Unconventional Symmetries in Many-Body Physics

Sanjay Moudgalya

Walter Burke Institute of Theoretical Physics
California Institute of Technology
SM, Olexei I. Motrunich $\left\{\begin{array}{l}\text { arXiv: } 2108.10824 \text { [PRX 12, } 011050(2022)] \\ \text { arXiv: 2209.03370, arXiv: } 2209.03377\end{array}\right.$

14th November 2022

Symmetries in Quantum Many-Body Physics

- Lattice system with a finite-dimensional tensor product Hilbert space $\mathcal{H}=\bigotimes_{j=1}^{L} \mathbb{C}^{d}$ with a Hamiltonian H
- Symmetries/conserved quantities $\left\{Q_{\alpha}\right\}$ are defined as operators that commute with the Hamiltonian, $\left[H, Q_{\alpha}\right]=0$.
- Conventionally, additional structure is imposed on $\left\{Q_{\alpha}\right\}$.
- Internal symmetries: On-site unitary representations of a (Lie) group G

$$
Q_{\alpha}=\hat{u}(g) \otimes \hat{u}(g) \otimes \cdots \otimes \hat{u}(g), \text { e.g. } \hat{u}(g)= \begin{cases}e^{i \alpha Z} & \text { if } G=U(1) \\ e^{i \vec{\alpha} \cdot \vec{\sigma}} & \text { if } G=S U(2)\end{cases}
$$

- Continuous symmetries: Conserved quantities are typically sums of local operators, e.g. total charge, number of domain walls, etc.
- Lattice symmetries: Unitary operators that implement translation, rotation, reflection, etc.

Symmetries in Quantum Many-Body Physics

- Symmetric Hamiltonians can be block-diagonalized into symmetry quantum number sectors.
- Sectors are uniquely labelled by eigenvalues under (a maximally commuting subset of) the $\left\{Q_{\alpha}\right\}$.

- Various generalizations of conventional symmetries are under active exploration: Categorical symmetries, MPO symmetries, etc. ${ }^{1}$
- This talk: Different (?) generalization motivated by recent work on the dynamics of certain quantum systems.

[^0]
Quantum Many-Body Dynamics and Symmetries

Ergodicity in Isolated Quantum Systems

- A quantum Hamiltonian is said to be ergodic if any initial state $|\psi(0)\rangle$ evolves into a "thermal" state $|\psi(t)\rangle=e^{-i H t}|\psi(0)\rangle$
- Reduced density matrix of a thermal state is the Gibbs density matrix of the subsystem

$$
\rho=|\psi\rangle\langle\psi|, \quad \rho_{A}=\operatorname{Tr}_{B}(\rho), \quad \rho_{A} \sim e^{-\left.\beta H\right|_{A}}
$$

- Eigenstate Thermalization Hypothesis (ETH): Eigenstates $\left|E_{n}\right\rangle$ in the middle of the spectrum are thermal ${ }^{2}$
- Entanglement entropy obeys a volume law $S \sim \log D \sim L$
- Eigenstate properties are a "smooth" function of energy

[^1]
Ergodicity in Symmetric Isolated Quantum Systems

- With symmetries: $\rho_{A} \sim e^{-\left.\beta(H-\mu N)\right|_{A}}$ ETH should hold for eigenstates within each symmetry sector
- Recent analytical and experimental progress has identified two new types of "weak" violations ${ }^{3}$
- Hilbert Space Fragmentation
- Quantum Many-Body Scars
- Violations can be seen in several diagnostics, e.g., entanglement entropy of the eigenstates. ${ }^{4}$

