagonal form defines
quantum number sectors/dynamically disconnected “Krylov subspaces”

@ For each A: d) number of degenerate Dy-dimensional blocks, total
number of blocks: K =}, dy

@ K can be bounded using dim(C) = ", d2, the number of linearly
independent operators in C, given by

%Iog(dim(C)) < log K < log(dim(C))

log(dim(C)) Example
~ 0(1) Discrete Global Symmetry
~ log L Continuous Global Symmetry
~L Fragmentation
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Conventional Symmetries

Regular Quantum
Number Sectors




Simple Examples: Abelian C

@ AbelianC = d)\, =1, K =dim(C)

o Generic Hamiltonians _; Jihj i1 with no

symmetries, solve for [hj 1, 5] =0 .

C={1}, K=dim(C)=1 D,

@ Ising models H = Zle [JiXiXj+1 + hjZj], solve for [X;Xji1, 0] =0

and [Z;,0] =0

C = span{1, HZJ}’ K =dim(C) = 2.
J

@ Spin-3 XX models H = ZJ'L::L [Ji(XjXj1 + Y;Yjy1) + h;jZj], solve for

X X41+ Y;¥j11.0] = 0 and [Z;, O] = 0

C = (Ziot)) = span{l, Zit, (Ztot)2, s ,(Ztot)l'}, Liot = Zj Z_[
K =dim(C) = L+ 1.
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Simple Examples: Non-Abelian C

@ Non-Abelian C = some d\ > 1 = degeneracies
@ Example: spin—% Heisenberg model

H=3,4 S S1 A= ({5 S1})

C = (Sior Sot Sot))

X o z /\,‘1/11
— span, 5, {(S) " (Se) (S2)7} LA
L]
o Block-diagonal form (Schur-Weyl ..
duality): . d,
0 < A< L/2: S? eigenvalues

dy =2\ + 1: irreps of su(2)
Dy: irreps of S;

@ Example: Stabilizer codes — A is the group algebra of the stabilizer
group, C consists of A and the non-trivial logical operators.

12§M, 0.1.Motrunich (2021)
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New View on Symmetries

@ Symmetries well defined for ()
families of Hamiltonians, pair of
algebras A and C associated
with any symmetry.

o A is generated by a set of local
operators, C is its centralizer.

@ Symmetries of several standard Hamiltonians can be understood this
way, including free-fermion models, Hubbard models!3:14

@ Conventional commutants C: Full commutant generated by
“conventional” conserved quantities, dim(C) scales sub-exponentially
with system size.

@ In general: Start with any set of non-commuting local operators,
generate their algebra A, then determine commutant C — gives rise to
novel unconventional symmetries!

13SM, O.1.Motrunich (2022)

14Some of them have mildly non-standard symmetries
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Unconventional Symmetries

Thermal

\QmBS




“Classical” Fragmentation

e Fragmentation occurs when dim(C) ~ exp(L)

o Consider the t — J, Hamiltonian: hopping with two species of particles

[10) <> [01), 10y < [0))

Heso =2 (=t 2 (Ei,crEjT,a + h-C-) + 4157 5F)
J oe{tl}

~ T )
C.I?o— - CJ7U (1 - CJ"*O.CJ7_U

@ Has two U(1) symmetries NT = > NJ-T and N+ = > NJ-i
@ Full pattern of spins (1 or ) preserved in one dimension with OBC,
number of Krylov subspaces K = Z}:o 2 =2t 1

04044 0) <£+ (011044 0)

o Fragmentation in the product state basis = essentially classical'®

15D.Dhar, M.Barma (1993); G.I.Menon, M.Barma, D.Dhar (1997)
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“Classical” Fragmentation

@ Local operators NjT and Nf satisfy the relations

[hj o1 Nf + Nfal = 0, [hyjen, NEN] =0, a, 8 € {11}

@ The full commutant algebra C can be explicitly constructed,
dim(C) = 251 — 1 ~ exp(L)

