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• Entanglement, renormalization, & entanglement renormalization 
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• What could it do?


• How is it constructed?


• Going beyond 1D!…



Quantum entanglement — 
why bother?
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Exponentials are (computationally) hard
but the classical world suffers from the same problem!

# of configurations :

236 = 68,719,476,736

Yet!


NO difficulty at all drawing 
one configuration!



Now, into the quantum world…
in which exponentials are much more overwhelming/ powerful

E.g., a  |quantum state⟩ with 8 quantum bits =
|00000000⟩ + |00000001⟩ + |00000010⟩ + |00000011⟩ + |00000100⟩ + |00000101⟩ + |00000110⟩ + |00000111⟩ + |00001000⟩ + |00001001⟩ + |00001010⟩ + |00001011⟩

+ |00001100⟩ + |00001101⟩ + |00001110⟩ + |00001111⟩ + |00010000⟩ + |00010001⟩ + |00010010⟩ + |00010011⟩ + |00010100⟩ + |00010101⟩ + |00010110⟩ + |00010111⟩
+ |00011000⟩ + |00011001⟩ + |00011010⟩ + |00011011⟩ + |00011100⟩ + |00011101⟩ + |00011110⟩ + |00011111⟩ + |00100000⟩ + |00100001⟩ + |00100010⟩ + |00100011⟩
+ |00100100⟩ + |00100101⟩ + |00100110⟩ + |00100111⟩ + |00101000⟩ + |00101001⟩ + |00101010⟩ + |00101011⟩ + |00101100⟩ + |00101101⟩ + |00101110⟩ + |00101111⟩
+ |00110000⟩ + |00110001⟩ + |00110010⟩ + |00110011⟩ + |00110100⟩ + |00110101⟩ + |00110110⟩ + |00110111⟩ + |00111000⟩ + |00111001⟩ + |00111010⟩ + |00111011⟩
+ |00111100⟩ + |00111101⟩ + |00111110⟩ + |00111111⟩ + |01000000⟩ + |01000001⟩ + |01000010⟩ + |01000011⟩ + |01000100⟩ + |01000101⟩ + |01000110⟩ + |01000111⟩
+ |01001000⟩ + |01001001⟩ + |01001010⟩ + |01001011⟩ + |01001100⟩ + |01001101⟩ + |01001110⟩ + |01001111⟩ + |01010000⟩ + |01010001⟩ + |01010010⟩ + |01010011⟩
+ |01010100⟩ + |01010101⟩ + |01010110⟩ + |01010111⟩ + |01011000⟩ + |01011001⟩ + |01011010⟩ + |01011011⟩ + |01011100⟩ + |01011101⟩ + |01011110⟩ + |01011111⟩
+ |01100000⟩ + |01100001⟩ + |01100010⟩ + |01100011⟩ + |01100100⟩ + |01100101⟩ + |01100110⟩ + |01100111⟩ + |01101000⟩ + |01101001⟩ + |01101010⟩ + |01101011⟩
+ |01101100⟩ + |01101101⟩ + |01101110⟩ + |01101111⟩ + |01110000⟩ + |01110001⟩ + |01110010⟩ + |01110011⟩ + |01110100⟩ + |01110101⟩ + |01110110⟩ + |01110111⟩
+ |01111000⟩ + |01111001⟩ + |01111010⟩ + |01111011⟩ + |01111100⟩ + |01111101⟩ + |01111110⟩ + |01111111⟩ + |10000000⟩ + |10000001⟩ + |10000010⟩ + |10000011⟩
+ |10000100⟩ + |10000101⟩ + |10000110⟩ + |10000111⟩ + |10001000⟩ + |10001001⟩ + |10001010⟩ + |10001011⟩ + |10001100⟩ + |10001101⟩ + |10001110⟩ + |10001111⟩
+ |10010000⟩ + |10010001⟩ + |10010010⟩ + |10010011⟩ + |10010100⟩ + |10010101⟩ + |10010110⟩ + |10010111⟩ + |10011000⟩ + |10011001⟩ + |10011010⟩ + |10011011⟩
+ |10011100⟩ + |10011101⟩ + |10011110⟩ + |10011111⟩ + |10100000⟩ + |10100001⟩ + |10100010⟩ + |10100011⟩ + |10100100⟩ + |10100101⟩ + |10100110⟩ + |10100111⟩
+ |10101000⟩ + |10101001⟩ + |10101010⟩ + |10101011⟩ + |10101100⟩ + |10101101⟩ + |10101110⟩ + |10101111⟩ + |10110000⟩ + |10110001⟩ + |10110010⟩ + |10110011⟩
+ |10110100⟩ + |10110101⟩ + |10110110⟩ + |10110111⟩ + |10111000⟩ + |10111001⟩ + |10111010⟩ + |10111011⟩ + |10111100⟩ + |10111101⟩ + |10111110⟩ + |10111111⟩
+ |11000000⟩ + |11000001⟩ + |11000010⟩ + |11000111⟩ + |11000100⟩ + |11000101⟩ + |11000110⟩ + |11000111⟩ + |11001000⟩ + |11001001⟩ + |11001010⟩ + |11001011⟩
+ |11001100⟩ + |11001101⟩ + |11001110⟩ + |11001111⟩ + |11010000⟩ + |11010001⟩ + |11010010⟩ + |11010011⟩ + |11010100⟩ + |11010101⟩ + |11010110⟩ + |11010111⟩
+ |11011000⟩ + |11011001⟩ + |11011010⟩ + |11011011⟩ + |11011100⟩ + |11011101⟩ + |11011110⟩ + |11011111⟩ + |11100000⟩ + |11100001⟩ + |11100010⟩ + |11100011⟩
+ |11100100⟩ + |11100101⟩ + |11100110⟩ + |11100111⟩ + |11101000⟩ + |11101001⟩ + |11101010⟩ + |11101011⟩ + |11101100⟩ + |11101101⟩ + |11101110⟩ + |11101111⟩
+ |11110000⟩ + |11110001⟩ + |11110010⟩ + |11110011⟩ + |11110100⟩ + |11110101⟩ + |11110110⟩ + |11110111⟩ + |11111000⟩ + |11111001⟩ + |11111010⟩ + |11111011⟩
+ |11111100⟩ + |11111101⟩ + |11111110⟩ + |11111111)



