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bond-dependent Ising interaction

A. Kitaev, Annals of Physics 321, 2 (2006)

  

Kitaev's honeycomb model
 Spin-< model
 Highly anisotropic 
in spin and space

 Frustrated by 
anisotropy, not 
geometry
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A. Kitaev, Ann. Phys. (2005)

Exactly solvable with spin liquid ground state

Kitaev Exchange

where � = x, y, z

H =
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Kitaev spin liquid: emergent particles - Majorana fermion and vortices
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Figure 1.4: (a) Dispersion of the emergent bulk fermion  close to the K point of the honeycomb
BZ, which becomes gapped in generic perturbative magnetic fields as shown in (b). (c) Summary
of the chiral spin liquid phase of the Kitaev model, featuring the chiral edge Majorana fermion �

and the bulk Ising anyons �. In terms of the Z2 gauge field this is accomplished by occupying the
fermion states on the purple bonds, forming a string connecting pairs of �.

have the lowest energy have Wp ⌘ +1 on every bond lead to the lowest energy, including the sector

where u
↵
jk ⌘ +1 so that Eq. (1.4) reduces to a tight-binding model on the honeycomb lattice

HK =
iK

4

X

hj,ki↵

�̂
0

j �̂
0

k. (1.6)

The low energy dispersion of this fermionic model is shown in Fig. 1.4(a) near the K point of the

BZ, featuring a 2D Dirac cone. If we break time-reversal symmetry with a small magnetic field, this

dispersion acquires a gap as shown Fig. 1.4(b). This gapped 2 ⇥ 2 Hamiltonian is mathematically

equivalent to a p+ ip superconductor, and it admits a topological classification based on the Chern

number Eq. (1.1). Two consequences of this fact are (i) the presence of a chiral Majorana fermion

edge mode �, and (ii) Majorana bound states at defects in the gauge field where Wp = �1 [20], both

illustrated in Fig. 1.4(c).

Despite the formal equivalence to a tight-binding model of fermions, the ground state of Eq. (1.3)

is a very di↵erent beast from those of weakly interacting topological insulators/superconductors and

SPTs. The ground state has ultra short-ranged spin correlations, and a constant background to the

boundary law of entanglement reflecting quantum entanglement than spans the length of the system.

This long-range entanglement is what enables so-called anyonic excitations on top of the ground
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Example: Ising Topological Order (Z2 vortex & Fermions)

 ⇥  = 1  ⇥ � = � � ⇥ � = 1 +  

vortex carrying unpaired MF

under magnetic field
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Spin Interaction:

low energy model of t + U

H = J

X

hiji

~Si · ~Sj SU(2): U and single-orbital 

When orbital & spin are not conserved via SOC
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Hij =

: symmetry constrains matrix elements

insufficient to understand why one term is larger over other



Kitaev Materials

• honeycomb Mott insulator : strong e-e interaction

transition metals

: Kitaev interaction is the largest interaction in full H

Necessary (not sufficient) Requirements

• bond-dependent spin interaction for S=1/2

multi-orbital systems with Hund’s coupling
spin-orbit coupling G. Khaliullin on triangular lattice (2005);


G. Jackeli, G. Khaliullin, Phys. Rev. Lett. 102, 017205 (2009)



Realizing quantum spin liquid phases in spin-orbit driven correlated materials
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The spin liquid phase is one of the prominent strongly interacting topological phases of matter whose
unambiguous confirmation is yet to be reached despite intensive experimental e↵orts on numerous
candidate materials. The challenge is derived from the di�culty of formulating realistic theoretical
models for these materials and interpreting the corresponding experimental data. Here we study a
theoretical model with bond-dependent interactions, directly motivated by recent experiments on
two-dimensional correlated materials with strong spin-orbit coupling. We show numerical evidence
for the existence of an extended family of quantum spin liquids, which are possibly connected to the
Kitaev spin liquid state. These results are used to provide an explanation of the scattering continuum
seen in neutron scattering on ↵-RuCl3. Implications of these results to three-dimensional materials
such as hyperhoneycomb iridate, �-Li2IrO3, are also discussed.

Introduction — The role of strong interaction between
electrons in the emergence of topological phases of mat-
ter, where both theoretical and experimental understand-
ing is far from complete compared to weakly interacting
systems, has recently been a topic of intensive research.
The archetypal example of a topological phase with strong
electron interaction is the quantum spin liquid1, in which
the elementary excitations are charge-neutral fractional-
ized particles. While a lot of progress has been made on
the theoretical understanding of the quantum spin liquid
phase, its direct experimental confirmation has remained
elusive despite various studies on a number of candidate
materials2–6. Significant progress, however, has recently
been made due to the availabilty of a new class of corre-
lated materials, where strong spin-orbit coupling leads to
various bond-dependent spin interactions7–9. These mate-
rials are Mott insulators with 4d and 5d transition metal
elements, which include iridates and ruthenates with two-
dimensional honeycomb lattice10,11 and three-dimensional
variants12,13.

Magnetic frustration in these new systems arises from
bond-dependent interactions7,14–18 rather than relying on
the geometric frustration of the underlying lattice struc-
ture used in earlier approaches. These materials are of
great interest because they may intrinsically generate the
Kitaev interaction which, in the absence of other interac-
tions, would lead to a material realization of an exactly
solvable model for the quantum spin liquid phase19. This
raises the question for the stability of the Kitaev spin liq-
uid against other perturbations always present in a real
material. In some known models, the Kitaev spin liquid
phase is stable only for su�ciently small magnitudes of
other interactions14,20–24, making its experimental realiza-
tion a challenging endeavor.

In this work, we analyze a theoretical model that may
host an extended family of quantum spin liquid phases
and make connections to recent experiments on a num-
ber of 4d and 5d transition metal oxide materials. We
consider the following nearest-neighbor (n.n.) model on a

two-dimensional honeycomb lattice:

H =
X

�2x,y,z

H
�
, (1)

where

H
z =

X

hiji2z�bond

[KzS
z
i S

z
j + �z(S

x
i S

y
j + S

y
i S

x
j )] (2)

and H
x,y are defined similarly with corresponding Kx,y

and �x,y. Each H
� represents the n.n spin interactions

along one of the three bond directions, � = x, y, z. The
model is parameterized by Kz = �(1 + 2a) cos�, Kx,y =
�(1 � a) cos�, �x,y,z = sin�, with a characterizing bond
anisotropy. When � = 0,⇡ (i.e. �� = 0), this model re-
duces to the exactly solvable Kitaev model with a quantum
spin liquid ground state. Moreover, a recent analysis in the
� = ⇡/2 limit (i.e. K� = 0) revealed a macroscopically de-
generate ground state in the classical model25.

The above model is directly motivated by experiments
on ↵-RuCl3 (RuCl3) and earlier ab initio computations. In
RuCl3, Ru3+ ions carry a spin-orbit entangled pseudospin-
1/2 degree of freedom and sit on a two-dimensional hon-
eycomb lattice. Ab initio computations suggest that the
dominant spin exchange interactions are given by K� < 0
and �� > 0 with comparable magnitude as well as a non-
negligible 3rd n.n. antiferromagnetic Heisenberg interac-
tion J3 > 026–29. In addition, it was found that both K�

and �� are slightly anisotropic and that J3 may promote
the zig-zag magnetic order observed experimentally27,28.
On the other hand, a recent inelastic neutron scattering
experiment observed finite energy scattering continua rem-
iniscent of the excitation spectra in quantum spin liquid
phases, both above and below the magnetic ordering tran-
sition temperature, potentially indicating proximity to a
quantum spin liquid phase30. While this interpretation is
natural, it is not obvious what kind of quantum spin liquid
may be nearby given that the relevant microscopic model
is far from the ideal Kitaev limit.

Here we take the Hamiltonian in Eq. (1) as the mini-
mal model for the putative quantum spin liquid phase and
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Generic Spin Model for the Honeycomb Iridates beyond the Kitaev Limit
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2Canadian Institute for Advanced Research/Quantum Materials Program, Toronto, Ontario MSG 1Z8, Canada
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Recently, realizations of Kitaev physics have been sought in the A2IrO3 family of honeycomb iridates, origi-
nating from oxygen-mediated exchange through edge-shared octahedra. However, for the je↵ = 1/2 Mott insu-
lator in these materials exchange from direct d-orbital overlap is relevant, and it was proposed that a Heisenberg
term should be added to the Kitaev model. Here we provide the generic nearest-neighbour spin Hamiltonian
when both oxygen-mediated and direct overlap are present, containing a bond-dependent o↵-diagonal exchange
in addition to Heisenberg and Kitaev terms. We analyze this complete model using a combination of classical
techniques and exact diagonalization. Near the Kitaev limit, we find new magnetic phases, 120� and incommen-
surate spiral order, as well as extended regions of zigzag and stripy order. Possible applications to Na2IrO3 and
Li2IrO3 are discussed.

The honeycomb family of iridium oxides[1–11] has at-
tracted a considerable amount of attention [12–20] due to
the possibility they lie near a realization of Kitaev’s exactly
solvable spin-1/2 honeycomb model[21]. This model hosts
a number of remarkable features: a Z2 spin liquid with gap-
less Majorana fermions and (non-Abelian) anyonic excita-
tions under an applied magnetic field. No symmetry prin-
ciple excludes terms besides the Kitaev, so additional inter-
actions are generically expected. From microscopic calcu-
lations of exchange mediated through the edge-shared oxy-
gen octahedra, it has been proposed that a pure Kitaev model
of je↵ = 1/2 spins was the appropriate description[22]. It
was further suggested that direct overlap of the d-orbitals
generalizes this to a Heisenberg-Kitaev (HK) model[13], lin-
early interpolating between an isotropic Heisenberg model
and Kitaev’s bond-dependent exchange Hamiltonian. Exten-
sive study of the HK model[23–28] has shown a variety of fas-
cinating phenomena, including an extended spin liquid phase
and quantum phase transitions into several well-understood
magnetic ground states. While present, the zigzag phase seen
in Na2IrO3 [2, 4, 6] is di�cult to stabilize within the HK
model; one must resort to additional t2g-eg exchange paths[18]
or further neighbour hoppings[14]. In light of this puzzle one
may question whether the HK model provides an adequate de-
scription of the honeycomb iridates even at the nearest neigh-
bour level.

