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Introduction



Analog quantum simulators
Let the nature do the quantum simulations using highly controllable experimental devices

Ultracold atoms in optical lattices
[I.Bloch,Nature.453.1016(’08);

C.Gross,I.Bloch,Science.357.995(’17); W.Hofstet-
ter,T.Qin,J.Phys.B:At.Mol.Opt.Phys.51.082001(’18)]

Rydberg atoms in
optical tweezer arrays

[H.Bernien et al.,Nature.551.579(’17); A.Keesling et
al.,Nature.568.207(’19)]
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Trapped ion quantum computers
[R.Blatt,C.F.Roos,Nat.Phys.8.277(’12); E.A.Martinez et

al.,Nature.534.516(’16); M.Gärtner et
al.,Nat.Phys.13.781(’17);

https://physicsworld.com/wp-
content/uploads/2018/12/IonQ-chip.png]

Superconducting quantum circuits
[R.Ma et al.,Nature.566.51(’19); Y.Ye et

al.,PRL.123.050502(’19)]
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What do we want to do using analog quantum simulators?

• Solve problems that are hard to tackle by classical computers
• Prepare the Hamiltonian corresponding to the problem and

obtain the equilibrium state (e.g. the ground state)
• Simulate Schrödinger equation

→ Simulations of isolated quantum many-body systems have
attracted much interest

∗ In experiments, quench is realized by very fast sweep

• In general, simulating time evolution requires all the information of
eigenstates on classical computers
→ It is much harder than the ground-state calculation

8 / 32



In the case of ultracold atoms on optical lattices...
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What do we want to clarify by simulating time evolution?

• How do isolated quantum many-body
systems thermalize?

• What is the upper limit of the information
propagation (= Lieb-Robinson bound)?
cf. In relativistic system:
Upper limit = speed of light

Theoretical investigation is active recently
cf. Light-cone-like behavior in Bose-Hubbard
models
[T.Kuwahara, K.Saito, PRL.127.070403(’21)]

[Y.Takasu et al., sciadv.aba9255(’20)]

Desirable to simulate the dynamics of correlation spreading
to answer these questions

→ Longer-time experimental and numerical simulations are important
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Comparisons between experimental and numerical simulations are desired

Propagation velocities can be obtained from equal-time correlations
• Two characteristic velocities
• Phase velocity
• Group velocity (≤ Lieb-Robinson bound)

envelope of
the wave packetwave packet

phase velocity group velocity

• In 1D, tensor-network
simulations with matrix product
states (MPS) are popular

• e.g. 1D Bose-Hubbard simulator
Correlations after a quench
[M.Cheneau et al.,Nature.481.484(’11)]
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Quasiparticle picture

J U

Dynamics of doublons and holons
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Numerical simulations in 2D are extremely hard

Δ=(0,2)

Δ=(0,1)

Δ=(1,1)

[K.Nagao et al., PRR.3.043091(’21)]

• e.g. Quench dynamics in the 2D Bose-Hubbard model
• Semiclassical approach (truncated Wigner approximation) is not

powerful enough to reproduce the intensity of correlations
• Extend the 1D MPS wave functions to 2D

Examine the accuracy of the 2D tensor-network method
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Motivation

• Numerical simulations of time evolution on classical computers
• Crosscheck and predict experimental results
• Numerical simulations in 2D are extremely hard so far

• Focus on
• 2D Bose-Hubbard model
• 2D transverse-field Ising model
to examine the accuracy of the 2D tensor-network method
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Tensor-network method



Tensor-network states: MPS and PEPS
• Wave function for quantum spin systems:

|ψ〉 =
∑
{si}

Cs1,s2,...,sN |s1, s2, . . . , sN〉 #elements = O(eN )

• In 1D: Matrix product state (MPS)

≃

Ai[si]s1,s2,...,sNC

s1 s2 sN s1 s2 sNsi
• In 2D: Projected entangled pair state (PEPS), tensor product state

virtual
bond

dim. of local
Hilbert space

(spin, boson, ...)