[^2]
Hilbert Space Fragmentation

- Dynamics under certain local Hamiltonians splits the Hilbert space into exponentially many dynamically disconnected subspaces $\left\{\mathcal{K}\left(H,\left|R_{\alpha}\right\rangle\right\},\left|R_{\alpha}\right\rangle\right.$ being product states

$$
K \sim \exp (L)
$$

$$
\mathcal{H}=\bigoplus_{j=1} \mathcal{K}\left(H,\left|R_{\alpha}\right\rangle\right)
$$

$$
\mathcal{K}(H,|R\rangle)=\operatorname{span}_{t}\left\{e^{-i H t}|R\rangle\right\}
$$

- Different subspaces are not distinguished by obvious symmetry quantum numbers, can show vastly different properties! ${ }^{5}$
- Initial product states never thermalize w.r.t. the full Hilbert space due to "hidden" blocks after resolving known symmetries

[^3]
Hilbert Space Fragmentation

- Fragmentation generically occurs in one dimensional systems conserving dipole moment $\left(\sum_{j} j S_{j}^{z} \text { with OBC }\right)^{6,7}$
- Example: spin-1 dipole conserving Hamiltonian that implements the following rules $\left(H=\sum_{j}\left(S_{j-1}^{-}\left(S_{j}^{+}\right)^{2} S_{j+1}^{-}+\right.\right.$h.c. $\left.)\right)$
- Exponentially many one-dimensional subspaces ("frozen" eigenstates)

$$
|++--\cdots++--\rangle, \quad|0++0++\cdots 0++\rangle
$$

- Subspaces with non-local conserved quantities, e.g. a product state $|0 \cdots 0+0 \cdots 0\rangle$ can only evolve to states with "string-order" $|0 \cdots 0+0 \cdots 0-0 \cdots 0+\cdots 0\rangle$

[^4]
Quantum Many-Body Scars

- Non-integrable models with quasiparticle towers of eigenstates deep in the spectrum have been discovered ${ }^{8}$
- AKLT spin chain: ${ }^{9} \mathcal{P}=\sum_{j}(-1)^{j}\left(S_{j}^{+}\right)^{2}$, states with N quasiparticles dispersing with $k=\pi$ are exact eigenstates for finite system sizes L !
$|G\rangle$

$\left|S_{2}\right\rangle=\mathcal{P}|G\rangle$

(\uparrow

$\left|S_{4}\right\rangle=\mathcal{P}^{2}|G\rangle$

$$
\left|S_{L}\right\rangle=\mathcal{P}^{\frac{L}{2}}|G\rangle=|F\rangle
$$

[^5]
Quantum Many-Body Scars

- States have entanglement entropy $S \sim \log L \Longrightarrow$ Violation of Strong ETH!
- Equally spaced tower: leads to exact revivals from simple initial states ${ }^{10}$
- Alternate view: Existence of small dynamically disconnected subspace ${ }^{11}$

[^6]
Dynamically Disconnected Subspaces

- Weak ergodicity breaking = existence of unexpected "dynamically disconnected subspaces"

- While on-site or other conventional symmetries do not explain these blocks, allowing arbitrary operators to be conserved quantities is problematic

$$
\left[H,\left|E_{n}\right\rangle\left\langle E_{n}\right|\right]=0 \quad \Longrightarrow \text { exponentially many conserved quantities?! }
$$

What is an appropriate definition of a conserved quantity? ${ }^{12}$

[^7]
Symmetries and Commutant Algebras

Commutant algebras

- Key observation: Same block structure appears for entire classes of Hamiltonians $\left\{\sum_{j} J_{j} h_{j, j+1}\right\}$
- Natural to look for operators that commute with this entire family.

$$
\left[\widehat{O}, \sum_{j} J_{j} h_{j, j+1}\right]=0 \quad \forall\left\{J_{j}\right\}
$$