In this Letter, we show that when applied to the honey-
comb iridates the HK model is incomplete, explicitly deriving
the je↵ = 1/2 spin model from a multiorbital t2g Hubbard-
Kanamori Hamiltonian. Considering the most idealized crys-
tal structure, an additional spin-spin interaction beyond the
HK model must be included: bond-dependent symmetric o↵-
diagonal exchange. The complete spin Hamiltonian has the
form

H =
X

hi ji2↵�(�)

h
J~S i · ~S j + KS �i S �j + �

⇣
S ↵i S �j + S �i S ↵j

⌘i
, (1)

where J is Heisenberg exchange, K is the Kitaev exchange,
and � denotes the symmetric o↵-diagonal exchange. On each
bond we distinguish one spin direction �, labeling the bond

yx

z

zx(y)

yz(x)

xy(z)

Ir4+

O2°A+

FIG. 1: Crystal structure of the honeycomb iridates A2IrO3
with Ir4+ in black, O2� in white, and A = Na+,Li+ in gray.
For the Kitaev and bond-dependent exchanges we have
denoted the yz(x) bonds blue, the zx(y) bonds green and the
xy(z) bonds red.

↵�(�) where ↵ and � are the two remaining directions. Ex-
amining the phase diagram using a combination of classical
arguments and exact diagonalization, we find that with the in-
clusion of � new magnetic phases are stabilized near the Ki-
taev limits: an incommensurate spiral (IS) and 120� order, in
addition to extended regions of zigzag and stripy order.

Microscopics.– We first construct a minimal model of a
honeycomb lattice of Ir4+ ions surrounded by a network of
edge-sharing oxygen octahedra. The Ir4+ 5d levels are split
into an eg doublet and t2g triplet by large crystal field e↵ects,
leaving a single hole in the t2g states. Within the t2g mani-
fold, the orbital angular momentum behaves as an le↵ = 1
triplet, with large spin-orbit coupling splitting this into an ac-
tive je↵ = 1/2 doublet and filled je↵ = 3/2 states. Because of
significant on-site interactions, localized je↵ = 1/2 spins pro-
vide an e↵ective model for the low-energy physics. To per-
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The spin liquid phase is one of the prominent strongly interacting topological phases of matter whose
unambiguous confirmation is yet to be reached despite intensive experimental e↵orts on numerous
candidate materials. The challenge is derived from the di�culty of formulating realistic theoretical
models for these materials and interpreting the corresponding experimental data. Here we study a
theoretical model with bond-dependent interactions, directly motivated by recent experiments on
two-dimensional correlated materials with strong spin-orbit coupling. We show numerical evidence
for the existence of an extended family of quantum spin liquids, which are possibly connected to the
Kitaev spin liquid state. These results are used to provide an explanation of the scattering continuum
seen in neutron scattering on ↵-RuCl3. Implications of these results to three-dimensional materials
such as hyperhoneycomb iridate, �-Li2IrO3, are also discussed.

Introduction — The role of strong interaction between
electrons in the emergence of topological phases of mat-
ter, where both theoretical and experimental understand-
ing is far from complete compared to weakly interacting
systems, has recently been a topic of intensive research.
The archetypal example of a topological phase with strong
electron interaction is the quantum spin liquid1, in which
the elementary excitations are charge-neutral fractional-
ized particles. While a lot of progress has been made on
the theoretical understanding of the quantum spin liquid
phase, its direct experimental confirmation has remained
elusive despite various studies on a number of candidate
materials2–6. Significant progress, however, has recently
been made due to the availabilty of a new class of corre-
lated materials, where strong spin-orbit coupling leads to
various bond-dependent spin interactions7–9. These mate-
rials are Mott insulators with 4d and 5d transition metal
elements, which include iridates and ruthenates with two-
dimensional honeycomb lattice10,11 and three-dimensional
variants12,13.

Magnetic frustration in these new systems arises from
bond-dependent interactions7,14–18 rather than relying on
the geometric frustration of the underlying lattice struc-
ture used in earlier approaches. These materials are of
great interest because they may intrinsically generate the
Kitaev interaction which, in the absence of other interac-
tions, would lead to a material realization of an exactly
solvable model for the quantum spin liquid phase19. This
raises the question for the stability of the Kitaev spin liq-
uid against other perturbations always present in a real
material. In some known models, the Kitaev spin liquid
phase is stable only for su�ciently small magnitudes of
other interactions14,20–24, making its experimental realiza-
tion a challenging endeavor.

In this work, we analyze a theoretical model that may
host an extended family of quantum spin liquid phases
and make connections to recent experiments on a num-
ber of 4d and 5d transition metal oxide materials. We
consider the following nearest-neighbor (n.n.) model on a

two-dimensional honeycomb lattice:

H =
X

�2x,y,z

H
�
, (1)

where

H
z =

X

hiji2z�bond

[KzS
z
i S

z
j + �z(S

x
i S

y
j + S

y
i S

x
j )] (2)

and H
x,y are defined similarly with corresponding Kx,y

and �x,y. Each H
� represents the n.n spin interactions

along one of the three bond directions, � = x, y, z. The
model is parameterized by Kz = �(1 + 2a) cos�, Kx,y =
�(1 � a) cos�, �x,y,z = sin�, with a characterizing bond
anisotropy. When � = 0,⇡ (i.e. �� = 0), this model re-
duces to the exactly solvable Kitaev model with a quantum
spin liquid ground state. Moreover, a recent analysis in the
� = ⇡/2 limit (i.e. K� = 0) revealed a macroscopically de-
generate ground state in the classical model25.

The above model is directly motivated by experiments
on ↵-RuCl3 (RuCl3) and earlier ab initio computations. In
RuCl3, Ru3+ ions carry a spin-orbit entangled pseudospin-
1/2 degree of freedom and sit on a two-dimensional hon-
eycomb lattice. Ab initio computations suggest that the
dominant spin exchange interactions are given by K� < 0
and �� > 0 with comparable magnitude as well as a non-
negligible 3rd n.n. antiferromagnetic Heisenberg interac-
tion J3 > 026–29. In addition, it was found that both K�

and �� are slightly anisotropic and that J3 may promote
the zig-zag magnetic order observed experimentally27,28.
On the other hand, a recent inelastic neutron scattering
experiment observed finite energy scattering continua rem-
iniscent of the excitation spectra in quantum spin liquid
phases, both above and below the magnetic ordering tran-
sition temperature, potentially indicating proximity to a
quantum spin liquid phase30. While this interpretation is
natural, it is not obvious what kind of quantum spin liquid
may be nearby given that the relevant microscopic model
is far from the ideal Kitaev limit.

Here we take the Hamiltonian in Eq. (1) as the mini-
mal model for the putative quantum spin liquid phase and
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FIG. 1. (Color online) (a) The crystal structure of α-RuCl3, ex-
hibiting lamellar nature of the unit cell. (b) Individual honeycomb
layers are formed by edge-sharing RuCl6 octahedra (Ru in blue, Cl
in gray). (c) Detailed view of RuCl6 octahedra showing bond angles.
All the figures were produced with VESTA [26].

of intervening Na atoms between the honeycomb layers in
the latter compound, such that α-RuCl3 is closer to an ideal
two-dimensional system.

Single crystal samples of α-RuCl3 were prepared by
vacuum sublimation from commercial RuCl3 powder. The
dielectric function ε̂(ω) = ε1(ω) + ε2(ω) of RuCl3 was mea-
sured from 0.1 to 6 eV; for the range 0.9–6 eV, ε̂(ω)
was determined using spectroscopic ellipsometry. From 0.1
to 1.2 eV, we measured the transmittance through a thin
RuCl3 sample and extracted ε̂(ω) using a standard model for
the transmittance of a plate sample [29]. X-ray absorption
spectroscopy measurements were performed using the soft
x-ray microcharacterization beamline (SXRMB) at the Cana-
dian Light Source. Measurements were carried out at the Ru
L3 (2p3/2 → 4d) and L2 (2p1/2 → 4d) absorption edges [30].

Physical properties of α-RuCl3 have been extensively
investigated. The magnetic susceptibility of α-RuCl3 shows
a sharp cusp around 13–15 K, which was attributed to
antiferromagnetic ordering [31]; and a Curie-Weiss fit yields
an effective local moment of about 2.2µB and ferromagnetic
Curie-Weiss temperatures of 23–40 K [28,31]. The effective
magnetic moment is much larger than the spin-only value of
1.73µB for the low spin (S = 1/2) state of Ru3+, indicating
a significant orbital contribution to total moment. Based on
these observations, it was suggested that the nearest-neighbor
interaction within the honeycomb plane is ferromagnetic and
that these planes are weakly coupled with an antiferromagnetic
interaction. However, powder neutron diffraction failed to
observe magnetic Bragg peaks of (003) type, which are
expected from the predicted simple magnetic structure [31].
Although several spectroscopic and transport investigations
have been carried out to study the electronic structure of
α-RuCl3 [24,25,32,33], the role of SOC was not explored in
detail in these earlier studies.

