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authors implement the level-spectroscopy method, originally

Tensor network renormalization study on the crossover in classical 0

developed for quantum systems. They utilize the modern tensor-
network renormalization scheme. This allows for an extremely
accurate determination of the critical point as well as for a
visualization of the celebrated Kosterlitz renormalization-group flow.

Atsushi Ueda and Masaki Oshikawa
Phys. Rev. B 104, 165132 (2021)
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We study the classical two-dimensional RP? and Heisenberg models, using the tensor-network renormalization
(TNR) method. The determination of the phase diagram of these models has been challenging and controversial
due to the very large correlation lengths at low temperatures. The finite-size spectrum of the transfer matrix
obtained by TNR is useful in identifying the conformal field theory describing a possible critical point. Our
results indicate that the ultraviolet fixed point for the Heisenberg model and the ferromagnetic RP? model in
the zero-temperature limit corresponds to a conformal field theory with central charge ¢ = 2, in agreement
with two independent would-be Nambu-Goldstone modes. On the other hand, the ultraviolet fixed point in the
zero-temperature limit for the antiferromagnetic Lebwohl-Lasher model, which is a variant of the RP?> model,
seems to have a larger central charge. This is consistent with ¢ = 4 expected from the effective SO(S5) symmetry.
At T > 0, the convergence of the spectrum is not good in both the Heisenberg and ferromagnetic RP> models.
Moreover, there seems to be no appropriate candidate of conformal field theory matching the spectrum, which
shows the effective central charge ¢ ~ 1.9. These suggest that both models have a single disordered phase at
finite temperatures, although the ferromagnetic RP? model exhibits a strong crossover at the temperature where
the dissociation of Z, vortices has been reported.
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“Topological Phase Transitions™

Prototype: Berezinskii-Kosterlitz-Thouless Transition
which is also closely related to “Haldane Gap”

Canonical model for the BKT transition:
2D classical XY model

HXY — —JZCOS(@; — 9])
(47)



BKT Transition

Hxy = —J ) cos(d; —6;) Classical 2D XY model
(i)

Low-T (BKT) Phase T, High-T (Disordered) Phase
T
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power-law decay exponential decay




2D XY Model

HXY — —JECOS(@; — (93)
(i7)

- Classical spin model with positive Boltzmann weight
= no sign problem

- Just 2 dimensions
- Efficient cluster algorithms available

Easily studied with Monte Carlo, right?

v
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Large-Scale Monte Carlo Simulation of Two-Dimensional Classical XY Model
Using Multiple GPUs

Yukihiro Komura™ and Yutaka OxaBg’

Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
(Received August 27, 2012; accepted September 24, 2012; published online October 12, 2012)
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Vortex in the 2D XY model

XY spin goes back to itself by 21t-rotation =

existence of defect (vortex)
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BKT Transition

Low-T phase : vortex and antivortex form a pair

cf.) formation of atoms by nuclei and electrons
vortices are effectively absent at lengthscales larger than the pair size

High-T phase - vortices/antivortices dissociate from pairs and

move freely
cf.) plasma state formed by dissociation of nuclei/electrons

<§z ' §J> X €XP (—g)
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Sine-Gordon Field Theory for BKT

B 1
- 2K

0 angle of the XY spin e

dual (mutually non-local) ¢ ~¢+m

L (0,0)° — yc(0,9)° + yvV

0~ 04+ 21

1 . ling dimension 2/K
2 marginal at K=2

Single vortex creation / annihilation operator

yyv  vortex fugacity
yx renormalization of Luttinger parameter K

11



Kosterlitz RG Flow

.Yy vortex fugacity

spin-wave stiffness
YH

+ c=1

Luttinger parameter K=2 (vortex operator marginal)

BKT transition: Yv =YK =9 slow decay

T . ¢ Il |og-corrections



BKT Transition in S=1/2 XXZ Chain
= Z (57571 + 57571 + AS7 5711

Single vortex creation/annihilation operator

. = —

cos2¢ ~ (—1)7S; - S;41

sin 2¢ ~ (—1)7 5%

Forbidden in Hamiltonian by the translation symmetry!
(Haldane 1980 — “Haldane conjecture”
related to Lieb-Schultz-Mattis theorem etc.)