- Commutant Algebra \mathcal{C} : algebra of operators \widehat{O} (not necessarily local) such that $\left[h_{j, j+1}, \widehat{O}\right]=0 \forall j$

$$
\hat{O}_{1} \in \mathcal{C}, \quad \hat{O}_{2} \in \mathcal{C} \Longrightarrow\left\{\begin{array}{l}
\alpha_{1} \widehat{O}_{1}+\alpha_{2} \widehat{O}_{2} \in \mathcal{C} \text { for any } \alpha_{1}, \alpha_{2} \in \mathbb{C} \\
\widehat{O}_{1} \widehat{O}_{2}, \widehat{O}_{2} \widehat{O}_{1} \in \mathcal{C}
\end{array}\right.
$$

- \mathcal{C} commutes with the full "bond algebra" \mathcal{A} generated by $\left\{h_{j, j+1}\right\}$ $\left(\mathcal{A}=\left\langle\left\langle\left\{h_{j, j+1}\right\}\right\rangle\right\rangle\right)$.

Commutant Algebras

- \mathcal{A} and \mathcal{C} are unital \dagger-closed (von Neumann) algebras, centralizers of each other (Double Commutant Theorem)
- Representation theory: Can unitarily transform into a basis in which $\widehat{h}_{\mathcal{A}} \in \mathcal{A}$ and $\widehat{h}_{\mathcal{C}} \in \mathcal{C}$ have the matrix representations

$$
\begin{aligned}
W^{\dagger} \hat{h}_{\mathcal{A}} W & =\bigoplus_{\lambda}\left(M_{D_{\lambda}} \otimes \mathbb{1}_{d_{\lambda}}\right) \\
W^{\dagger} \widehat{h}_{\mathcal{C}} W & =\bigoplus_{\lambda}\left(\mathbb{1}_{D_{\lambda}} \otimes N_{d_{\lambda}}\right)
\end{aligned}
$$

- $\left\{D_{\lambda}\right\}$ and $\left\{d_{\lambda}\right\}$: dimensions of irreducible representations of \mathcal{A} and \mathcal{C}.

Dynamically Disconnected Subspaces

- Equivalently: Basis in which all elements of \mathcal{A} are maximally block diagonal
- Hamiltonian $H=\sum_{j} J_{j} h_{j, j+1} \in \mathcal{A}$, block diagonal form defines quantum number sectors/dynamically disconnected "Krylov subspaces"
- For each $\lambda: d_{\lambda}$ number of degenerate D_{λ}-dimensional blocks, total number of blocks: $K=\sum_{\lambda} d_{\lambda}$
- K can be bounded using $\operatorname{dim}(\mathcal{C})=\sum_{\lambda} d_{\lambda}^{2}$, the number of linearly independent operators in \mathcal{C}, given by

$$
\frac{1}{2} \log (\operatorname{dim}(\mathcal{C})) \leq \log K \leq \log (\operatorname{dim}(\mathcal{C}))
$$

$\log (\operatorname{dim}(\mathcal{C}))$	Example
$\sim \mathcal{O}(1)$	Discrete Global Symmetry
$\sim \log L$	Continuous Global Symmetry
$\sim L$	Fragmentation

Conventional Symmetries

Simple Examples: Abelian \mathcal{C}

- Abelian $\mathcal{C} \Longrightarrow d_{\lambda}=1, \quad K=\operatorname{dim}(\mathcal{C})$
- Generic Hamiltonians $\sum_{j} J_{j} h_{j, j+1}$ with no symmetries, solve for $\left[h_{j, j+1}, \widehat{O}\right]=0$

$$
\mathcal{C}=\{\mathbb{1}\}, K=\operatorname{dim}(\mathcal{C})=1
$$

- Ising models $H=\sum_{j=1}^{L}\left[J_{j} X_{j} X_{j+1}+h_{j} Z_{j}\right]$, solve for $\left[X_{j} X_{j+1}, \widehat{O}\right]=0$ and $\left[Z_{j}, \widehat{O}\right]=0$

$$
\mathcal{C}=\operatorname{span}\left\{\mathbb{1}, \prod_{j} Z_{j}\right\}, \quad K=\operatorname{dim}(\mathcal{C})=2
$$

