Zipper entanglement renormalization for free fermions

 arXiv: 2206.11761

Sing Lam (Sam) Wong Ka Chun (Ricky) Pang

Adrian Po |HKUST

Outline

- Entanglement, renormalization, \& entanglement renormalization
- "Zipper"
- What is it?
- What could it do?
- How is it constructed?
- Going beyond 1D!...

Quantum entanglement -

Exponentials are (computationally) hard

 but the classical world suffers from the same problem!

Yet!

NO difficulty at all drawing one configuration!

Now, into the quantum world...

in which exponentials are much more overwhelming/ powerful

E.g., a |quantum state〉 with 8 quantum bits =

$|00000000\rangle+|00000001\rangle+|00000010\rangle+|00000011\rangle+|00000100\rangle+|00000101\rangle+|00000110\rangle+|00000111\rangle+|00001000\rangle+|00001001\rangle+|00001010\rangle+|00001011\rangle$
$+|00001100\rangle+|00001101\rangle+|00001110\rangle+|00001111\rangle+|00010000\rangle+|00010001\rangle+|00010010\rangle+|00010011\rangle+|00010100\rangle+|00010101\rangle+|00010110\rangle+|00010111\rangle$
$+|00011000\rangle+|00011001\rangle+|00011010\rangle+|00011011\rangle+|00011100\rangle+|00011101\rangle+|00011110\rangle+|00011111\rangle+|00100000\rangle+|00100001\rangle+|00100010\rangle+|00100011\rangle$
$+|00100100\rangle+|00100101\rangle+|00100110\rangle+|00100111\rangle+|00101000\rangle+|00101001\rangle+|00101010\rangle+|00101011\rangle+|00101100\rangle+|00101101\rangle+|00101110\rangle+|00101111\rangle$ $+|00110000\rangle+|00110001\rangle+|00110010\rangle+|00110011\rangle+|00110100\rangle+|00110101\rangle+|00110110\rangle+|00110111\rangle+|00111000\rangle+|00111001\rangle+|00111010\rangle+|00111011\rangle$ $+|00111100\rangle+|00111101\rangle+|00111110\rangle+|00111111\rangle+|01000000\rangle+|01000001\rangle+|01000010\rangle+|01000011\rangle+|01000100\rangle+|01000101\rangle+|01000110\rangle+|01000111\rangle$ $+|01001000\rangle+|01001001\rangle+|01001010\rangle+|01001011\rangle+|01001100\rangle+|01001101\rangle+|01001110\rangle+|01001111\rangle+|01010000\rangle+|01010001\rangle+|01010010\rangle+|01010011\rangle$ $+|01010100\rangle+|01010101\rangle+|01010110\rangle+|01010111\rangle+|01011000\rangle+|01011001\rangle+|01011010\rangle+|01011011\rangle+|01011100\rangle+|01011101\rangle+|01011110\rangle+|01011111\rangle$ $+|01100000\rangle+|01100001\rangle+|01100010\rangle+|01100011\rangle+|01100100\rangle+|01100101\rangle+|01100110\rangle+|01100111\rangle+|01101000\rangle+|01101001\rangle+|01101010\rangle+|01101011\rangle$ $+|01101100\rangle+|01101101\rangle+|01101110\rangle+|01101111\rangle+|01110000\rangle+|01110001\rangle+|01110010\rangle+|01110011\rangle+|01110100\rangle+|01110101\rangle+|01110110\rangle+|01110111\rangle$ $+|01111000\rangle+|01111001\rangle+|01111010\rangle+|01111011\rangle+|01111100\rangle+|01111101\rangle+|01111110\rangle+|01111111\rangle+|10000000\rangle+|10000001\rangle+|10000010\rangle+|10000011\rangle$ $+|10000100\rangle+|10000101\rangle+|10000110\rangle+|10000111\rangle+|10001000\rangle+|10001001\rangle+|10001010\rangle+|10001011\rangle+|10001100\rangle+|10001101\rangle+|10001110\rangle+|10001111\rangle$ $+|10010000\rangle+|10010001\rangle+|10010010\rangle+|10010011\rangle+|10010100\rangle+|10010101\rangle+|10010110\rangle+|10010111\rangle+|10011000\rangle+|10011001\rangle+|10011010\rangle+|10011011\rangle$ $+|10011100\rangle+|10011101\rangle+|10011110\rangle+|10011111\rangle+|10100000\rangle+|10100001\rangle+|10100010\rangle+|10100011\rangle+|10100100\rangle+|10100101\rangle+|10100110\rangle+|10100111\rangle$ $+|10101000\rangle+|10101001\rangle+|10101010\rangle+|10101011\rangle+|10101100\rangle+|10101101\rangle+|10101110\rangle+|10101111\rangle+|10110000\rangle+|10110001\rangle+|10110010\rangle+|10110011\rangle$ $+|10110100\rangle+|10110101\rangle+|10110110\rangle+|10110111\rangle+|10111000\rangle+|10111001\rangle+|10111010\rangle+|10111011\rangle+|10111100\rangle+|10111101\rangle+|10111110\rangle+|10111111\rangle$ $+|11000000\rangle+|11000001\rangle+|11000010\rangle+|11000111\rangle+|11000100\rangle+|11000101\rangle+|11000110\rangle+|11000111\rangle+|11001000\rangle+|11001001\rangle+|11001010\rangle+|11001011\rangle$ $+|11001100\rangle+|11001101\rangle+|11001110\rangle+|11001111\rangle+|11010000\rangle+|11010001\rangle+|11010010\rangle+|11010011\rangle+|11010100\rangle+|11010101\rangle+|11010110\rangle+|11010111\rangle$ $+|11011000\rangle+|11011001\rangle+|11011010\rangle+|11011011\rangle+|11011100\rangle+|11011101\rangle+|11011110\rangle+|11011111\rangle+|11100000\rangle+|11100001\rangle+|11100010\rangle+|11100011\rangle$ $+|11100100\rangle+|11100101\rangle+|11100110\rangle+|11100111\rangle+|11101000\rangle+|11101001\rangle+|11101010\rangle+|11101011\rangle+|11101100\rangle+|11101101\rangle+|11101110\rangle+|11101111\rangle$ $+|11110000\rangle+|11110001\rangle+|11110010\rangle+|11110011\rangle+|11110100\rangle+|11110101\rangle+|11110110\rangle+|11110111\rangle+|11111000\rangle+|11111001\rangle+|11111010\rangle+|11111011\rangle$ $+|11111100\rangle+|11111101\rangle+|11111110\rangle+\mid 11111111)$