Now, into the quantum world…
in which exponentials are much more overwhelming/ powerful

E.g., a  |quantum state⟩ with 8 quantum bits =
8
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Now, into the quantum world…
in which exponentials are much more overwhelming/ powerful

E.g., a  |quantum state⟩ with 8 quantum bits =
8
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= | → → → → → → → → ⟩

NO difficulty at all 
describing this state!



Now, into the quantum world…
in which exponentials are much more overwhelming/ powerful

E.g., a  |quantum state⟩ with 8 quantum bits =
|00000000⟩ + |00000001⟩ + |00000010⟩ + |00000011⟩ + |00000100⟩ + |00000101⟩ + |00000110⟩ + |00000111⟩ + |00001000⟩ + |00001001⟩ + |00001010⟩ + |00001011⟩

+ |00001100⟩ + |00001101⟩ + |00001110⟩ + |00001111⟩ + |00010000⟩ + |00010001⟩ + |00010010⟩ + |00010011⟩ + |00010100⟩ + |00010101⟩ + |00010110⟩ + |00010111⟩
+ |00011000⟩ + |00011001⟩ + |00011010⟩ + |00011011⟩ + |00011100⟩ + |00011101⟩ + |00011110⟩ + |00011111⟩ + |00100000⟩ + |00100001⟩ + |00100010⟩ + |00100011⟩
+ |00100100⟩ + |00100101⟩ + |00100110⟩ + |00100111⟩ + |00101000⟩ + |00101001⟩ + |00101010⟩ + |00101011⟩ + |00101100⟩ + |00101101⟩ + |00101110⟩ + |00101111⟩
+ |00110000⟩ + |00110001⟩ + |00110010⟩ + |00110011⟩ + |00110100⟩ + |00110101⟩ + |00110110⟩ + |00110111⟩ + |00111000⟩ + |00111001⟩ + |00111010⟩ + |00111011⟩
+ |00111100⟩ + |00111101⟩ + |00111110⟩ + |00111111⟩ + |01000000⟩ + |01000001⟩ + |01000010⟩ + |01000011⟩ + |01000100⟩ + |01000101⟩ + |01000110⟩ + |01000111⟩
+ |01001000⟩ + |01001001⟩ + |01001010⟩ + |01001011⟩ + |01001100⟩ + |01001101⟩ + |01001110⟩ + |01001111⟩ + |01010000⟩ + |01010001⟩ + |01010010⟩ + |01010011⟩
+ |01010100⟩ + |01010101⟩ + |01010110⟩ + |01010111⟩ + |01011000⟩ + |01011001⟩ + |01011010⟩ + |01011011⟩ + |01011100⟩ + |01011101⟩ + |01011110⟩ + |01011111⟩
+ |01100000⟩ + |01100001⟩ + |01100010⟩ + |01100011⟩ + |01100100⟩ + |01100101⟩ + |01100110⟩ + |01100111⟩ + |01101000⟩ + |01101001⟩ + |01101010⟩ + |01101011⟩