- Spin- $\frac{1}{2} X X$ models $H=\sum_{j=1}^{L}\left[J_{j}\left(X_{j} X_{j+1}+Y_{j} Y_{j+1}\right)+h_{j} Z_{j}\right]$, solve for $\left[X_{j} X_{j+1}+Y_{j} Y_{j+1}, \widehat{O}\right]=0$ and $\left[Z_{j}, \widehat{O}\right]=0$

$$
\begin{gathered}
\mathcal{C}=\left\langle\left\langle Z_{\text {tot }}\right\rangle=\operatorname{span}\left\{\mathbb{1}, Z_{\text {tot }},\left(Z_{\text {tot }}\right)^{2}, \cdots,\left(Z_{\text {tot }}\right)^{L}\right\}, \quad Z_{\text {tot }}=\sum_{j} Z_{j}\right. \\
K=\operatorname{dim}(\mathcal{C})=L+1 .
\end{gathered}
$$

Simple Examples: Non-Abelian \mathcal{C}

- Non-Abelian $\mathcal{C} \Longrightarrow$ some $d_{\lambda}>1 \Longrightarrow$ degeneracies
- Example: spin- $\frac{1}{2}$ Heisenberg model

$$
\begin{aligned}
H & =\sum_{j} J_{j} \vec{S}_{j} \cdot \vec{S}_{j+1}, \mathcal{A}=\left\langle\left\langle\left\{\vec{S}_{j} \cdot \vec{S}_{j+1}\right\}\right\rangle\right\rangle \\
\mathcal{C} & =\left\langle\left\langle S_{\mathrm{tot}}^{x}, S_{\mathrm{tot}}^{y}, S_{\mathrm{tot}}^{z}\right\rangle\right\rangle \\
& =\operatorname{span}_{\alpha, \beta, \gamma}\left\{\left(S_{\mathrm{tot}}^{x}\right)^{\alpha}\left(S_{\mathrm{tot}}^{y}\right)^{\beta}\left(S_{\mathrm{tot}}^{z}\right)^{\gamma}\right\}
\end{aligned}
$$

- Block-diagonal form (Schur-Weyl duality):
$0 \leq \lambda \leq L / 2: S^{2}$ eigenvalues
$d_{\lambda}=2 \lambda+1$: irreps of $\mathfrak{s u}(2)$

D_{λ} : irreps of S_{L}
- Example: Stabilizer codes $-\mathcal{A}$ is the group algebra of the stabilizer group, \mathcal{C} consists of \mathcal{A} and the non-trivial logical operators.

[^8]
New View on Symmetries

- Symmetries well defined for families of Hamiltonians, pair of algebras \mathcal{A} and \mathcal{C} associated with any symmetry.
- \mathcal{A} is generated by a set of local operators, \mathcal{C} is its centralizer.

- Symmetries of several standard Hamiltonians can be understood this way, including free-fermion models, Hubbard models ${ }^{13,14}$
- Conventional commutants \mathcal{C} : Full commutant generated by "conventional" conserved quantities, $\operatorname{dim}(\mathcal{C})$ scales sub-exponentially with system size.
- In general: Start with any set of non-commuting local operators, generate their algebra \mathcal{A}, then determine commutant \mathcal{C} - gives rise to novel unconventional symmetries!

[^9]
Unconventional Symmetries

"Classical" Fragmentation

- Fragmentation occurs when $\operatorname{dim}(\mathcal{C}) \sim \exp (L)$
- Consider the $t-J_{z}$ Hamiltonian: hopping with two species of particles $|\uparrow 0\rangle \leftrightarrow|0 \uparrow\rangle,|\downarrow 0\rangle \leftrightarrow|0 \downarrow\rangle$

$$
\begin{gathered}
H_{t-J_{z}}=\sum_{j}\left(-t_{j, j+1} \sum_{\sigma \in\{\uparrow, \downarrow\}}\left(\tilde{c}_{i, \sigma} \tilde{c}_{j, \sigma}^{\dagger}+\text { h.c. }\right)+J_{j, j+1}^{z} S_{i}^{z} S_{j}^{z}\right) \\
\tilde{c}_{j, \sigma}=c_{j, \sigma}\left(1-c_{j,-\sigma}^{\dagger} c_{j,-\sigma}\right)
\end{gathered}
$$