The importance of SOC in the electronic structure of
α-RuCl3 can be revealed through XAS measurements. The
x-ray absorption spectra obtained at the Ru L2 and L3 edges
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FIG. 2. (Color online) (a) X-ray absorption near-edge spectra of
RuCl3 measured at the Ru L3 edge. The black solid line is the
experimental data, and the red solid line is a fit function that includes
two Lorentzian peaks associated with t2g and eg states and an arctan
function describing the edge jump. (b) Same spectra showing the
energy range of the Ru L2 edge. The scale is exactly half of the one
shown in (a), emphasizing the departure from the statistical branching
ratio of 2. (c) Comparison of the branching ratio with various Ru
standard compounds, ranging from Ru2+ (RuCl2), Ru3+ (RuI3), to
Ru4+ (RuO2). Note that RuCl3 (hydrate) has a structure different
from α-RuCl3 studied here.

are shown in Fig. 2. Two peaks are observed for the L3
edge data shown in Fig. 2(a), corresponding to exciting 2p3/2
core electrons into empty t2g and eg states. The intensity
ratio between these two features is related to the fact that
there is only one empty t2g state available for the transition
compared to four empty eg states. A quantitative description
of the intensity and the peak splitting requires ligand field
multiplet calculations and is beyond the scope of this Rapid
Communication. Here we instead focus on the different line
shapes observed near the Ru L2edge compared to that of the L3
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Figure 3. A section of the periodic table showing the transition metals for which layered MX3
compounds listed in Table 2 form. The metals are highlighted with colors that correspond to the
structure types shown on the lower right. Crosshatching indicates multiple structures have been
reported (see Table 2). A plan view of a single layer common to both the BiI3 and AlCl3 structure types
is shown on the upper right, with coordinate systems corresponding to each structure type.

TiCl3 undergoes a structural phase transition at low temperature [87]. Troyanov et al.
demonstrated that the distortion upon cooling corresponds to a dimerization similar to that noted
above in MoCl3 and TcCl3 [70]. Below 220 K a monoclinic structure was reported. The space group,
C2/m is the same as the AlCl3 structure type, but the structure is different, with three layers per unit
cell. The dimerization is not as extreme in TiCl3 as it is in MoCl3 and TcCl3. At 160 K the Ti-Ti distances
within the distorted honeycomb net are 3.36 and 3.59 Å [70], so the dimerization is not as strong at
this temperature, 60 K below the transition, as it is in MoCl3 and TcCl3 (Table 2) at room temperature.
A structural phase transition is also reported for TiBr3, with a triclinic low temperature structure
(P1) [88], and this same triclinic structure was also later reported for TiCl3 [89].

All three of the layered chromium trihalides are known to undergo temperature induced
crystallographic phase transitions between the AlCl3 and BiI3 structure types [16,73]. At high
temperatures all three adopt the AlCl3 structure and transition to the BiI3 structure upon cooling.
This happens near 240, 420, and 210 K in the chloride, bromide, and iodide, respectively. The phase
transition is first order, displaying thermal hysteresis and a temperature range over which both
phases coexist. Interestingly, it is the lower symmetry monoclinic phase that is preferred at higher
temperatures. The transition must be driven by interlayer interactions, since the layers themselves are
changed little between the two phases. As expected, twinning and stacking faults develops during the
transition upon cooling as the layers rearrange themselves into the BiI3 stacking, which can complicate
interpretation of diffraction data [16].

Multiple structure types have been assigned to the layered form of RuCl3, known as a-RuCl3.
Early reports assigned the trigonal space group P3112 [82] (known as the CrCl3 structure type, although

 alpha-RuCl3

AIrO3 (A = Mg, Zn): Y. Haraguchi, et al, PRM 2, 054411 (2018),….

 alpha-RuCl3 : K. Plumb, et al, PRB 90 041112(R) (2014); …

A2IrO3 (A = Na, Li): Y. Singh, et al, PRB 82, 064412 (2010);…  
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Due to strong spin-orbit coupling:

mixture of different orbitals and different spins
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FIG. 1. (a) Low-energy levels of d1, d2, d4, and d5 ions in cubic crystal field. The degeneracy of the levels is suggested by
the number of close lines. For less than half-filled t2g shell, the SOC aligns the e↵ective orbital angular momentum L and spin
S to form larger total angular momentum: J = 3/2 quartet in d1 case and J = 2 quintuplet in d2 case, respectively. In the
case of more than half-filled t2g shell, L and S are antialigned, leading to J = 0 singlet ground state for the d4 configuration
while the d5 one hosts pseudospin J = 1/2. (b) Orbital shapes corresponding to the ground-state levels in (a). To visualize
the electron cloud, we first integrate the electron density in the radial direction to eliminate the common radial part of the
single-electron wavefunctions. The remaining angular distribution is then captured as a surface plot where the distance to the
origin is proportional to the integral density in the corresponding direction. The color of the surface indicates normalized spin
polarization (⇢" � ⇢#)/(⇢" + ⇢#) taking values in the range [�1,+1]. It is shown for electrons in the case of d1 and d2 states
and for the holes in the t62g configuration in the case of d4 and d5 states.

levels, except the J = 2 level of d2 configuration as dis-
cussed above.

In general, the ground state manifold of TM ions in
Mott insulators is conveniently described in terms of ef-
fective spins, referred usually to as “pseudospin” S̃. For
low-spin dn ions in cubic symmetry, pseudospin formally
corresponds to total angular momentum J , with an ex-
ception of d2 case with Eg doublet hosting a pseudospin
S̃ = 1/2. One has in mind however, that even in case of
cubic symmetry, the pseudospin wavefunctions are dif-
ferent from pure J states because of various corrections
(deviations from LS scheme, admixture of eg states, etc.)
discussed above. This is even more so when non-cubic
crystal fields are present and become comparable to SOC.
We will occasionally use both S̃ and J pseudospin nota-
tions, depending on convenience (e.g., reserving J for the
Heisenberg exchange constant in some cases).

In strong SOC coupled systems, the notion of pseu-
dospins remains useful even in doped systems, at least at
low doping when Mott correlations and hence the ionic
spin-orbit multiplets are still intact locally. In highly
doped, a weakly correlated regime, a conventional band

picture, where SOC operates on a single-electron level,
emerges.

B. Pseudospin interactions in Mott insulators

The key element when considering the interactions
among pseudospins is the entanglement of spin and or-
bital degrees of freedom. In the pseudospin state, various
|Lz, Szi combinations are superposed, forming a compos-
ite object. Figure 3 shows two important examples for
d5 and d4 cases that will be extensively discussed later.
Mixing the spins and orbitals in a coherent way, pseu-
dospins do experience all the interactions that operate
both in spin and orbital sectors, which have very di↵er-
ent symmetry properties. Electron-exchange processes
conserve total spin, and hence spin interactions are of
isotropic Heisenberg (SiSj) form. The orbital exchange
interactions are however far more complex – they are
anisotropic both in real and magnetic spaces.6,7 In high
symmetry crystals, orbitals are strongly frustrated, be-
cause they are spatially anisotropic and hence cannot si-
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FIG. 2. (a) Shifts and splitting of the J = 0, 1, 2 levels of d2

ion when considering mixing of the ground state t22g configura-
tion with t2geg states by virtue of SOC interaction. Focusing
on the lowest levels, we find the originally five-fold degenerate
J = 2 states to split into Eg doublet and T2g triplet. Eval-
uated perturbatively for ⇣ ⌧ 10Dq, the splitting comes out
proportional to ⇣2/10Dq. (b) Tetragonal compression leads to
an increased repulsion of d-electrons from apical oxygens and
further singles out “planar” states from Eg and T2g sets. The
quadrupolar moment hosted by the Eg doublet gets pinned
this way. (c) Complex combinations of the Eg doublet states
that expose the octupolar moment of “cubic” shape.

multaneously satisfy all the interacting bond directions.
Via the spin-orbital entanglement, this property is inher-
ited by the pseudospin interactions.8

Moreover, apart from the exchange interactions driven
by virtual electron hoppings, there are other contribu-
tions to the orbital interactions, especially in d1 and
d2 cases. These are mediated by coupling to the JT-
phonons, and by electrostatic multipolar interactions be-
tween d-orbitals on di↵erent sites.9 In low-energy ef-
fective Hamiltonians, these interactions transform into
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FIG. 3. (a) Decomposition of the J = 1/2 Kramers doublet
state of d5 into |Lz, Szi components of the single hole in t62g
configuration. The e↵ective angular momentum is indicated
by the rotating arrow, spin by the color following the conven-
tion of Fig. 1. For both contributions, Lz and Sz sum up to
Jz = +1/2. (b) Similar decomposition of the J = 0 two-hole
ground state of d4. The total orbital angular momentum Lz

and spin Sz may be combined in three ways here. The inter-
nal compensation in L and S creates a cubic-shaped object
showing no spin polarization.

pseudospin multipolar couplings, driving both structural
and “spin-nematic” transitions breaking cubic symme-
try in real and pseudospin spaces. The JT driven inter-
actions are also important in d4 systems, as they split
the excited J = 1 levels and hence promote magnetic
condensation.10 In the case of d5 systems with Kramers-
degenerate J = 1/2 pseudospins, the e↵ective Hamilto-
nians are predominantly of exchange origin, as in usual
spin-1/2 systems, although JT orbital-lattice coupling
still shows up in fine details of pseudospin dynamics, in
a form of pseudospin-lattice coupling.10