+ |01101100⟩ + |01101101⟩ + |01101110⟩ + |01101111⟩ + |01110000⟩ + |01110001⟩ + |01110010⟩ + |01110011⟩ + |01110100⟩ + |01110101⟩ + |01110110⟩ + |01110111⟩
+ |01111000⟩ + |01111001⟩ + |01111010⟩ + |01111011⟩ + |01111100⟩ + |01111101⟩ + |01111110⟩ + |01111111⟩ + |10000000⟩ + |10000001⟩ + |10000010⟩ + |10000011⟩
+ |10000100⟩ + |10000101⟩ + |10000110⟩ + |10000111⟩ + |10001000⟩ + |10001001⟩ + |10001010⟩ + |10001011⟩ + |10001100⟩ + |10001101⟩ + |10001110⟩ + |10001111⟩
+ |10010000⟩ + |10010001⟩ + |10010010⟩ + |10010011⟩ + |10010100⟩ + |10010101⟩ + |10010110⟩ + |10010111⟩ + |10011000⟩ + |10011001⟩ + |10011010⟩ + |10011011⟩
+ |10011100⟩ + |10011101⟩ + |10011110⟩ + |10011111⟩ + |10100000⟩ + |10100001⟩ + |10100010⟩ + |10100011⟩ + |10100100⟩ + |10100101⟩ + |10100110⟩ + |10100111⟩
+ |10101000⟩ + |10101001⟩ + |10101010⟩ + |10101011⟩ + |10101100⟩ + |10101101⟩ + |10101110⟩ + |10101111⟩ + |10110000⟩ + |10110001⟩ + |10110010⟩ + |10110011⟩
+ |10110100⟩ + |10110101⟩ + |10110110⟩ + |10110111⟩ + |10111000⟩ + |10111001⟩ + |10111010⟩ + |10111011⟩ + |10111100⟩ + |10111101⟩ + |10111110⟩ + |10111111⟩
+ |11000000⟩ + |11000001⟩ + |11000010⟩ + |11000111⟩ + |11000100⟩ + |11000101⟩ + |11000110⟩ + |11000111⟩ + |11001000⟩ + |11001001⟩ + |11001010⟩ + |11001011⟩
+ |11001100⟩ + |11001101⟩ + |11001110⟩ + |11001111⟩ + |11010000⟩ + |11010001⟩ + |11010010⟩ + |11010011⟩ + |11010100⟩ + |11010101⟩ + |11010110⟩ + |11010111⟩
+ |11011000⟩ + |11011001⟩ + |11011010⟩ + |11011011⟩ + |11011100⟩ + |11011101⟩ + |11011110⟩ + |11011111⟩ + |11100000⟩ + |11100001⟩ + |11100010⟩ + |11100011⟩
+ |11100100⟩ + |11100101⟩ + |11100110⟩ + |11100111⟩ + |11101000⟩ + |11101001⟩ + |11101010⟩ + |11101011⟩ + |11101100⟩ + |11101101⟩ + |11101110⟩ + |11101111⟩
+ |11110000⟩ + |11110001⟩ + |11110010⟩ + |11110011⟩ + |11110100⟩ + |11110101⟩ + |11110110⟩ + |11110111⟩ + |11111000⟩ + |11111001⟩ + |11111010⟩ + |11111011⟩
+ |11111100⟩ + |11111101⟩ + |11111110⟩ + |11111111) What about this?