- Has two $U(1)$ symmetries $N^{\uparrow}=\sum_{j} N_{j}^{\uparrow}$ and $N^{\downarrow}=\sum_{j} N_{j}^{\downarrow}$
- Full pattern of spins (\uparrow or \downarrow) preserved in one dimension with OBC, number of Krylov subspaces $K=\sum_{j=0}^{L} 2^{j}=2^{L+1}-1$

$$
|0 \uparrow \downarrow 0 \downarrow \uparrow 0\rangle \longleftrightarrow|0 \uparrow \uparrow 0 \downarrow \downarrow 0\rangle
$$

- Fragmentation in the product state basis \Longrightarrow essentially classical ${ }^{15}$

[^10]
"Classical" Fragmentation

- Local operators N_{j}^{\uparrow} and N_{j}^{\downarrow} satisfy the relations

$$
\left[h_{j, j+1}, N_{j}^{\alpha}+N_{j+1}^{\alpha}\right]=0, \quad\left[h_{j, j+1}, N_{j}^{\alpha} N_{j+1}^{\beta}\right]=0, \alpha, \beta \in\{\uparrow, \downarrow\}
$$

- The full commutant algebra \mathcal{C} can be explicitly constructed, $\operatorname{dim}(\mathcal{C})=2^{L+1}-1 \sim \exp (L)$

$$
N^{\sigma_{1} \sigma_{2} \cdots \sigma_{k}}=\sum_{j_{1}<j_{2}<\cdots<j_{k}} N_{j_{1}}^{\sigma_{1}} N_{j_{2}}^{\sigma_{2}} \cdots N_{j_{k}}^{\sigma_{k}}, \quad \sigma_{j} \in\{\uparrow, \downarrow\}
$$

- Most of these are functionally independent from the conventional conserved quantities N^{\uparrow} and $N^{\downarrow} \Longrightarrow$ new dynamically disconnected subspaces
- Classical fragmentation: All conserved quantities diagonal, Hamiltonian block-diagonal in product state basis
- Similar construction works for dipole-conserving models, exact results in some cases (e.g. $\operatorname{dim}(\mathcal{C}) \sim(1+\sqrt{2})^{L}$ for range-3 spin-1 model)

"Quantum" Fragmentation

- Disordered SU(3)-symmetric spin-1 biquadratic model, eigenstate degeneracies grow exponentially with $L \Longrightarrow$ hidden symmetries

$$
H=\sum_{j=1}^{L} J_{j}\left(\vec{S}_{j} \cdot \vec{S}_{j+1}\right)^{2}
$$

- $\mathcal{A}=\left\langle\left\langle\left(\vec{S}_{j} \cdot \vec{S}_{j+1}\right)^{2}\right\rangle=T L_{L}\left(q=\frac{3+\sqrt{5}}{2}\right)\right.$, commutant \mathcal{C} can be explicitly constructed, ${ }^{16} \operatorname{dim}(\mathcal{C}) \sim \exp (L)$

$$
\begin{gathered}
{\left[\left(\vec{S}_{j} \cdot \vec{S}_{j+1}\right)^{2},\left(M_{\beta}^{\alpha}\right)_{j}+\left(M_{\beta}^{\alpha}\right)_{j+1}\right]=0, \quad\left[\left(\vec{S}_{j} \cdot \vec{S}_{j+1}\right)^{2},\left(M_{\beta}^{\alpha}\right)_{j}\left(M_{\delta}^{\gamma}\right)_{j+1}\right]=0,} \\
M_{\beta_{1} \beta_{2} \cdots \beta_{k}}^{\alpha_{1} \alpha_{2} \cdots \alpha_{k}}=\sum_{j_{1}<j_{2}<\cdots<j_{k}}\left(M_{\beta_{1}}^{\alpha_{1}}\right)_{j_{1}}\left(M_{\beta_{2}}^{\alpha_{2}}\right)_{j_{2}} \cdots\left(M_{\beta_{k}}^{\alpha_{k}}\right)_{j_{k}}
\end{gathered}
$$