In general, the low-energy pseudospin Hamiltonians
may take various forms depending on the electron con-
figuration dn and symmetry of the crystal structure.
Sensitivity of orbital interactions to bonding geometry
is a decisive factor shaping the form of the pseudospin
Hamiltonians. We illustrate this considering spin-orbital
exchange process in two di↵erent cases – when metal-
oxygen octahedra MeO6 share the corners, and when
they share the edges. These two cases are common in
TM compounds and referred to as 180� and 90� bonding
geometry, reflecting the approximate angle of the Me-O-
Me bonds. For simplicity, we limit ourselves to the case
of d5 ions with wavefunctions [c.f. Fig. 3(a)]:

|f"̃i = +sin# |0, "i � cos# |+ 1, #i, (2.1)

|f#̃i = � sin# |0, #i+ cos# |� 1, "i, (2.2)
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FIG. 6. Virtual processes generating the e↵ective interactions among pseudospins J = 1/2 of d5 configurations in 90� bonding
geometry. Me2O2 plaquette perpendicular to the z axis as in Fig. 5 is assumed. Compared to Fig. 3(a), here we scale the d0,
d±1 orbitals to visually hint on their relative contributions to the pseudospin wavefunctions. (left part) Lz-conserving direct
hopping t0 uses the d0 part of the hole wavefunction and leads to a conventional Heisenberg exchange S̃iS̃j following the Pauli
exclusion principle for the d0 orbital. (right part) Hopping via oxygen t takes the d+1 part of the hole wavefunction and by
the Lz flip creates a virtual d4 configuration combining the original d5 hole and Jz = �3/2 quartet hole. The only option to
reach a final state with two J = 1/2 pseudospins by the second t hopping is to remove this Jz = �3/2 quartet state again,
leaving the initial pseudospin directions unchanged during the exchange process. Therefore, the e↵ective interaction is of Ising
S̃z

i S̃
z

j type. Hund’s exchange JH between the major d±1 parts of the two holes in the virtual d4 configuration prefers aligned

pseudospins on the two sites which results in ferromagnetic Kitaev interaction KS̃z

i S̃
z

j with K < 0.

spin-exchange process is possible. As in the eg case,
the pseudospin interactions in the edge-shared geome-
try are generated by various corrections to the above
picture (a direct overlap of pseudospins due to t0-term,
electron hopping to higher spin-orbital levels, corrections
to pseudospin wavefunctions due to non-cubic crystal
fields, etc.). The resulting pseudospin Hamiltonians are
typically strongly anisotropic, and the most important
and actually leading term in real compounds is bond-
dependent Ising coupling. Figure 6 illustrates how such
interaction emerges due to the t-hopping from ground
state J = 1/2 to higher spin-orbit J = 3/2 level and sub-
sequent Hund’s coupling of the excited electrons in the
virtual state. The resulting exchange interaction reads as
H = KS̃z

i
S̃z

j
, and the corresponding coupling constant

K / �(JH/U) 4t2/U is of ferromagnetic sign.11 Consid-
ered on honeycomb lattices, this interaction generates the
famous Kitaev model where the Ising axis is not global
but bond dependent, taking the mutually orthogonal di-
rections x, y, and z on three di↵erent NN bonds.12 This
results in strong frustration and spin-liquid ground state.
On the other hand, a direct hopping t0 which conserves
both orbital and spin angular momentum leads to con-
ventional AF Heisenberg coupling / t02/U .

We will later discuss the pseudospin interactions in
more detail in the context of some representative com-
pounds, after a brief materials overview.

C. Materials overview

As discussed above, the interactions between spin-
orbit-entangled pseudospins critically depend on the
bonding geometry, and the ground states are determined
by the network of each bonding unit, namely crystal
structures. Before discussing the properties of represen-
tative materials, it would be instructive to overview the
crystal structures which are frequently seen in the 4d
and 5d transition-metal compounds. We will introduce
crystal structures comprising the corner-sharing or edge-
sharing network of MO6 octahedra.

1. Corner-sharing network of MO6 octahedra

The most representative structure with corner-sharing
MO6 octahedra is the perovskite structure. Perovskite
oxides, with a chemical formula of ABO3 (A and B are
cations), are very versatile systems among transition-
metal oxides. Small transition-metal ions are generally
accommodated into the B-site, and the BO6 octahedra
form three-dimensional corner-sharing network. The sta-
bility of perovskite structure is empirically evaluated by
the Goldschmidt tolerance factor t = (rA+ rO)/
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rO) where rA, rB and rO are the ionic radius of A, B
and oxygen ions, respectively.13 t = 1 means that the
ionic radii are ideal to form a cubic perovskite structure
[Fig. 7(a)]. For 4d and 5d transition-metal perovskites,
as the ionic radius rB is relatively large, the tolerance fac-
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levels, except the J = 2 level of d2 configuration as dis-
cussed above.

In general, the ground state manifold of TM ions in
Mott insulators is conveniently described in terms of ef-
fective spins, referred usually to as “pseudospin” S̃. For
low-spin dn ions in cubic symmetry, pseudospin formally
corresponds to total angular momentum J , with an ex-
ception of d2 case with Eg doublet hosting a pseudospin
S̃ = 1/2. One has in mind however, that even in case of
cubic symmetry, the pseudospin wavefunctions are dif-
ferent from pure J states because of various corrections
(deviations from LS scheme, admixture of eg states, etc.)
discussed above. This is even more so when non-cubic
crystal fields are present and become comparable to SOC.
We will occasionally use both S̃ and J pseudospin nota-
tions, depending on convenience (e.g., reserving J for the
Heisenberg exchange constant in some cases).

In strong SOC coupled systems, the notion of pseu-
dospins remains useful even in doped systems, at least at
low doping when Mott correlations and hence the ionic
spin-orbit multiplets are still intact locally. In highly
doped, a weakly correlated regime, a conventional band

picture, where SOC operates on a single-electron level,
emerges.

B. Pseudospin interactions in Mott insulators

The key element when considering the interactions
among pseudospins is the entanglement of spin and or-
bital degrees of freedom. In the pseudospin state, various
|Lz, Szi combinations are superposed, forming a compos-
ite object. Figure 3 shows two important examples for
d5 and d4 cases that will be extensively discussed later.
Mixing the spins and orbitals in a coherent way, pseu-
dospins do experience all the interactions that operate
both in spin and orbital sectors, which have very di↵er-
ent symmetry properties. Electron-exchange processes
conserve total spin, and hence spin interactions are of
isotropic Heisenberg (SiSj) form. The orbital exchange
interactions are however far more complex – they are
anisotropic both in real and magnetic spaces.6,7 In high
symmetry crystals, orbitals are strongly frustrated, be-
cause they are spatially anisotropic and hence cannot si-
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quadrupolar moment hosted by the Eg doublet gets pinned
this way. (c) Complex combinations of the Eg doublet states
that expose the octupolar moment of “cubic” shape.

multaneously satisfy all the interacting bond directions.
Via the spin-orbital entanglement, this property is inher-
ited by the pseudospin interactions.8

Moreover, apart from the exchange interactions driven
by virtual electron hoppings, there are other contribu-
tions to the orbital interactions, especially in d1 and
d2 cases. These are mediated by coupling to the JT-
phonons, and by electrostatic multipolar interactions be-
tween d-orbitals on di↵erent sites.9 In low-energy ef-
fective Hamiltonians, these interactions transform into
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pseudospin multipolar couplings, driving both structural
and “spin-nematic” transitions breaking cubic symme-
try in real and pseudospin spaces. The JT driven inter-
actions are also important in d4 systems, as they split
the excited J = 1 levels and hence promote magnetic
condensation.10 In the case of d5 systems with Kramers-
degenerate J = 1/2 pseudospins, the e↵ective Hamilto-
nians are predominantly of exchange origin, as in usual
spin-1/2 systems, although JT orbital-lattice coupling
still shows up in fine details of pseudospin dynamics, in
a form of pseudospin-lattice coupling.10

In general, the low-energy pseudospin Hamiltonians
may take various forms depending on the electron con-
figuration dn and symmetry of the crystal structure.
Sensitivity of orbital interactions to bonding geometry
is a decisive factor shaping the form of the pseudospin
Hamiltonians. We illustrate this considering spin-orbital
exchange process in two di↵erent cases – when metal-
oxygen octahedra MeO6 share the corners, and when
they share the edges. These two cases are common in
TM compounds and referred to as 180� and 90� bonding
geometry, reflecting the approximate angle of the Me-O-
Me bonds. For simplicity, we limit ourselves to the case
of d5 ions with wavefunctions [c.f. Fig. 3(a)]:

|f"̃i = +sin# |0, "i � cos# |+ 1, #i, (2.1)

|f#̃i = � sin# |0, #i+ cos# |� 1, "i, (2.2)
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nians are predominantly of exchange origin, as in usual
spin-1/2 systems, although JT orbital-lattice coupling
still shows up in fine details of pseudospin dynamics, in
a form of pseudospin-lattice coupling.10

In general, the low-energy pseudospin Hamiltonians
may take various forms depending on the electron con-
figuration dn and symmetry of the crystal structure.
Sensitivity of orbital interactions to bonding geometry
is a decisive factor shaping the form of the pseudospin
Hamiltonians. We illustrate this considering spin-orbital
exchange process in two di↵erent cases – when metal-
oxygen octahedra MeO6 share the corners, and when
they share the edges. These two cases are common in
TM compounds and referred to as 180� and 90� bonding
geometry, reflecting the approximate angle of the Me-O-
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pseudospin multipolar couplings, driving both structural
and “spin-nematic” transitions breaking cubic symme-
try in real and pseudospin spaces. The JT driven inter-
actions are also important in d4 systems, as they split
the excited J = 1 levels and hence promote magnetic
condensation.10 In the case of d5 systems with Kramers-
degenerate J = 1/2 pseudospins, the e↵ective Hamilto-
nians are predominantly of exchange origin, as in usual
spin-1/2 systems, although JT orbital-lattice coupling
still shows up in fine details of pseudospin dynamics, in
a form of pseudospin-lattice coupling.10