Now, into the quantum world...

in which exponentials are much more overwhelming/ powerful
E.g., a |quantum state \rangle with 8 quantum bits $=\bigotimes_{i=1}^{8}\left(|0\rangle_{i}+|1\rangle_{i}\right)$

Now, into the quantum world...

in which exponentials are much more overwhelming/ powerful
E.g., a |quantum state \rangle with 8 quantum bits $=\bigotimes_{i=1}^{8}\left(|0\rangle_{i}+|1\rangle_{i}\right)$

Now, into the quantum world...
 in which exponentials are much more overwhelming/ powerful

E.g., a |quantum state〉 with 8 quantum bits =

Quantum entanglement:

feasibility for us to describe a quantum state

Quantum entanglement:

feasibility for us to describe a quantum state

Dilemma: states we can feasibly describe are not necessarily the most interesting

the exponential solution to the exponential problem

System size:

$$
V \mapsto V / \chi^{d}
$$

Length scale:

$$
l \mapsto l \chi
$$

 That's why we need RG

the exponential solution to the exponential problem

Renormalization through coarse-graining is "forgetful"

RG the other way

integrating out high-energy modes

 also forgetfulUntil we are left with low-energy \digamma

Fermi level
\simeq long-wavelength degrees of freedom

RG yet the other way:

Entanglement renormalization, e.g., MERA

A new future:

renormalization doesn't have to be forgetful!

then project one leg onto some state
first, think of it as a unitary

Caveat: the state we want to describe may not be factorable in to red vs orange!
This is a variational approach: we do our best!

Different ways to look at MERA

Renormalization to infrared

Different ways to look at MERA

Entanglement in MERA

Casting the product states to the physical space

a compactly supported state that is distilled out early in RG

Entanglement renormalization is a powerful way to describe/ understand/ probe interesting quantum states

Outline

- Entanglement, renormalization, \& entanglement renormalization
- "Zipper"
- What is it?
- What could it do?
- How is it constructed?
- Going beyond 1D!...

Zipper Entanglement Renormalization:

What is it?

For our purpose here, we always refer to entanglement across space

For our purpose here, we always refer to entanglement across space

long-range entanglement |LRE \rangle ТЛЛЛЛЛЛЛЛЛЛЛЛЛЛЛЛЛЛ. short-range entanglement|SRE〉

For our purpose here, we always refer to entanglement across space

For our purpose here, we always refer to entanglement across space

$$
\left.\left.\hat{u}_{\text {zipper }}|\Psi\rangle \approx \mid \text { LRE }\right\rangle \otimes \mid \text { SRE }\right\rangle
$$

Renormalization time

Physical operator in

Compared to other schemes...

Zipper Entanglement Renormalization is

- Unitary
- Designed for free fermions (at least for now)
- state-based, i.e. not variational/ more deterministic
- Quasi-local, i.e., with exponentially decaying tail
- More versatile!

Zipper: what could it do?

"Proof of principle": free fermions in 1D

Usual benchmark: uniform chain

Usual benchmark: uniform chain

Usual benchmark: uniform chain

Contrasting example: Su-Schrieffer-Heeger

A more interesting example:

multiple Fermi points \& away from half filling

A more interesting example:

multiple Fermi points \& away from half filling

Physical picture-

connecting with conventional RG

Physical picture-

connecting with conventional RG

Physical picture-

connecting with conventional RG

Physical picture-

connecting with conventional RG

Momentum occupation n_{k} of the distilled modes against RG time

Zipper: how was it done?

In the interest of time, please see 2206.11761 :)

Free-fermion ZER:

algorithm

Key technical construction:

the global distiller \& Wannierization

Summary

- Zipper entanglement renormalization (ZER) is
- Unitary
- Quasi-local
- State-based
- Versatile
- ZER could
- Work in any dimension

- Reveal the "natrual" RG spacetime associated with a state
- Be the starting point for attacking more interesting/ challenigng problem