- Quantum fragmentation: Block-diagonal structure of the Hamiltonian understood in the spin-1 singlet basis, not product state basis

[^11]
Quantum Many Body Scars

- Aim: Given QMBS eigenstates $\left\{\left|S_{n}\right\rangle\right\}$, find a locally-generated algebra $\mathcal{A}_{\text {scar }}$ that $\mathcal{C}_{\text {scar }}=\left\langle\left\langle\left\{\left|S_{n}\right\rangle\left\langle S_{n}\right|\right\}\right\rangle\right\rangle$
- Example: Spin- $\frac{1}{2}$ ferromagnetic multiplet $\left\{\left|S_{n}\right\rangle=\left(S_{\text {tot }}^{-}\right)^{n}|F\rangle\right\},|F\rangle=|\uparrow \cdots \uparrow\rangle$ - Start with $S U(2)$ symmetry and systematically break it ${ }^{17}$

$$
\begin{array}{ll}
\mathcal{A}_{\text {sym }}=\left\langle\left\langle\left\{\vec{S}_{j} \cdot \vec{S}_{j+1}\right\}\right\rangle\right\rangle & \mathcal{C}_{\text {sym }}=\left\langle\left\langle S_{\text {tot }}^{x}, S_{\text {tot }}^{y}, S_{\text {tot }}^{z}\right\rangle\right\rangle \\
\mathcal{A}_{\text {dyn }}=\left\langle\left\langle\left\{\vec{S}_{j} \cdot \vec{S}_{j+1}\right\}, S_{\text {tot }}^{z}\right\rangle\right\rangle & \mathcal{C}_{\text {dyn }}=\left\langle\left\langle\vec{S}^{2}, S_{\text {tot }}^{z}\right\rangle\right\rangle \\
\mathcal{A}_{\text {scar }}=\left\langle\left\langle\left\{\vec{S}_{j} \cdot \vec{S}_{j+1}\right\}, S_{\text {tot }}^{z},\left\{D_{j-1, j, j+1}^{\alpha}\right\}\right\rangle\right\rangle & \mathcal{C}_{\text {scar }}=\left\langle\left\langle\left\{\left|S_{n}\right\rangle\left\langle S_{n}\right|\right\}\right\rangle\right\rangle
\end{array}
$$

- $\mathcal{A}_{\text {scar }}$ can be explicitly constructed for several known examples of QMBS ${ }^{18}$
- Generators of $\mathcal{A}_{\text {scar }}$ are building blocks for constructing quantum scarred Hamiltonians \Longrightarrow Lots of local perturbations that exactly preserve the QMBS!

[^12]
Constraints on Realizable Symmetries

- Locality of generators of \mathcal{A} restricts realizable commutants \mathcal{C}
- No-go result: No locally generated \mathcal{A} with $\mathcal{C}=\left\langle\left\langle\sum_{j} S_{j}^{z}, \sum_{j} j S_{j}^{z}\right\rangle\right\rangle^{19}$
- Can systematically search for symmetries realizable using, e.g., spin-1/2 n.n. $S_{\text {tot }}^{z}$-conserving terms ${ }^{20}$

$$
\mathcal{A}=\left\langle\left\langle\left\{x_{j} x_{j+1}+Y_{j} Y_{j+1}+\Delta Z_{j} z_{j+1}+h_{-}\left(Z_{j}-Z_{j+1}\right)\right\rangle\right\rangle\right.
$$