Quantum entanglement: 
feasibility for us to describe a quantum state



Quantum entanglement: 
feasibility for us to describe a quantum state

Matrix Product State (MPS) Projected Entangled Pair State (PEPS)

O(1) bond dimension
. . . 



Dilemma: states we can feasibly describe 
are not necessarily the most interesting



That’s why we need RG (renormalization group)

the exponential solution to the exponential problem

System size:


V ↦ V/χd

Length scale:


l ↦ lχ



That’s why we need RG (renormalization group)

the exponential solution to the exponential problem

⇒ ⇐

Renormalization through coarse-graining is “forgetful”



RG the other way
integrating out high-energy modes

Fermi levelUntil we are left with low-energy 


 long-wavelength degrees of freedom≃

also forgetful



RG yet the other way:
Entanglement renormalization, e.g., MERA

Disentangling

Coarse-graining

Perturb

[Vidal, PRL 2007, 2008]“infrared” state

Physical system Hilbert space



A new future: 
renormalization doesn’t have to be forgetful!

⟨
|

first, think of it as a unitary

then project one leg onto some state 

Caveat: the state we want to describe may not be factorable in to red vs orange!


This is a variational approach: we do our best!



Different ways to look at MERA
Renormalization to infrared

Disentangling
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Disentangling then  
projecting

Reading  
upwards

“infrared” state



Different ways to look at MERA
Growing a state with resources

⟨
|

⟨
|

⟨
|

⟨
|

⟨
|

⟨
|

⟨
|

⟨
|

⟨
|

⟨
|

⟨
|

⟨
|

Reading  
downwards

“infrared” state

[Swingle & McGreevy, PRBx3 2016 ]



Entanglement in MERA
Casting the product states to the physical space
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“infrared” state

a compactly supported state that is distilled out early in RG 



Entanglement renormalization is a 
powerful way to describe/ understand/ 

probe interesting quantum states



Outline

• Entanglement, renormalization, & entanglement renormalization 


• “Zipper”


• What is it?


• What could it do?


• How is it constructed?


• Going beyond 1D!…



Zipper Entanglement Renormalization: 

What is it?



[pic from oxyvector on freepik]

zip

unzip



|Ψ⟩



|Ψ⟩
|LRE⟩long-range entanglement

|SRE⟩short-range entanglement

̂uzipper

For our purpose here, we always refer to entanglement across space
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|Ψ⟩
|LRE⟩long-range entanglement

|SRE⟩short-range entanglement

̂uzipper

For our purpose here, we always refer to entanglement across space



|Ψ⟩ |LRE⟩

long-range entanglement

|SRE⟩

short-range entanglement

̂uzipper ≈ ⊗

For our purpose here, we always refer to entanglement across space



̂u(0)
zipper |Ψ(0)⟩ ≈ |Ψ(1)⟩ ⊗ |φ(0)⟩

̂u(1)
zipper |Ψ(1)⟩ ≈ |Ψ(2)⟩ ⊗ |φ(1)⟩

̂u(2)
zipper |Ψ(2)⟩ ≈ |Ψ(3)⟩ ⊗ |φ(2)⟩

|Ψ(0)⟩Input/ physical state

Renormalization time

..
.