In general, the low-energy pseudospin Hamiltonians
may take various forms depending on the electron con-
figuration dn and symmetry of the crystal structure.
Sensitivity of orbital interactions to bonding geometry
is a decisive factor shaping the form of the pseudospin
Hamiltonians. We illustrate this considering spin-orbital
exchange process in two di↵erent cases – when metal-
oxygen octahedra MeO6 share the corners, and when
they share the edges. These two cases are common in
TM compounds and referred to as 180� and 90� bonding
geometry, reflecting the approximate angle of the Me-O-
Me bonds. For simplicity, we limit ourselves to the case
of d5 ions with wavefunctions [c.f. Fig. 3(a)]:
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FIG.3.(a)DecompositionoftheJ=1/2Kramersdoublet
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configuration.Thee↵ectiveangularmomentumisindicated
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Jz=+1/2.(b)SimilardecompositionoftheJ=0two-hole
groundstateofd4.ThetotalorbitalangularmomentumLz

andspinSzmaybecombinedinthreewayshere.Theinter-
nalcompensationinLandScreatesacubic-shapedobject
showingnospinpolarization.

pseudospinmultipolarcouplings,drivingbothstructural
and“spin-nematic”transitionsbreakingcubicsymme-
tryinrealandpseudospinspaces.TheJTdriveninter-
actionsarealsoimportantind4systems,astheysplit
theexcitedJ=1levelsandhencepromotemagnetic
condensation.10Inthecaseofd5systemswithKramers-
degenerateJ=1/2pseudospins,thee↵ectiveHamilto-
niansarepredominantlyofexchangeorigin,asinusual
spin-1/2systems,althoughJTorbital-latticecoupling
stillshowsupinfinedetailsofpseudospindynamics,in
aformofpseudospin-latticecoupling.10

Ingeneral,thelow-energypseudospinHamiltonians
maytakevariousformsdependingontheelectroncon-
figurationdnandsymmetryofthecrystalstructure.
Sensitivityoforbitalinteractionstobondinggeometry
isadecisivefactorshapingtheformofthepseudospin
Hamiltonians.Weillustratethisconsideringspin-orbital
exchangeprocessintwodi↵erentcases–whenmetal-
oxygenoctahedraMeO6sharethecorners,andwhen
theysharetheedges.Thesetwocasesarecommonin
TMcompoundsandreferredtoas180�and90�bonding
geometry,reflectingtheapproximateangleoftheMe-O-
Mebonds.Forsimplicity,welimitourselvestothecase
ofd5ionswithwavefunctions[c.f.Fig.3(a)]:
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the overall charge density as shown in Fig. 1(a). While
pseudospin-down state is dominated by Lz = 0 compo-
nent, where the electrons occupy lz = 1 and lz = �1
complex orbitals ⌥(dyz ± idzx)/

p
2, so its charge den-

sity is elongated towards apical oxygen Oz. Under cubic
rotations, these wavefunctions transform in a standard
way, similar to eg orbital pair of x2 � y2 and 3z2 � r2

symmetries.

Within the Eg doublet, J = 2 quadrupoles

O3 =
1

6
(2J2

z
� J2

x
� J2

y
), (3)

O2 =
1

2
p
3
(J2

x
� J2

y
), (4)

have the matrix elements h± 1
2 |O3| ± 1

2 i = ±1 and
h± 1

2 |O2| ⌥ 1
2 i = 1. Thus, the following correspondence

between the pseudospin sz and sx components and Eg

quadrupoles follows: sz = 1
2O3 and sx = 1

2O2. The third
component sy = 1

2Txyz describes the octupolar moment

Txyz = 1p
3
JxJyJz with threefold symmetry axis [111].

The projections of octahedral x, y, z axes onto the two-
dimensional pseudospin (sz, sx) plane [111] make 120�

angles, and the pseudospin sz axis is parallel to the octa-
hedral z axis projection, see Fig. 1(a). This is the most
natural choice, because sz is related to the O3 quadrupole
(3) axis, and, as we will see below, also results in one-to-
one correspondence between the exchange bond labels �
and octahedral x, y, z axes. The basis rotations within
the (sz, sx) plane by � = 2⇡/3 correspond to the cyclic
permutations among Jx, Jy, Jz. Finally, we note that sz

and sx operators are TR-even, while sy octupole is TR-
odd; this implies that the pairwise interactions of the
type sz

i
sy
j
and sx

i
sy
j
are not allowed, unless TR symmetry

is broken.

Following eg orbital pseudospin formalism [2, 20], we
introduce the following combinations:

⌧� = cos�� sz + sin�� sx, (5)

⌧̄� = � sin�� sz + cos�� sx. (6)

Here, the label � = (z, x, y) specifies the angles �� =
(0, 2⇡/3, 4⇡/3). In essence, (⌧� , ⌧̄�) play the role of
(sz

�
, sx

�
) operators defined in the rotated basis of pseu-

dospin functions:

|"i� = cos(��/2)|"i+ sin(��/2)|#i, (7)

|#i� = � sin(��/2)|"i+ cos(��/2)|#i. (8)

Physically, ⌧x (⌧y) and ⌧̄x (⌧̄y) correspond to the
quadrupolar operators of 3x2 � r2 (3y2 � r2) and y2 � z2

(z2�x2) symmetries, respectively. The notations ⌧� and
⌧̄� are useful for that one may derive the exchange Hamil-
tonianH(�) for � = z type bonds in terms of (sz, sx) pair,
and simply replace them by sz ! ⌧� and sx ! ⌧̄� to re-
store H(�) for all �. In perovskites with 180� bonding,
the “z-type” bond is parallel to the octahedral z axis;
while in other cases, e.g. in a honeycomb lattice, z-type

FIG. 1. (a) Cubic splitting �c of J = 2 level, and the
spatial shapes of Eg doublet wavefunctions. Right panel
shows the pseudospin coordinate axes with respect to oxy-
gen octahedra. (b) Direct hopping between xy orbitals in
honeycomb (left) and DP (right) lattices, resulting in bond-
dependent pseudospin ⌧ -interactions (10) between spin-orbit
entangled Eg states. (c) Two-orbital superexchange via 180�

Me-O-Me bonding geometry. Hopping is orbital conserving:
xz $ xz and yz $ yz. This process results in pseudospin
interactions (13) comprising isotropic Heisenberg and bond-
dependent compass-type couplings. (d) Two-orbital superex-
change via 90� bonding geometry. Hopping interchanges the
orbital labels: xz $ yz. This process leads to the interactions
(15), which are anisotropic in pseudospin space but have no
bond dependence.

bond is orthogonal to the octahedral z axis (a convention
used also in Kitaev model literature).

To derive pseudospin exchange interactions, one has
to project Kugel-Khomskii type spin-orbital Hamiltoni-
ans – which are already khown from the previous works
– onto low-energy Eg doublet subspace. We note that
a conventional eg orbital exchange interactions operate
in quadrupolar sector (sz, sx) exclusively [2]. In con-
trast, we will see below that the Eg “orbital” exchange
may involve interactions between the octupole moments
sy as well; this is because the Eg pseudospin states are
spin-orbit entangled objects. Combined with the specific
hopping geometry of t2g orbitals, this results in nontriv-
ial structure of the Eg interactions. We consider below
some basic exchange processes which commonly appear
in transition metal compounds.

III. PSEUDOSPIN EXCHANGE
HAMILTONIANS

A. Single-orbital exchange: direct t2g orbital
overlap

We start with simple case when one specific orbital is
active on a given bond. Shown in Fig. 1(b) are two ex-
amples of a such single-orbital exchange: via a direct dxy
orbital hopping on z-type bonds of honeycomb lattice, or
dxy orbital hopping in the ab plane of DP lattice [19]. In
this case, we expect the Eg exchange Hamiltonian sim-
ilar to that for eg orbitals in ferromagnetic manganites.
Indeed, spin-orbit Eg and pure orbital eg states have the
same (�3) symmetry properties, and Kugel-Khomskii eg
exchange process also involves a single-orbital specific to
a given bond [2].

Neglecting Hund’s coupling e↵ects in the intermediate
states, direct hopping �td(d

†
xy,i

d
xy,j

+H.c.) gives the fol-
lowing exchange Hamiltonian, written in terms of spin
S = 1 and orbital L = 1 moments of d2 ion [21]:

H(c)
ij

=
t2
d

U

⇥
(Si · Sj + 1)L2

zi
L2
zj
�L2

zi
�L2

zj

⇤
. (9)
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In this paper, we focus on spin-orbital physics in com-
pounds based on d2 ions. The d2 confuguration with two-
electron spin S = 1 and e↵ective orbital moment L = 1
is special, because its total angular momentum J = 2 is
isomorphic to a single d-electron orbital moment l = 2.
This analogy has interesting implications for the symme-
try and physical properties of d2 ions. Namely, in cubic
environment, J = 2 level has to split into Eg doublet and
T2g triplet levels, see Fig. 1(a), just like the d-electron
l = 2 level does split into eg and t2g orbital levels [5].
While T2g triplet hosts an e↵ective angular momentum
eJ = 1 (with a familiar relation eJ = �J) [6], the non-
Kramers Eg doublet is similar to eg doublet and carriers
no dipole moment. This implies that d2 ions with non-
Kramers Eg ground states may show high-rank multipole
orders similar to rare-earth f2 non-Kramers �3 ions [7].