- Detects presence of an unconventional $S U(2)_{q}$ symmetry for $\left(\Delta, h_{-}\right)=\left(\frac{q+q^{-1}}{2}, \frac{q-q^{-1}}{2}\right)$
- Also leads to discovery of non-integrable
 models with Strong Zero Modes ${ }^{21}$

[^13]
Summary \& Outlook

- Symmetry \Longleftrightarrow Pair of $(\mathcal{A}, \mathcal{C})$
\mathcal{A} : Local algebra \mathcal{C} : Commutant algebra
- Conventional symmetries: \mathcal{C} generated by conventional conserved quantities, $\operatorname{dim}(\mathcal{C}) \sim \mathcal{O}(1)$ or $\operatorname{dim}(\mathcal{C}) \sim \operatorname{poly}(L)$
- Concrete definitions:
- Fragmentation: $\operatorname{dim}(\mathcal{C}) \sim \exp (L)$
- QMBS: Simultaneous eigenstates of multiple non-commuting local operators*
- Double Commutant Theorem: Building blocks for all symmetric local Hamiltonians
- Interesting \mathcal{C} ? Connections to categorical/MPO symmetries?
- Approximate Commutants? PXP Model?
- Implications for equilibrium physics?

$\mathscr{L}(\mathscr{H})$

Non-interacting models?

[^0]: ${ }^{1}$ J.McGreevy (2022)

[^1]: ${ }^{2}$ J.M.Deutsch (1991), M. Srednicki (1994)

[^2]: ${ }^{2}$ M.Serbyn, D.A.Abanin, Z.Papic (2020); SM, B.A.Bernevig, N.Regnault (2021)
 ${ }^{4}$ Z.C.Yang, F.Liu, A.V.Gorshkov, T.ladecola (2020); M.Schecter, T.ladecola (2019)

[^3]: ${ }^{5}$ SM, A.Prem, R.Nandkishore, N.Regnault, B.A.Bernevig (2019)

[^4]: ${ }^{6}$ P.Sala, T.Rakovszky, R.Verresen, M.Knap, F.Pollmann (2019)
 ${ }^{7}$ V.Khemani, M.Hermele, R.Nandkishore (2019)

[^5]: ${ }^{8}$ SM, B.A.Bernevig, N.Regnault (2021)
 ${ }^{9}$ D.P.Arovas (1989); SM, S.Rachel, B.A.Bernevig, N.Regnault (2017)

[^6]: ${ }^{10}$ T.ladecola, M.Schecter (2019)
 ${ }^{11}$ M.Serbyn, D.A.Abanin, Z.Papic (2020)

[^7]: ${ }^{12}$ Similar problems exist in defining integrability in finite-dimensional systems: E.A.Yuzbashyan, B.S.Shastry (2013)

[^8]: ${ }^{12}$ SM, O.I.Motrunich (2021)

[^9]: ${ }^{13}$ SM, O.I.Motrunich (2022)
 ${ }^{14}$ Some of them have mildly non-standard symmetries

[^10]: ${ }^{15}$ D.Dhar, M.Barma (1993); G.I.Menon, M.Barma, D.Dhar (1997)

[^11]: ${ }^{16}$ N. Read, H.Saleur (2007)

[^12]: ${ }^{17}$ D.K.Mark, O.I.Motrunich (2020); N.O'Dea, F.J.Burnell, A.Chandran, V.Khemani (2020)
 ${ }^{18}$ SM, O.I.Motrunich (2022)

[^13]: ${ }^{19}$ P.Sala, T.Rakovszky, R.Verresen, M.Knap, F.Pollmann (2019); V.Khemani, M.Hermele, R.Nandkishore (2020)
 ${ }^{21}$ SM, O.I.Motrunich (in preparation)
 ${ }^{21}$ P.Fendley (2016); D.V.Else, P.Fendley, J.Kemp, C.Nayak (2017)