̂u(0)
zipper |Ψ(0)⟩ ≈ |Ψ(1)⟩ ⊗ |φ(0)⟩

̂u(1)
zipper |Ψ(1)⟩ ≈ |Ψ(2)⟩ ⊗ |φ(1)⟩

̂u(2)
zipper |Ψ(2)⟩ ≈ |Ψ(3)⟩ ⊗ |φ(2)⟩

|Ψ(0)⟩

Ûzipper |Ψ(0)⟩ = ⋯ ̂u(2)
zipper ̂u(1)

zipper ̂u(0)
zipper |Ψ(0)⟩

≈ |Ψcore⟩ ⊗ ⋯ ⊗ |φ(2)⟩ ⊗ |φ(1)⟩ ⊗ |φ(0)⟩
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zipper

Long-range entangled state in
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⟨
| Unitary 

transformation

Short-range entangled 
state out 

(in the RG “spacetime”!)



zipper

Physical operator in

Transformed operator out

quasi-local: 
exponentially 
suppressed tail

Unitary 
transformation



Compared to other schemes…

Zipper Entanglement Renormalization is

• Unitary


• Designed for free fermions (at least for now)


• state-based, i.e. not variational/ more deterministic


• Quasi-local, i.e., with exponentially decaying tail


• More versatile!



Zipper: what could it do?
“Proof of principle”: free fermions in 1D



Usual benchmark: uniform chain
t

Ek



Usual benchmark: uniform chain
t

x

⟨ ̂c†
x ̂c0⟩



x

Usual benchmark: uniform chain
t

x1
2
3
4
5
6
7

core

Contribution 
form different 
RG levels

⟨ ̂c†
x ̂c0⟩

[c.f. Evenly & White, PRL 2016, PRA 2018;  
Haegeman et al, PRX 2018]



Contrasting example: Su-Schrieffer-Heeger
t t′ 

x x

1

2

⟨ ̂c†
x ̂c0⟩



A more interesting example:
multiple Fermi points & away from half filling

t

t′ 

Ek

filling = 0.4 per cell



A more interesting example:
multiple Fermi points & away from half filling

t

t′ 

x x1

2

5

6

core

3, 4×
⟨ ̂c†

x ̂c0⟩



Physical picture—
connecting with conventional RG

simple zone-folding



Physical picture—
connecting with conventional RG

Frozen to “filled”

Frozen to “empty”

Non-frozenCourier
Ent.

next RG level



Physical picture—
connecting with conventional RG

Frozen to “filled”

Frozen to “empty”

Non-frozenCourier
Ent.

next RG level



Physical picture—
connecting with conventional RG

0 π k

nk

0

1
RG time RG time

0 π k

nk

0

1 RG time

Momentum occupation  of the distilled modes against RG timenk



Zipper: how was it done?
In the interest of time, please see 2206.11761 :)



Free-fermion ZER:
algorithm

Input: a free-fermion state (+ a O(1) length scale  & a small threshold )


try:


‣ Distillation


‣ Local distillation (over scale  & controled by )


‣ Combine to perform global distillation


‣ Re-localized courier modes


except Distillation Error:


‣ Simple blocking


output: a new free-fermion state

ξ ϵ

ξ ϵ

re
pe

at
 u

nt
il 

no
th

in
g 

le
ft

# through entanglement of local regions

# by “combining” the local modes

# with the help of Wannier

# no frozen modes/ cannot Wannier

# i.e., zone folding

# defined in the courier/ blocked modes

# distill frozen from courier 



Key technical construction:
the global distiller & Wannierization

Hdistill = ∑
x

hdistill
x

k

eig (Hdistill
k )

⇒ ⇒ Wannierize

[c.f. Evenly & White, PRL 2016, PRA 2018;  
Haegeman et al, PRX 2018]



Summary
• Zipper entanglement renormalization (ZER) is


• Unitary


• Quasi-local


• State-based


• Versatile


• ZER could


• Work in any dimension


• Reveal the “natrual” RG spacetime associated with a state


• Be the starting point for attacking more interesting/ challenigng problem

Zipper

Zipper