:D

:Dphys

• Dphys = 2S + 1 for spin S
(chosen to be sufficiently large for
soft-core bosons)

• D = 1: direct product state
• D ≥ 2: entangled state
• Wave functions are more

accurate for larger D
• Translational invariant PEPS

can treat infinite systems
[T.Nishino et al.,PTP.105.409(’01); F.Verstraete, J.Cirac, arXiv:cond-mat/0407066]
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Simulating real-time evolution by infinite PEPS
• Real-time evolution of infinite PEPS: |ψ(t)〉 = e−itH |ψ(0)〉

j

t

−iδtHje

=

Time-evolving block decimation in 2D
(= simple update) [comp. cost: O(D5)]
[H.C.Jiang,Z.Y.Weng,T.Xiang(’08); P.Corboz et al.(’10)]

• Calculation of expectation values for infinite PEPS:
environment corner

edge

Corner transfer matrix renormalization
group method [comp. cost O(D10)]
[R.J.Baxter(’68); T.Nishino,K.Okunishi(’96,’97);
R.Orus,G.Vidal(’09)]

• Previous studies on 2D quench dynamics:
e.g. transverse-field Ising model (tr.-field: hx = ∞ → hx

c )
Time . ~/J accessible by increasing bond dimension D

0 0.2 0.4
0.94

0.96

1

0.98

<
X

>

0 0.2 0.4

-10
-3

0

10
-3

∆
Ε

/Ε
0

0 0.5 1

0.80

0.85

0.90

0.95

1

<
X

>

0 0.5 1

-10
-3

0

10
-3

∆
Ε

/Ε
0

0 0.5 1 1.5

t

0

0.20

0.40

0.60

0.80

1

<
X

>

D=2

D=3

D=4

D=5

D=6

D=7

D=8

0 0.5 1 1.5

t

-10
-3

0

10
-3

∆
Ε

/Ε
0

time time

[A.Kshetrimayum et al.,Nat.Commun.8.1291(’17); P.Czarnik et al.,PRB.99.035115(’19);
C.Hubig,J.I.Cirac,SciPost.Phys.6,031(’19)]
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Quench dynamics in the Bose-Hubbard model

Motivation:
• Reproduce experimental results
• Examine the parameter region that has not been explored



Numerical setup: Wish to calculate |ψ(t)〉 = e−iĤt|ψ0〉
• Square Bose-Hubbard model: Ĥ =

∑
〈ij〉

Ĥij

Ĥij = −J(â
†
i
âj + â

†
j
âi) +

U

2z
[n̂i(n̂i − 1) + n̂j(n̂j − 1)] −

µ

z
(n̂i + n̂j) (z = 4)

[V.Murg et al.,PRA(’07); J.Jordan et al.,PRB(’09); A.Kshetrimayum et al.,PRL(’19); S.S.Jahromi and R.Orus,PRB(’19); P.Schmoll et al.,PRL(’20);
W.-L.Tu et al.,JPCM(’20); H.-K.Wu et al.,PRA(’20); P.C.G.Vlaar and P.Corboz et al.,PRB(’21)]

• Simple update by e.g. e
−idtĤ/~ ∼

∏
〈ij〉

e
−idtĤij/~

(use second-order Suzuki-Trotter decomposition in practice)
• Very fast (τQ > 0) and sudden (τQ = 0) quenches from Mott insulator ⊗i|ni = 1〉
• Experimental setup: U/J ∼ 100 → 19.6 in τQ = 0.1ms

(U/J = 19.6 > 16.74 = Uc/J : Mott insulating region)
μ/U

J/U

Mott
Insulator Superfluid

n=1

• Use tensor-network library TeNeS
[Y.Motoyama et al., Comp.Phys.Commun.279.108437(’22); https://github.com/issp-center-dev/TeNeS, https://github.com/TsuyoshiOkubo/pTNS]
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Numerical results: Comparison with the experiment at U/J = 19.6

Csp
r (t) =

1

2Ns

∑
ri−rj=r

〈â†
i (t)âj(t) + â

†
j(t)âi(t)〉

• Consider finite quench time as in the experiment
• Nearly conserved energy for 0 ≤ tJ/~ . 0.4
• Physical quantities are likely to be converged for

this short time
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Csp
r (t) =

1

2Ns

∑
ri−rj=r

〈â†
i (t)âj(t) + â

†
j(t)âi(t)〉

Δ=(0,2)

Δ=(0,1)

Δ=(1,1)

• Consider finite quench time as in the experiment
• Nearly conserved energy for 0 ≤ tJ/~ . 0.4
• Single-particle correlations agree very well
• How about other parameter regions?
• How does the propagation velocity behave?
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Numerical results: Estimate propagation velocities from 〈a†
0ar〉 and 〈n0nr〉

Consider a sudden quench

Energy is conserved for longer time
tJ/~ . 0.9 when U/J ∼ 5

Can capture peaks up to |r| ≤ 3

Csp
r (t) =

1

2Ns

∑
ri−rj=r

〈â†
i (t)âj(t) + â

†
j(t)âi(t)〉

Cdd
r (t) =

1

Ns

∑
ri−rj=r

(〈n̂i(t)n̂j(t)〉 − 1)