The leading (most relevant) perturbation is thus
double vortex creation/annihilation op. cos 4¢

13



BTK Transition in S=1/2 XXZ Chain

: (augb)Q — ?/K(a,ugb)2 +yyV V = cos4¢

.Yy double vortex
. fugacity

L

B 2T K

spin-wave stiffness

Luttinger parameter K=1/2
(double vortex operator marginal)

14



BKT Transition in S=1/2 XXZ Chain

Ho=) (87871 + 878, + AS;S))

BKT transition at A= (SU(2) symmetric point)
IR fixed point at the BKT transition:
Free boson (Tomonaga-Luttinger Liquid) at K=1/2
equivalent to Level | SU(2) Wess-Zumino-Witten

Effective theory in the vicinity of the BKT transition
1 1

L 1R
R

L=LNW 1 gJ* -JR+t< JEJf+J£Jf“>

yv =g+t yc =g — 1

BKT transition & t=0 < SU(2) symmetry

15



Level Spectroscopy

Determination of the critical point from the
finite-size spectrum [Okamoto-Nomura 1994, ...]

“Double vortex” BKT transition at K=1/2 can be identified
by SU(2) symmetry of the finite-size spectrum!

State-operator correspondence and
Finite-Size Scaling in CFT [Cardy 1984, 1986]

2
E, — Ey = % (a;'n + ) ConmYm LT A+ )

BKT transition

Energy levels form SU(2) singlet, triplet, ...

16



|D S=1/2 XXZ vs 2D Classical XY

1
L= QWK@M)Q — yx(0u9)* + yvV
S=1/2 XXZ Classical XY
K=?2 p~¢+T
K=1/2 (SU(2)1 W4ZW)
V ~ cos2¢

V ~ cosdg single vortex op.

double vortex op. cos 20, sin 26,

SU(2) triplet (degenerate at BKT) half-vortex op.

(eigenstate under
n® ~cost, n” ~sinf, n* ~sin2¢  antiperiodic b.c.)

Nomura-Kitazawa 1998

17



Level Spectroscopy for 2D Stat Mech

Level spectroscopy has been developed for quantum |D,
but why not for 2D stat mech models (such as XY)??

|D quantum Hamiltonian &

Transfer matrix for 2D stat mech

Continuous spin: series expansion of Boltzmann weight

) Z ‘ n(B), truncated to -15=n=15

n=——oo

Transfer matrix still “too large” to be diagonalized
= we utilize Tensor Network Renormalization

(We used Loop-TNR)

18



TNR Construction of Transfer Matrix

SN\
NSNS
SN
i o L

— —

Boltzmann weight at L = \ﬁn

. n+1
Boltzmann weight at L =4/2

after n steps, a single tensor represents
a square block of linear size L = V2n

contract horizontal indices
P = transfer matrix in vertical direction

___________ _ _LEZ(L)
A =e

19



ldentifying T with Level Crossing

L=32
e ”9
SPpIN-wave -+, . + W2 D=40
P . 0as6 { . COS 2(9, sin 26 W: D=44
excited states R
. . + Vi, D=40
under periodic b.c. o 0454 .. e
'% | 1 Vi, D=48
0.452 -
£ *,
g 0.450 - . T
o L
ground state under B ous| I
o o o S111
antiperiodic b.c. ® e
0.8900 0.8905 0.8910 0.8915 0.8920 0.8925 0.§930 0.8935 0.8940
T

This procedure eliminates
logarithmic corrections
to all orders in g

extra degeneracy
forming SU(2) triplet
~ BKT transition

20



0.8955 A

08950 1

0.8945 -

0.8940 -

0.8935 -

Remaining Finite-Size Effect

089301 ¢

2
%
40
“« |=4816,32
48 O, 9
:
0000 0005 0010 0015 0020 0025 0030
1/a(L)L?