Experimentally, a single phase transition around 30-
50 K is observed in 5d2 double perovskite (DP) com-
pounds [8–11]. This is very di↵erent from 5d1 Kramers
ion DPs which show two separate transitions [12–14], cor-
responding to quadrupole (structural) and dipole orders
of J = 3/2 states [15, 16]. Having a single transition
is natural for pseudospin-1/2 doublet systems, and this
clearly points to the Eg doublet physics in 5d2 DPs. The
structural changes at this transition, if any, are found to
be below 0.1% [8]. (For comparison, distortions about
0.1% are observed in a quadrupole ordered 5d1 DP sys-
tem [14]). The time-reversal (TR) symmetry breaking
is detected by muon spin relaxation. To reconcile these
observations, a ferro-type octupolar order of the Eg dou-
blets has been proposed [8, 17, 18].

The octupole is a third-rank magnetic multipole which
carriers no dipole moment, and its long-range order is ob-
served in rare-earth compounds (see Ref. [7] for a review
of multipole orders). Possibility of octupole order in d
electron systems is intriguing. It is actually quite un-
expected because Eg doublet is subject to JT physics:
its partners have di↵erent charge density shapes (planar
and elongated), see Fig. 1(a). Therefore, a conventional
quadrupole order like in eg orbital systems [2] is the most
natural instability to expect in a first place. To realize
the octupolar order, exchange interactions between the
octupole moments must be strong enough to overcome
the quadrupolar interactions contributed by the Kugel-
Khomskii exchange and orbital-lattice JT couplings.

Early theoretical work [19] on d2 DP systems with
strong SOC assumed that cubic splitting of J = 2 level
�c is smaller than the exchange couplings and therefore
neglected it. The obtained phase diagram contains dipo-
lar and quadrupolar ordered states. Here we develop a
theory of d2 electron systems starting from the opposite
limit, i.e. when cubic splitting �c is large and Eg dou-
blet is well separated from the virtual T2g states, as actu-
ally seen in the experiment [8]. Having in mind the 5d2

materials other than DP compounds, we keep discussion
as general as possible, considering various spin-orbital
exchange processes typical in TM oxides. The result-
ing Eg doublet interactions are represented in terms of

pseudospin one-half Hamiltonians. In most cases, the in-
teractions are dominated by quadrupolar couplings. In
90� exchange geometry, however, the quadrupole and oc-
tupole channels are equally presented, and e↵ective in-
teraction on a single bond can be written in a Heisen-
berg form with no preference in either of these two chan-
nels. The multipole orders of Eg doublets in di↵erent
lattices are considered. On a honeycomb lattice, we show
that the Eg pseudospin model can be mapped to the ex-
tended Kitaev model, uncovering thereby a hidden SU(2)
symmetry point that separates quadrupole and octupole
orders. On a triangular and double-perovskite lattices,
the exchange interactions favor a quadrupole order, with
the order parameters reduced by quantum fluctuations
of pseudospins.
We further discuss orbital-lattice coupling e↵ects, and

show that JT phonon mediated interactions cooperate
with exchange interactions to support quadrupole order.
This is similar to a conventional eg orbital systems. We
suggest that in DP lattices, where the magnetic ions are
widely separated and have no common oxygen, a dynam-
ical Jahn-Teller e↵ect may develop to reduce the struc-
tural distortions induced by quadrupole order. We also
consider modifications of the pseudospin wavefunctions
by low symmetry distortions (caused by site disorder
or other defects), and find that they induce a magnetic
dipole moment on Eg doublet. In general, d2 compounds
represent interesting class of materials where all three
main actors - the electron exchange, orbital-lattice in-
teraction, and relativistic SOC - play an essential role
in determining the ground states and low-energy excita-
tions.
The paper is organized as follows: Sec. II introduces

Eg doublet states and their pseudospin-1/2 description.
In Section III, we derive pseudospin Hamiltonians con-
sidering di↵erent orbital exchange geometries which are
typical in TM compounds. Sec. IV studies pseudospin
orderings on various lattice structures. Sec. V discusses
Jahn-Teller coupling e↵ects in the context of experiments
in double-perovskites. Sec. VI summarizes the main re-
sults.

II. NON-KRAMERS Eg DOUBLET AND
PSEUDOSPINS

Eg doublet wavefunctions written in Jz basis are [6]:
1p
2
(|2i + |� 2i) and |0i. We regard them as pseu-

dospin s = 1/2 states, | "i and | #i, correspondingly. To
get an idea about the orbital shapes, one can represent
these functions in terms of two-electron spin and orbital
|Sz, Lzi states:

|"i = 1p
2
(|1, 1i+ |� 1,�1i), (1)

|#i = 1p
6
(|1,�1i+ 2|0, 0i+ |� 1, 1i). (2)

In the pseudospin-up state with Lz = ±1, one of the elec-
trons must occupy lz = 0 planar orbital dxy, flattening
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change paths, assumed to be negligible in Ref. [19, 20],
is significant. Taking into account this exchange path
together with Hund’s coupling, the FM Heisenberg in-
teraction is greatly boosted. This becomes the major
Heisenberg interaction, because other contributions from
the t2g � eg and eg � eg paths almost cancel each other.
Exactly the same assumed-to-be-small channel also gen-
erates the AFMKitaev interaction which then cancels the
proposed FM Kitaev interaction from the t2g � eg path,
resulting in a small Kitaev interaction. Under the trig-
onal distortion, the isotropic Heisenberg interaction be-
comes an anisotropic XXZ interaction which dominates
over other interactions. On the other hand, Na3Co2SbO6

(NCSO), the t2g � eg hopping becomes comparable to t3

as t3 decreases[31], which will reduce the Heisenberg in-
teraction, but boost the FM Kitaev interaction.

The rest of the paper is organized as follows. In Sec. II
we review the onsite Hamiltonian of Co honeycomb. In
Sec. III we introduce the various direct and indirect hop-
pings considered in our model. Sec. IV introduces the
derivation of spin Hamiltonian and gives analytical ex-
pressions for various exchange interactions. We present
ab initio parameters and results for BCAO as an example
in Sec. V. The e↵ect of the trigonal distortion is discussed
in Sec. VI and finally the discussion and conclusion in
Sec. VII.

II. ONSITE HAMILTONIAN

The structure of honeycomb cobaltates is similar to
other edge-sharing octahedral honeycomb materials (see
Fig. 1(a)). For these materials, the onsite Hamiltonian is
expressed by

Htot = HCoulomb +Hcubic +HSOC +Htrig. (1)

For simplicity, the isotropic Kanamori interaction[38] is
used which is a good approximation to the full Coulomb
interaction with 3- and 4-orbital e↵ects[39–42]. Within
this approximation, the interaction partHCoulomb is writ-
ten as

HCoulomb = U

X
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(2)

where U and U
0 are intra- and interorbital Coulomb in-

teractions respectively, and JH is the Hund’s coupling.
There are two kinds of crystal field splittings (CFS) in

edge-sharing octahedral honeycomb lattices. One is the
cubic CFS due to the octahedral cage formed by oxygen
atoms, see Fig. 1(b). It is usually around 1 eV and is com-
parable to the Hund’s coupling JH for 3d orbitals. The

FIG. 1. (a) Crystal structure for edge-sharing honeycomb
octahedral lattice. The local octahedral coordinates (xyz)
and the global basis (XY Z) are shown. (b) Splittings of 3d
orbitals under cubic (�c) and trigonal (�) crystal fields. (c)
Energy level splittings of L = 1, S = 3

2 states under SOC (⇠).

other is the trigonal CFS induced by the trigonal distor-
tion of the 2D honeycomb lattice (compress or elongate
of octahedral cages along Z direction shown in Fig. 1(a)).
This is usually small (from several meV to several tens
of meV). Combining the two crystal field e↵ects, we have

HCFS =

0
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written in the basis of dx2�2 , d3z2�r2 , dyz, dxz, dxy. �c

is the splitting between t2g and eg orbitals by the cubic
CFS and � is the trigonal distortion.
Due to the large Hund’s coupling, 3d7 forms high spin

state with total angular momentum L = 1 and total spin
S = 3/2. Under SOC �L · S, the lowest states form a
Je↵ = 1

2
doublet (see Fig. 1(b)) with wavefunction
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They are written in |mS ,mLi basis with mS being the
magnetic spin moment and mL magnetic orbital angular
moment [19–21, 35, 43]. In this work, We use HSOC =
⇠
P

i
li · si where ⇠ is the atomic SOC strength for Co

atoms. The relation to the other SOC scheme, �
P

i
Li·Si

is that � = ⇠/3 as there are three holes. The SOC-
induced energy splittings are shown in Fig. 1(c).
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change paths, assumed to be negligible in Ref. [19, 20],
is significant. Taking into account this exchange path
together with Hund’s coupling, the FM Heisenberg in-
teraction is greatly boosted. This becomes the major
Heisenberg interaction, because other contributions from
the t2g � eg and eg � eg paths almost cancel each other.
Exactly the same assumed-to-be-small channel also gen-
erates the AFMKitaev interaction which then cancels the
proposed FM Kitaev interaction from the t2g � eg path,
resulting in a small Kitaev interaction. Under the trig-
onal distortion, the isotropic Heisenberg interaction be-
comes an anisotropic XXZ interaction which dominates
over other interactions. On the other hand, Na3Co2SbO6

(NCSO), the t2g � eg hopping becomes comparable to t3

as t3 decreases[31], which will reduce the Heisenberg in-
teraction, but boost the FM Kitaev interaction.

