Topological Mott Insulator in Semiconductor Moire Heterostructure

Liang Fu

Yang Zhang

Trithep Devakul

Margarita Davydova

Cornell:

Jie Shan

Kin Fai Mak

Two Types of Insulators

Band insulators

- even integer fillings
- energy gap due to Pauli exclusion

Mott insulators

- odd integer fillings
- interaction induced gap

Normal Band Insulators

- energy gap remains finite as the crystal is taken apart
- topologically equivalent to atomic limit

Interatomic separation

Band insulator: NaCl = Na¹⁺ & Cl¹⁻

Topological Insulators

- cannot be taken apart smoothly
- rely on the wave nature of electron

Atomic versus Topological Insulators

Dimmock et al (1966)

- PbTe = Pb^{2+} & Te²⁻
- SnTe \neq Sn²⁺ & Te²⁻

Continuous Phase Transition between normal and topological band insulators

Dirac field theory: $H = -i \nabla \cdot \Gamma + m\Gamma_0$

Ando et al (2012)

- change of topology = sign change of Dirac mass
- boundary (= domain wall) hosts massless Weyl fermion
- interaction is irrelevant at critical point

Mott Insulators

NiO = Ni²⁺ & O²⁻

- electrons bound to individual atoms
- electron motion prohibited by local repulsion $Un_{i\uparrow}n_{i\downarrow}$

Part 1: Inverting Mott Insulators

Continuous phase transition from 120° AFM Mott insulator to Chern insulator with spin chirality

Zhang, Devakul & LF, PNAS (2021) Devakul & LF, PRX (2022)

Moire Superlattices

Twisted bilayer graphene

Semiconductor heterostructure

Hubbard Model Physics in Transition Metal Dichalcogenide Moiré Bands

Fengcheng Wu,¹ Timothy Lovorn,² Emanuel Tutuc,³ and A. H. MacDonald²

Tight-binding regime at large moire period: $\hbar^2/ma^2 \ll V$ => triangular lattice of "quantum dots" & Hubbard model

Simulation of Hubbard model physics in WSe₂/WS₂ moiré superlattices

WC & MIT: Chenhao Jin, Cenke Xu, Senthil, Kim, Das Sarma, Philips, MacDonald ...

Mott and generalized Wigner crystal states in WSe_2/WS_2 moiré superlattices

Local Moment and AFM Interaction

Tang et al, Nature (2020)

Charge-Transfer Mott Insulator

- moire potential may have two minima in a unit cell
- doped charges at n>1 occupy secondary minima to avoid U.
- insulating gap at n=1 set by Δ

Zhang, Yuan & LF, PRB (2020)

Moiré quantum chemistry: Charge transfer in transition metal dichalcogenide superlattices

Yang Zhang^{,*} Noah F. Q. Yuan,^{*} and Liang Fu

Charge transfer excitations, pair density waves, and superconductivity in moiré materials

Kevin Slagle^{1,2} and Liang Fu³

Electronic structures, charge transfer, and charge order in twisted transition metal dichalcogenide bilayers

Yang Zhang^{,*} Tongtong Liu, and Liang Fu

Intralayer Charge Transfer in WSe₂/WS₂

Xiaodong Xu's group (submitted) See also Xu et al, arXiv:2202.02055

charge-transfer Mott insulator honeycomb lattice Mott-Hubbard

Quantum anomalous Hall effect from intertwined moiré bands

Tingxin Li, Shengwei Jiang, Bowen Shen, Yang Zhang, Lizhong Li, Zui Tao, Trithep Devakul, Kenji Watanabe, Takashi Taniguchi, Liang Fu, Jie Shan 🗠 & Kin Fai Mak 🗠

• Electric field tunes interlayer charge transfer

Moire Bands in MoTe₂/WSe₂

13 x13 MoTe₂

- $\Delta = 0.13 \text{eV}$ at zero E field
- majority layer: MoTe₂
 minority layer: WSe₂
- moire band due to lattice corrugation with bandwidth ~ 50 meV

14 x14 WSe₂

E Field Tunes Band Inversion

- electric field inverts minibands on two layers
- band inversion + p-wave interlayer tunneling => valley Chern number

Prediction: E field induced quantum spin Hall insulator at n=2

Zhang, Devakul & LF, PNAS (2021)

Edge Transport in MoTe₂/WSe₂

Zhao et al, arXiv:2207.02312

Quantum Anomalous Hall Effect at Half Filling

E Field Induced Mott-QAH Transition

- absence of E field hysteresis
- robust and reproducible

Mott to QAH Insulators

Mott-QAH transition by inverting charge transfer gap

Devakul & LF, PRX (2022)

 $\delta \sim \Delta - W$

120°-AFM Mott Insulator

- Quasiparticle bands in magnetically ordered insulator are different from noninteracting bands.
- Low-energy states: spin-polarized holes on majority layer & spin-degenerate electrons on minority layer

Interacting Field Theory

$$\mathcal{H}_{\text{eff}} = \int \psi^{\dagger} H_{\text{eff}} \psi \, d\mathbf{k} + \mathbf{g} \int n_{B\uparrow}(r) n_{B\downarrow}(r) d\mathbf{r} \qquad \psi = (\psi_A, \psi_{B\uparrow}, \psi_{B\downarrow})$$

- spin degeneracy at k=0 on minority layer protected by $C_3 \& Ts_z$
- p-wave hybridization dictated by band symmetry
- *g*: electron repulsion on minority layer

Interacting Field Theory

Quasiparticle band at g = 0

After band inversion $\delta < 0$, quadratic band touching appears at Fermi level, which is unstable to repulsion g Sun, Yao, Fradkin, Kivelson, PRL 2009

g > 0 changes from irrelevant to marginally relevant at band inversion!

QAH with non-coplanar magnetism

- chiral spin order: (canted) xy-AFM in MoTe₂ & Ising FM in WSe₂
- Ising FM opens Chern gap at quadratic band touching

Continuous Mott-Chern Transition

Inverting charge transfer gap induces <u>simultaneous</u> change of magnetism & topology.

Devakul & LF, PRX (2022)

Topological Band & Mott Insulators

Inverting single-particle gap (even-integer filling)

2007

Inverting many-body gap (odd-integer filling)

2022

AFM Mott insulators with negative charge transfer gap: potential route to high-temperature QAH

Bridging Mott and Chern

Comparison with Other QAH Systems

Magnetically doped TI film Chang et al (2013)

- FM of dopant opens Chern gap at surface Dirac point
- even integer filling

Magic-angle graphene

Sharpe et al, Serlin et al (2019)

• fully valley-polarized flat Chern band

$$C_K = +1 \qquad C_{K'} = -1$$

Zhang & Senthil, MacDonald, Xie et al, Pan et al ...

QAH in $MoTe_2/WSe_2$ differs fundamentally from flat band FM.

Comparison with Experiment

Hartree-Fock Phase Diagram

Prediction for Magnetism

- Mott: **zero** spin *S*_{*z*} polarization
- QAH: finite but incomplete spin S_z polarization increasing with B field and E field
- Intervalley XY magnetic order: **gapless** magnon

Evidence for Canted Spin Texture in QAH

Tao et al, arXiv: 2208.07452

Outlook

- charge gap across Mott-Chern transition
- spin superfluidity
- critical exponents
- inverting quantum spin liquid