Extrapolate to L=

21

Level crossing point
weakly depends on the
system size L

Effect of irrelevant
perturbations
T T TT,...
T: holomorphic part of the
energy-momentum tensor

1
T ~T. + COHSt.ﬁ



. 089288 -

Dependence on Bond Dimension D

0.89294

0.89292 -

0.89290 -

0.89286 -

08928441 |

0.89282

Q

o<

275 300 325 350 375 400 425 450 475

D

22

Our final estimate
1.=0.892943(2)



Effect of Finite Bond-Dimension

Finite bond dimension D « finite “correlation length”
£p ~ 0.3D"

k= 1 162+1) [Pollmann et al. 2008]

o > L low-energy finite-size spectrum almost exact!

¢p < I low-energy spectrum still reasonably accurate,
but some error due to the finite D

23



Ic dependence on D

089294{ A ; 9
: D=48 gives £~54
0.89292 -
enough for up to L=32
0.89290 -
., 089288 - , %
L D=28 gives £~26
0.89286 -
oaszea| [ | ~ | 0-4 too small for [=32
] 1 comparable to the error BUT....
in the best existing estimates!

275 300 325 350 375 400 425 450 4715

D

24



Error in (Loop-) TNR

(Loop-) TNR is often used to construct the “fixed point”
tensor, which would describe the large scale behaviors,
by iterating TNR many times

This approach has given accurate results for large systems,

but small errors due to the finite bond dimension remain

[A. Ueda & M.O,, in preparation]

In our approach, we study the spectrum of finite-size

systems with TNR.TNR is almost exact when the system

size is less than the effective correlation length.

TNR calculation of the finite-size spectrum
+ Level Spectroscopy — better accuracy

25



Estimates of T,

Monte Carlo(1979)[35 0.89

Monte Carlo(2005)[36 0.8929

Monte Carlo(2012)[37 0.89289

Monte Carlo(2013)[38 0.8935

Series expansion(2009)[39] 0.89286
HOTRG (2014)[40 0.8921
VUMPS(2019)[41] 0.8930
HOTRG (2020)[42] 0.89290(5)
present work 0.892943(2)

TABLE I. Comparison of the estimated critical temperature
of the 2D classical XY model.

26



Kosterlitz RG Flow

You must have seen this diagram many times....

.Yy vortex fugacity

spin-wave stiffness
YH

c=1

but have you really seen the RG flow?

27
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ELSEVIER Nuclear Physics B 522 [FS] (1998) 533-549

Low energy effective Hamiltonian for
the XXZ spin chain

Sergei Lukyanov !

Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08855-0849, USA
L.D. Landau Institute for Theoretical Physics, Kosygina 2, Moscow, Russia

Received 19 February 1998; accepted 18 March 1998

“vacuum energy’’ under the twisted boundary condition
with the twist angle O [notation clash...]

1 ( 3 52 (. 7
SRGZ——— 1 ~ 2 v __ ol - 2 T 2
A 83”‘“} T3 {1 >, T 3817 38181

st [ g2 g 2 g 2
+'——|12gi —8||8i} + —-{1 THLUPE N S ., L

4
2 > T3 T4 T3 32}+0(g)’

(4.6)
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Extrapolating Lukyanov’s Result

In our notations, the energy levels would be given by

2
En —E() — %azn

ye 1011,

1
+1260 — | :
e T20 =5 =y TG T gw
_ Ly 1, 2y, Yk 1 2
6——7’¢ 330,1/2— 2 | 4 ! S(y’C yV) | 16 64y’CyV.

They form two doublets, and no triplet is formed
even on the BKT transition line yx = yv?!