The rest of the paper is organized as follows. In Sec. II
we review the onsite Hamiltonian of Co honeycomb. In
Sec. III we introduce the various direct and indirect hop-
pings considered in our model. Sec. IV introduces the
derivation of spin Hamiltonian and gives analytical ex-
pressions for various exchange interactions. We present
ab initio parameters and results for BCAO as an example
in Sec. V. The e↵ect of the trigonal distortion is discussed
in Sec. VI and finally the discussion and conclusion in
Sec. VII.
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other edge-sharing octahedral honeycomb materials (see
Fig. 1(a)). For these materials, the onsite Hamiltonian is
expressed by
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For simplicity, the isotropic Kanamori interaction[38] is
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teractions respectively, and JH is the Hund’s coupling.
There are two kinds of crystal field splittings (CFS) in

edge-sharing octahedral honeycomb lattices. One is the
cubic CFS due to the octahedral cage formed by oxygen
atoms, see Fig. 1(b). It is usually around 1 eV and is com-
parable to the Hund’s coupling JH for 3d orbitals. The
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other is the trigonal CFS induced by the trigonal distor-
tion of the 2D honeycomb lattice (compress or elongate
of octahedral cages along Z direction shown in Fig. 1(a)).
This is usually small (from several meV to several tens
of meV). Combining the two crystal field e↵ects, we have

HCFS =

0

BBB@

�c 0 0 0 0
0 �c 0 0 0
0 0 0 � �

0 0 � 0 �

0 0 � � 0

1

CCCA
, (3)

written in the basis of dx2�2 , d3z2�r2 , dyz, dxz, dxy. �c

is the splitting between t2g and eg orbitals by the cubic
CFS and � is the trigonal distortion.
Due to the large Hund’s coupling, 3d7 forms high spin

state with total angular momentum L = 1 and total spin
S = 3/2. Under SOC �L · S, the lowest states form a
Je↵ = 1

2
doublet (see Fig. 1(b)) with wavefunction

|+ 1̃

2
i = 1p

2
|3
2
,�1i � 1p

3
|1
2
, 0i+ 1p

6
|� 1

2
, 1i,

|� 1̃

2
i = 1p

2
|� 3

2
, 1i � 1p

3
|� 1

2
, 0i+ 1p

6
|1
2
,�1i.

(4)

They are written in |mS ,mLi basis with mS being the
magnetic spin moment and mL magnetic orbital angular
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induced energy splittings are shown in Fig. 1(c).
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III. EXCHANGE PATHS

Having set the onsite Hamiltonian, we now consider
the hopping paths to determine exchange processes. As
shown in Fig. 1(a), bond M1 � M2 has C2v local sym-
metry and the symmetry allowed hoppings for the ideal
honeycomb lattice are

Tdd =

0

BBB@

t5 0 0 0 0
0 t4 0 0 t6

0 0 t1 t2 0
0 0 t2 t1 0
0 t6 0 0 t3

1

CCCA
. (5)

Here t1, t3, t4 and t5 are intraorbital direct hoppings be-
tween dyz/xz, dxy, d3z2�r2 and dx2�y2 respectively. t2

is the hopping between dyz and dxz which includes both
direct and indirect hoppings. t6 is the hopping between
t2g and eg manifolds and also includes both direct and
indirect hoppings. Hoppings of other bonds are related
to z-bond by C3 symmetry. The symmetry allowed p�d

hopping is parameterized as (take bond M1 � X1 as an
example, see Fig. 1(a))

Tdp =

0

BBBB@

p
3

2
tpd� 0 0

� 1

2
tpd� 0 0
0 0 0
0 0 tpd⇡

0 tpd⇡ 0

1

CCCCA
. (6)

These hopping parameters could be obtained from DFT
calculations once a target system is chosen as will be
discussed in Sec. V.

IV. SPIN MODEL

With both the onsite and intersite Hamiltonians, we
build the spin model using the strong-coupling pertur-
bation theory by projecting ground states doublets. For
the edge-sharing ideal honeycomb octahedral lattice, the
generic nearest neighbor (n.n.) spin model is given by[17]

Hspin =
X

hiji2↵�(�)

JSi · Sj +KS
�

i
S
�

j
+ �(S↵

i
S
�

j
+ S

�

i
S
↵

j
).

(7)
Here the ↵,�, � are the local octahedral coordinates
x, y, z. J ,K and � are the isotropic Heisenberg, the bond-
dependent Kitaev and the bond-dependent o↵-diagonal
terms respectively. Other bond-dependent o↵-diagonal
terms are forbidden in the ideal circumstances. To deter-
mine the relative strength among them, we present three
di↵erent types of exchange processes and show which
combinations determine the major interaction.

A. Inter-site U process

A virtual hopping of one d electron between neigh-
bouring Co atoms through second-order process ( d7d7�

FIG. 2. The dominant second order inter-site U process is the
direct hopping between neighbouring dxy orbitals.

d
6
d
8 � d

7
d
7 or d

7
d
7 � d

8
d
6 � d

7
d
7) can lower the to-

tal energy and thus contributes to the spin Hamiltonian.
The analytical expressions of spin interactions from all
second-order processes are listed in Table IV in Appendix
B.
The major di↵erence from our finding and conclusion

from Ref. [19, 21] is the strength of t3 hopping integral.
In Ref. [19, 21], it was assumed that t3 (t0 in their no-
tation) is negligible based on less-extended 3d orbitals.
However, since 3d systems have a smaller lattice con-
stant, we expect a large t3 compared to other hopping
integrals. Indeed the large t3 hopping integral was re-
ported in several honeycomb cobaltates in Ref. [33, 35].
The t3 associated exchange process shown in Fig. 2 can

be summarized by the following Heisenberg and Kitaev
interactions:

J =
2

243

✓
� 27

U � 3JH
+

43

U + JH
+

8

U + 4JH

◆
t
2

3
,

K =
2

81

✓
3

U � 3JH
� 7

U + JH
� 2

U + 4JH

◆
t
2

3
.

(8)

The Hund’s coupling enters into these expressions explic-
itly due to the energy di↵erences between intermediate
state d

6
d
8 (or d

8
d
6) and the initial state (d7d7). When

JH approaches to zero, the above equations reduces to

J = 16t
2
3

81U
and K = � 3

4
J respectively, consistent with

Eq. (7) in Ref. [19]. When JH/U > 0.15, the sign of J
changes and grows quickly due to the large t2

3
implying a

dominant FM Heisenberg interaction. This precise same
path leads to the antiferromagnetic (AFM) Kitaev inter-
action. However, as we will show below, this weakens
the FM Kitaev interaction from the two-holes t2g � eg

exchange paths. The combination of these two results,
i.e, incomplete-cancellation of J and almost-cancellation
of K is a key reason why some cobaltates do not fall into
the Kitaev materials.
Our spin interactions from the t2 and t6 processes are

consistent with the results reported in Ref. [20]. These
channels play a minor role in the second-order processes.
The Kitaev interaction has both FM and AFM contri-
butions from di↵erent second order processes. The �
interaction only involves two cross terms inside t2g man-
ifolds. The expression of � and the full expression of J
and K from other hopping paths are listed in Table IV
in Appendix B.
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t2g � t2g

4

FIG. 3. The dominant two-hole processes with two-hole in
the same orbital (a) and di↵erent orbital (b).

B. Two-hole process

Due to the strong p � d hybridization, contributions
from p orbitals are also important. The processes involv-
ing p orbitals start at fourth order to introduce coupling
between neighbouring Co atoms. The p mediated hop-
ping processes can be included to the e↵ective d�d hop-
pings. The leftover fourth-order processes are two-hole
and cyclic exchange processes, which are shown below
for completeness.

The two-hole processes include intermediate states
when the two holes locate at one ligand atom simulta-
neously. The two holes can either locate at the same
orbital or di↵erent orbitals. The former leads to AFM
Heisenberg contributions and the latter prefers FM due
to the Hund’s coupling of p orbitals JHp. The analytical
expressions for two-hole processes are listed in Appendix
B. When expanded to the linear order of JHp, our results
are consistent with Ref. [19]. The contributions from
t2g � t2g , t2g � eg and eg � eg groups indicated by their
hopping integrals t

4

pd⇡
, t

2

pd⇡
t
2

pd�
and t

4

pd�
, respectively.

The two dominant two-hole processes are illustrated in
Fig. 3. Fig. 3(a) provides a configuration capable of ac-
commodating two holes at the same orbital. It requires
one of the holes coming from the t2g orbitals and the
other from the eg orbitals and the two holes are spin op-
posite, leading to an AFM Heisenberg term. It is also
worth mentioning that due to the di↵erent origins of the
holes, the four paths of two-hole processes can be shown

in its dependence of t
2

pd⇡
t
2

pd�

✓
1

�pd

+
1

�pd +�c

◆2

un-

der perturbation theory. Fig. 3(b) shows a configuration
with two holes at di↵erent orbitals. A FM contribution
is expected as the two holes prefer align the spins parallel
due to Hund’s coupling. Notice that the eg�eg processes
do not have Kitaev contributions. This is due to the cu-
bic CFS that quenches the orbital angular momentum
of the eg orbitals. As analyzed above, the two processes
shown in Fig. 3 have opposite sign and partially cancel
with each other.