NELoET e = Z N.Zl NJZZ o Njik’ oj € {1}

J<jp<<jk

@ Most of these are functionally independent from the conventional
conserved quantities NT and N¥ = new dynamically disconnected
subspaces

o Classical fragmentation: All conserved quantities diagonal,
Hamiltonian block-diagonal in product state basis

@ Similar construction works for dipole-conserving models, exact results
in some cases (e.g. dim(C) ~ (1 + v/2)" for range-3 spin-1 model)
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“Quantum” Fragmentation

e Disordered SU(3)-symmetric spin-1 w|
biquadratic model, eigenstate
degeneracies grow exponentially with
L = hidden symmetries

L
H=2> Ji(S 5n)’
j=1

S

Degeneracy

S

2

0 2 4 10 12 14 16

6 8
Energy

o A= <<(§J : Sqj+1)2>> =TLi(qg= 3+2‘/§), commutant C can be explicitly
constructed,*® dim(C) ~ exp(L)

(S5 Si+1)% (MS); + (M$)j41] = 0, [(S5-Sj1)?, (MZ);(M7)j41] = O,

Misrse = Do (MEDA(ME), -+ (MG!);,.
J<jp<<jk
@ Quantum fragmentation: Block-diagonal structure of the Hamiltonian

understood in the spin-1 singlet basis, not product state basis
16N.Read, H.Saleur (2007)
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Quantum Many Body Scars

e Aim: Given QMBS eigenstates {|S,)}, find a locally-generated algebra
Ascar that Cscar = <<{|5n> <5n|}>>
o Example: Spin—% ferromagnetic multiplet
{1Sn) = (Seot)" |F)}, |F) =11 -+ 1) — Start with SU(2) symmetry and
systematically break it!?
Asym = ({5 51}) Capm = (St St )
Aayn = ({5 - Sy} S22 Cayn = (5%, SE2)
Ascar = <<{5J ) 5j+1}7 Stot> {DJ?LIJJ+1}>> Cscar = ({I5n)(Snl})
o A, can be explicitly constructed for several known examples of
QMBS*®
@ Generators of A, are building blocks for constructing quantum

scarred Hamiltonians = Lots of local perturbations that exactly
preserve the QMBS!

17D.K.Mark, O.1.Motrunich (2020); N.O'Dea, F.J.Burnell, A.Chandran, V.Khemani (2020)
18SM, O.1.Motrunich (2022)
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Constraints on Realizable Symmetries

@ Locality of generators of A restricts realizable commutants C

® No-go result: No locally generated A with C = (3_; S7, ijsz))lg

@ Can systematically search for symmetries
realizable using, e.g., spin-1/2 n.n.

z ; 20
SZ (-conserving terms

A= (XX 14,1+ BZ Zja+h(Z=Zj4))
@ Detects presence of an unconventional
SU(2)4 symmetry for
-1 -1
(A, h) = (=, 5—)
@ Also leads to discovery of non-integrable
models with Strong Zero Modes?!

lgP,SaIa, T.Rakovszky, R.Verresen, M.Knap, F.Pollmann (2019); V.Khemani, M.Hermele, R.Nandkishore (2020)
21SM, O.1.Motrunich (in preparation)

21p Fendley (2016); D.V.Else, P.Fendley, J.Kemp, C.Nayak (2017)
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Summary & Outlook

e Symmetry <= Pair of (A,C)
A: Local algebra C: Commutant algebra

@ Conventional symmetries: C generated by 2
conventional conserved quantities,
dim(C) ~ O(1) or dim(C) ~ poly(L)

o Concrete definitions:

o Fragmentation: dim(C) ~ exp(L)
e QMBS: Simultaneous eigenstates of .
multiple non-commuting local operators* ..\<

@ Double Commutant Theorem: Building .
blocks for all symmetric local Hamiltonians ..\<

@ Interesting C? Connections to L1
. o
categorical/MPO symmetries?
@ Approximate Commutants? PXP Model?
@ Implications for equilibrium physics? ‘
Non-interacting models?
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