The two states corresponding to ¢='? are mixed by the
vortex perturbation cos2¢ and split into two levels
corresponding to V), = sin¢, V), = cos ¢

29



Energy Levels up to 2nd Order

- split between 7y ,7ve, should be odd in Yv
- SU(2) triplet should be formed on
the BKT transition line Yk = yv

= uniquely determines the energy levels up to O(y?)

. L oye 1o
L oye o yw 15 2
xvls/Q T 2 | 4 2 ! g(y/C _I_ QyKyV - yV)’
Ly yv 1 2
Q?VlC/Q — 9 | A | 9 | g(ylg — QyKyV _ yV))

30



Obtaining Running Coupling Constants

(\}

Ny
<

_|_
|

_|_

(Y2 + 2yxcyy — y%),

(Y — 2ycyv — Yir),

_I_
el I Bt

_|_

|~ N =D
SR

2
yK & 4xW:2 T (.CI?VIC/Q QZVlS/Q) ’

1

yv ~ (zvlc/2 — $V18/2)/(1 - §?JIC)>

We can estimate yk & yv from the finite-size energy levels

Less accuracy than T, but we can apply to larger systems
(up to L=512)

31



Visualization of Kosterlitz RG Flow!

Yv

0.35

0.30

0.25 -

0.20 -

0.15 -

0.10

0.05 -

0.00

XY model

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

[=16
32
64

128
256
512



Conclusions (BKT)

TNR + Level Spectroscopy (finite size scaling of CFT)
allows
- super accurate determination of BKT critical point
- visualization of Kosterlitz RG flow by extraction of
running coupling constants from the spectrum
for continuous valued 2D classical spin system such as XY
mode]

Future: extension/application to more nontrivial
systems & unknown physics

33



Classical Heisenberg Model

- I8
(4,7)
¢ continuum limit

L = > (8 i) 52— O(3) Nonlinear Sigma Model
)

coupling g corresponds to temperature
Asymptotic freedom = disordered at any T>0

dg  ¢°
dlogL 27

Supported also by factorizable S-matrix (Zamolodchikov?)
BUT... 34
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J. Phys. A: Math. Theor. 40 (2007) 3741-3748 doi:10.1088/1751-8113/40/14/001

Quasi-long-range ordering in a finite-size 2D classical
Heisenberg model

O Kapikranian'?, B Berche’ and Yu Holovatch'?

I Institute for Condensed Matter Physics, National Academy Sciences of Ukraine,
UA-79011 Lviv, Ukraine

2 Laboratoire de Physique des Matériaux, UMR CNRS 7556, Université Henri Poincaré,
Nancy 1, F-54506 Vandceuvre les Nancy Cedex, France

3 Institute fiir Theoretische Physik, Johannes Kepler Universitit Linz, A-4040 Linz, Austria

E-mail: akap@icmp.lviv.ua, berche@Ipm.u-nancy.fr and hol@icmp.lviv.ua

Received 24 November 2006, in final form 13 February 2007
Published 20 March 2007
Online at stacks.iop.org/JPhysA/40/3741

Abstract

We analyse the low-temperature behaviour of the classical isotropic
ferromagnetic Heisenberg model on a two-dimensional square lattice of finite
size. Presence of a residual magnetization in a finite-size system enables us
to use a low-temperature approximation, which is however more restricting
than the usual spin-wave approximation known to give reliable results for the
XY model at low temperatures 7. For the system considered, we find that

the spin—spin correlation function decays as 1/r"") for large separations r

bringing about the presence of a quasi-long-range ordering. We give analytic
estimates for the exponent n(7") in different regimes and support our findings by
Monte Carlo simulations of the model on lattices of different sizes at different
temperatures.

PACS numbers: 05.50.+q, 75.10

Really??

But not easy to
prove/disprove

difficult to distinguish
massive with

very large
correlation length
from

massless...



/> vortex-driven transition!

Nematic liquid crystal:
symmetric rod-like molecules
(no distinction between head & tail)

H=-J) (S5
(i.)

Lebwohl-Lascher 1972
Kawamura-Miyashita 1984

Target space = RP2
m (RP?) = Zy Z, vortex!