• vphase: captured by single-particle correlation 〈a†
0ar〉

• vgroup: captured by density-density correlation 〈n0nr〉
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†
j(t)âi(t)〉
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Numerical results: U dependence of velocity

• For U . zJ (z = 4), single-particle picture (mean-field-like picture) holds
vgroup ∼ 4J/~ [K.Nagao et al.,PRA.99.023622(’19)]

• For U � J , quasi-particle picture holds
vgroup ∼ 6J/~ × [1 + O(J2/U2)] [M.Cheneau et al.,Nature.481.484(’11)]

• vgroup estimated from 〈n0nr〉 consistent with
• single-particle group velocity deep in superfluid region
• strong-coupling result near criticality

• vphase and vgroup gradually converge to the same value as U/J is decreased
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Conclusions: Bose-Hubbard case
• Quench dynamics from Mott insulator in 2D Bose-Hubbard model
• Simulation by infinite PEPS using simple update
• Compare PEPS simulations with experiments

→ Good agreement for tJ/~ . 0.4 at U/J = 19.6
μ/U

J/U

Mott
Insulator Superfluid

n=1

time

J/U quench

• Estimate velocity of correlation spreading for smaller U/J

vphase and vgroup gradually converge
to the same value as U/J is decreased

Might be helpful for future experiments

R. Kaneko and I. Danshita, Commun. Phys. 5, 65 (2022)
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Quench dynamics in the 2D transverse-field Ising model

Motivation:
• How good is the 2D tensor-network method in this case?
• How does the group velocity for spin correlations look?

(Compare with the recently updated Lieb-Robinson bound)



Analog quantum simulations of the quantum Ising model
by Rydberg-atom arrays

[H.Bernien et al.,Nat.551.579(’17); A.Keesling et al.,Nat.568.207(’19);
E.Guardado-Sanchez et al.,PRX.8.021069(’18); V.Lienhard et al.,PRX.8.021070(’18);

D.Bluvstein et al.,Science.371.1355(’21); P.Scholl et al.,Nat.595.233(’21); S.Ebadi et al.,Nat.595.227(’21); …]
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Rydberg atoms quantum Ising model
bases |g〉, |r〉 |↓〉, |↑ 〉
Ω Rabi frequency transverse field
∆ detuning longitudinal field
V van der Waals interaction Ising spin interaction

Δ/V

Ω/V

Very recently, real-time dynamics for # qubits > 200
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Numerical setup: 2D transverse-field Ising model
• Ground-state phase diagram [R.Kaneko et al.,JPSJ.90.073001(’21)]
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h
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Disorder

H = +J
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Sz
i S

z
j − Γ

∑
i

Sx
i − h

∑
i

Sz
i

• For simplicity, focus on h = 0 case
→ Map to ferromagnetic model by appropriate unitary transformation

H = −J
∑
〈ij〉

Sz
i S

z
j − Γ

∑
i

Sx
i

• Sudden quench from the Γ = ∞ ground state | →→ · · · →〉

Γ=∞Γc

quench
|ψ(t)〉 = e−iHt/~| →→ · · · →〉
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Numerical results: Extract group velocity from spin correlations
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• Distances longer than exact diag are calculable
• Estimated group velocity for Γ � J : vspin/J = 1.07 ± 0.20
• Best Lieb-Robinson bound for any correlations in 2D TFIsing model for Γ � J :
vLR/J = 7.55 [Z.Wang, K.R.A.Hazzard, PRXQuantum.1.010303(’20)]

• vspin � vLR

→ Our data is more meaningful when we need to compare the spin correlations
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Conclusions: Ising case

• Quench dynamics from the disordered state in 2D transverse-field Ising
model

• Simulation by infinite PEPS using simple update

Γ=∞Γc

quench
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• Our estimate of the group velocity: vspin/J ∼ 1

• This is much smaller than the current best Lieb-Robinson bound:
vLR/J = 7.55

• Our group velocity and spin correlations are helpful for crosschecking
experimental data
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Conclusions

• Simulating the dynamics of 2D systems by the tensor-network method with iPEPS
• Focus on the quench in the 2D Bose-Hubbard and transverse-field Ising models

Bose-Hubbard case

• Good agreement with the experiment

• Examine the parameter region that has
not been explored

Ising case

• Group velocity satisfies the
Lieb-Robinson bound
(but the value is much smaller than
the bound)
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• vspin � vLR is intrinsic?
• Recent vLR is still loose?

• Provide numerical data that can be
compared with future experiments
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