BKT-like transition driven by the Z; vortices?
But the RG equation also implies asymptotic freedom..

36



Central charge
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UV Fixed Point

(a)

UV central charge at T=0.005

{ = RP2

0(3)
Antiferro RP2

N

3 4 5 ;

RG step
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-0
Spontaneous Symmetry
Breaking of SO(3)

2 independent
Nambu-Goldstone modes
= c=2

Confirmed by TNR

Eo(L) ~ eoL — o



Central charge

Heisenberg Model at Intermediate T

OEffective central charge of the Heisenberg model

— T=0.14
T=0.18
T=0.22
251 —— T=0.24
T=0.28
20 1 v e _/
15 -
10 1
0.5 -
0.0

2 - b RG Ztep 10 12 14
likely to support
“asymptotic freedom”

RG flow ¢=2 — ¢=0

e

EO(L) ~/ EoL — —

c~1.94<?2

2T Xy,

L

6L
no candidate CFT

does not

converge

Finite-size scalig dimension of the Heisenberg model

0.055 A1

0.050 A

0.035 1

0.030 A1

« RGstep: 0

RG step: 1
» RGstep: 2
« RGstep: 3
« RGstep:- 4
« RGstep:5




Central charge

RP2 Model at Intermediate T

Effective central charge of the LL model

4.0
— T=0.15
T=0.2
35 - T=0.25
— T7=0.3
T=0.35
301 — 104
T=0.45
20 -
15 -
10 -
05 -
0.0

Z2 vortex dissociation
transition(?)

c~1.92 <2 no candidate CFT

3

x1(L)

EQ(L) ~ E()L —

10

0.8 -

0.6 1

04 -

0.2 1

0.0

e

6L

Finite-size scaling dimension of the LL model

RG step: 0
RG step: 1
RG step: 2
RG step: 3
RG step: 4
RG step: 5
RG step: 6
RG step: 7
RG step: 8
RG step: 9
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015 020
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0.35
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RP2 Model at T=T+

Finite-size scaling dimension of the LL model

T e 1 Spectrum does not converge
ora { T IOTE well even at T=T+
: c~1.92<?2
) SU(2) level 4
c=2 but smallest scaling dim
0064 , 2
vj1 = = 0.666... > 0.2

020 022 024 026 028 030 032 034

T

likely to support “asymptotic freedom”

RG flow c=2 — ¢=0, but with a strong crossover at [
40



Conclusions (Heisenberg & RP?)

Both Heisenberg & RP? Models

show c=2 at the UV fixed point for T—0
consistently with 2 (would-be) Nambu-Goldstone modes

At intermediate temperatures, the effective central charge
exhibit a “plateau” at c~ 1.9

but there is no appropriate candidate CFT
and scaling dimensions do not converge

Our results support the “asymptotic freedom”
scenario with the single disordered phase in T>0

41



Discussion (Heisenberg & RP?)

Difficulty in distinguishing very large but finite correlation
length from criticality

Even when (system

size) < (correlation length)

the Hamiltonian/transfer matrix spectrum
gives useful information!

We do not compl

etely rule out the possibility of the

critical point at 1" ~ T} or the critical phase in T" < T,
suggested in several papers. However, to pursue this

viewpoint, one wou.

d need to explain the effective cen-

tral charge and the spectra obtained in the present TNR
study, which is perhaps more difficult than simply dis-
cussing whether the correlation length diverges or not.

42



Conclusions (Overall)

TNR + Level Spectroscopy (finite size scaling of CFT)
allows
- super accurate determination of BKT critical point
- visualization of Kosterlitz RG flow by extraction of
running coupling constants from the spectrum
- identify the UV fixed point for
the Heisenberg & RP%2 models
- clarify(?) the crossover in
the Heisenberg & RP?2 models

Future: extension/application to more nontrivial
systems & unknown physics
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. . Frank Verstraete
@fverstraete
A subjective list of 2021 highlights on new methods for
Tensor Networks; please add your favorite ones.

1/ 2021 was the year for tensor networks for field
theories:

@AntoineTilloy arxiv.org/abs/2102.07741
arxiv.org/abs/2104.10564 arxiv.org/abs/2105.00010

VA — N EBR

arxiv.org

. Tensor network simulation of the (1+1)-dimensional $0(3)...
arXiv o (141

We perform a tensor network simulation of the (1+1)-
dimensional $0(3)$ nonlinear $0$-model with $6=mt$ ter...

. - ~‘
G\ .
Ly /'

4/ Backwards differentiation algorithms:
arxiv.org/abs/2101.03935
arxiv.org/abs/2107.03399

Frank Verstraete
@fverstraete

F#7:50 - 20214128318 - Twitter Web App

3BHOIUYAI—r AaHEDSIBYAI—F M2HEDWL

5/ Entanglement Scallng for TRG, TNR and PEPS.:

arxiv.org
J— - v+ » A scaling hypothesis for projected entangled-pair states
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[Submitted on 14 Feb 2022]
Tensor Network Renormalization Study on the Crossover in Classical
Heisenberg and RP? Models in Two Dimensions

Atsushi Ueda, Masaki Oshikawa

We study the classical two-dimensional RP? and Heisenberg models, using the Tensor-Network Renormalization (TNR)
method. The determination of the phase diagram of these models has been challenging and controversial, owing to the very
large correlation lengths at low temperatures. The finite-size spectrum of the transfer matrix obtained by TNR is useful in
identifying the conformal field theory describing a possible critical point. Our results indicate that the ultraviolet fixed point
for the Heisenberg model and the ferromagnetic RP?> model in the zero temperature limit corresponds to a conformal field
theory with central charge ¢ = 2, in agreement with two independent would-be Nambu-Goldstone modes. On the other hand,
the ultraviolet fixed point in the zero temperature limit for the antiferromagnetic Lebwohl-Lasher model, which is a variant of
the RP? model, seems to have a larger central charge. This is consistent with ¢ = 4 expected from the effective SO(5)
symmetry. At T > 0, the convergence of the spectrum is not good in both the Heisenberg and ferromagnetic RP? models.
Moreover, there seems no appropriate candidate of conformal field theory matching the spectrum, which shows the effective
central charge ¢ ~ 1.9. These suggest that both models have a single disordered phase at finite temperatures, although the
ferromagnetic RP?> model exhibits a strong crossover at the temperature where the dissociation of Z, vortices has been
reported.
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Vi Ton, e o ’ models: zero-temperature phase transition versus finite-temperature crossover

Lander Burgelman, Lukas Devos, Bram Vanhecke, Frank Verstraete, Laurens Vanderstraeten

Tensor-network methods are used to perform a comparative study of the two-dimensional classical Heisenberg and RP? models. We demonstrate that
uniform matrix product states (MPS) with explicit SO(3) symmetry can probe correlation lengths up to (‘)(103) sites accurately, and we study the scaling
I . . of entanglement entropy and universal features of MPS entanglement spectra. For the Heisenberg model, we find no signs of a finite-temperature phase
a P P I C atl o n to transition, supporting the scenario of asymptotic freedom. For the RP> model we observe an abrupt onset of scaling behaviour, consistent with hints of a
finite-temperature phase transition reported in previous studies. A careful analysis of the softening of the correlation length divergence, the scaling of the
entanglement entropy and the MPS entanglement spectra shows that our results are inconsistent with true criticality, but are rather in agreement with the
m O re scenario of a crossover to a pseudo-critical region which exhibits strong signatures of nematic quasi-long-range order at length scales below the true
correlation length. Our results reveal a fundamental difference in scaling behaviour between the Heisenberg and RP? models: Whereas the emergence of

scaling in the former shifts to zero temperature if the bond dimension is increased, it occurs at a finite bond-dimension independent crossover
temperature in the latter.
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