C. Cyclic exchange process

Another fourth order perturbation process is the cyclic
exchange process as shown in Fig 4(a). It has an inter-

FIG. 4. (a) shows the paths for cyclic exchange processes.
The related paths are obtained by interchanging 1○$ 2○
and/or 3○$ 4○, as well as reversing the cycle direction. (b)
The dominant cyclic exchange process.

mediate state when each of the two ligand atoms has
one hole. Due to the property of identical particles, we
cannot distinguish the two holes apart and thus this is
a pure quantum mechanical process. The dominant pro-
cess is illustrated in Fig 4(b) which involves both t2g and
eg orbitals. The geometry of Fig 4(b) requires that the
two � processes have to have opposite sign. Thus the
cyclic exchange processes are always FM.
Combining all the significant processes up to fourth

order, only one process (Fig. 3(a)) can give rise to
AFM Heisenberg. Usually this process has comparable
magnitude with other paths shown in Fig. 3(b) and/or
Fig. 4(b). Thus the perfect cancellation of Heisenberg
cannot be expected generally.

V. APPLICATION TO BCAO

To apply the above theory, we obtain tight binding
parameters for BCAO using DFT calculations. The
calculation is performed with Vienna ab initio Simu-
lation Package (VASP) [44] with projector augmented
wave (PAW) [45] potential and Perdew-Burke-Ernzerhof
(PBE) [46] exchange-correlation functional. The cuto↵
energy of the plane wave basis is set to be 400 eV. k-
point mesh is 5⇥ 5⇥ 5. The hopping parameters are ob-
tained with spin-unpolarized calculations without SOC.
The Wannier90 code [47] is used to build tight-binding
models out of DFT calculation. To discuss both 2nd-
and 4th-order perturbation process, we build two Wan-
nier models from purely d orbitals and from both p and
d orbitals. The tight-binding parameters are provided in
Appendix A where hoppings in Tdd and Tdp are read out.
We confirm that t3 is the largest hopping integral. We

also note that the indirect hopping between dxz and dyz

orbitals through p orbitals, i.e., some part of t2 channels
(t in Ref. [19]) cancels with the direct hopping channel
and is thus much smaller than t3.
Using the tight binding parameters and the exchange

interactions obtained above, a set of exchange parame-
ters for an idealized honeycomb BCAO are listed in Ta-
ble I. Here we classify the various second- and fourth-
order processes into three groups, depending on whether
hoppings are between t2g � t2g orbitals, t2g � eg orbitals
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t2g � eg
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d7

When dominated: Non-Kitaev, e.g.,  BaCo2(XO4)2, X=As, P : X. Liu, HYK, arXiv:2211.03737

Debate over the strength of Kitaev interaction



Spin-S Kitaev

G. Baskaran, D. Sen, R. Shankar, PRB 78, 115116 (2008)

For arbitrary S, Wp = ei⇡(S
y
1+Sz

2+Sx
3+Sy

4+Sz
5+Sx

6 )
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Kitaev's honeycomb model
 Spin-< model
 Highly anisotropic 
in spin and space

 Frustrated by 
anisotropy, not 
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A. Kitaev, Ann. Phys. (2005)

Exactly solvable with spin liquid ground state

Kitaev Exchange

  

Kitaev's honeycomb model
 Spin-< model
 Highly anisotropic 
in spin and space

 Frustrated by 
anisotropy, not 
geometry

x

zy

A. Kitaev, Ann. Phys. (2005)

Exactly solvable with spin liquid ground state

Kitaev Exchange

where � = x, y, z

Quantum spin liquid?

Majorana excitations?

half-integer vs. integer-S Kitaev?



Spin S=1 Kitaev model in the literature.

[1] G. Baskaran, D. Sen, and R. Shankar, Phys. Rev. B 78, 115116 (2008).
[2] A. Koga, H. Tomishige, and J. Nasu, Journal of the Physical Society of Japan 87, 063703 (2018).
[3] J. Oitmaa, A. Koga, and R. R. P. Singh, Phys. Rev. B 98, 214404 (2018).

S=1 Kitaev model:
Plaquette operators that commute with the Hamiltonian [1]

May be a gapless spin liquid [2]

Has incipient entropy plateau [2,3]

Q: How do we get S=1 Kitaev interaction?



Kitaev interaction in honeycomb insulators with general S
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Figure 3. A section of the periodic table showing the transition metals for which layered MX3
compounds listed in Table 2 form. The metals are highlighted with colors that correspond to the
structure types shown on the lower right. Crosshatching indicates multiple structures have been
reported (see Table 2). A plan view of a single layer common to both the BiI3 and AlCl3 structure types
is shown on the upper right, with coordinate systems corresponding to each structure type.

TiCl3 undergoes a structural phase transition at low temperature [87]. Troyanov et al.
demonstrated that the distortion upon cooling corresponds to a dimerization similar to that noted
above in MoCl3 and TcCl3 [70]. Below 220 K a monoclinic structure was reported. The space group,
C2/m is the same as the AlCl3 structure type, but the structure is different, with three layers per unit
cell. The dimerization is not as extreme in TiCl3 as it is in MoCl3 and TcCl3. At 160 K the Ti-Ti distances
within the distorted honeycomb net are 3.36 and 3.59 Å [70], so the dimerization is not as strong at
this temperature, 60 K below the transition, as it is in MoCl3 and TcCl3 (Table 2) at room temperature.
A structural phase transition is also reported for TiBr3, with a triclinic low temperature structure
(P1) [88], and this same triclinic structure was also later reported for TiCl3 [89].

All three of the layered chromium trihalides are known to undergo temperature induced
crystallographic phase transitions between the AlCl3 and BiI3 structure types [16,73]. At high
temperatures all three adopt the AlCl3 structure and transition to the BiI3 structure upon cooling.
This happens near 240, 420, and 210 K in the chloride, bromide, and iodide, respectively. The phase
transition is first order, displaying thermal hysteresis and a temperature range over which both
phases coexist. Interestingly, it is the lower symmetry monoclinic phase that is preferred at higher
temperatures. The transition must be driven by interlayer interactions, since the layers themselves are
changed little between the two phases. As expected, twinning and stacking faults develops during the
transition upon cooling as the layers rearrange themselves into the BiI3 stacking, which can complicate
interpretation of diffraction data [16].

Multiple structure types have been assigned to the layered form of RuCl3, known as a-RuCl3.
Early reports assigned the trigonal space group P3112 [82] (known as the CrCl3 structure type, although

d-orbitals eg

t2g

Ni2+ : 3d8
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on-site H0 = Kanamori (U, U’, Hund’s) + SOC

SOC in heavy anions



perturbation theory: hopping between two M sites via heavy A sites

  

Modelling d8 systems: kinetic term   

Indirect hopping from M site to A sites.
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Modelling d8 systems: kinetic term   

Cubic symmetry: 

Indirect hopping from M site to A sites.

Hopping integrals 
M to A sites:

Cubic symmetry:



Indirect

H
�
ij = KS

�
kS

�
j + JSi · Sj
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J = �|Jind|+ Jd
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AF Kitaev

Direct Jd = 4t2/U
<latexit sha1_base64="CbxOowyyondM9kJU2wAdQLDQTSs=">AAAB83icbVBNS8NAEN34WetX1aOXxSJ4qkkpqAeh0It4qmBsoY1ls9m0SzebuDsplNDf4cWDilf/jDf/jds2B219MPB4b4aZeX4iuAbb/rZWVtfWNzYLW8Xtnd29/dLB4YOOU0WZS2MRq7ZPNBNcMhc4CNZOFCORL1jLHzamfmvElOaxvIdxwryI9CUPOSVgJO+2F+BrXMPwWD13e6WyXbFnwMvEyUkZ5Wj2Sl/dIKZpxCRQQbTuOHYCXkYUcCrYpNhNNUsIHZI+6xgqScS0l82OnuBTowQ4jJUpCXim/p7ISKT1OPJNZ0RgoBe9qfif10khvPQyLpMUmKTzRWEqMMR4mgAOuGIUxNgQQhU3t2I6IIpQMDkVTQjO4svLxK1Wrir2Xa1cb+RpFNAxOkFnyEEXqI5uUBO5iKIn9Ixe0Zs1sl6sd+tj3rpi5TNH6A+szx+SmJA2</latexit><latexit sha1_base64="CbxOowyyondM9kJU2wAdQLDQTSs=">AAAB83icbVBNS8NAEN34WetX1aOXxSJ4qkkpqAeh0It4qmBsoY1ls9m0SzebuDsplNDf4cWDilf/jDf/jds2B219MPB4b4aZeX4iuAbb/rZWVtfWNzYLW8Xtnd29/dLB4YOOU0WZS2MRq7ZPNBNcMhc4CNZOFCORL1jLHzamfmvElOaxvIdxwryI9CUPOSVgJO+2F+BrXMPwWD13e6WyXbFnwMvEyUkZ5Wj2Sl/dIKZpxCRQQbTuOHYCXkYUcCrYpNhNNUsIHZI+6xgqScS0l82OnuBTowQ4jJUpCXim/p7ISKT1OPJNZ0RgoBe9qfif10khvPQyLpMUmKTzRWEqMMR4mgAOuGIUxNgQQhU3t2I6IIpQMDkVTQjO4svLxK1Wrir2Xa1cb+RpFNAxOkFnyEEXqI5uUBO5iKIn9Ixe0Zs1sl6sd+tj3rpi5TNH6A+szx+SmJA2</latexit><latexit sha1_base64="CbxOowyyondM9kJU2wAdQLDQTSs=">AAAB83icbVBNS8NAEN34WetX1aOXxSJ4qkkpqAeh0It4qmBsoY1ls9m0SzebuDsplNDf4cWDilf/jDf/jds2B219MPB4b4aZeX4iuAbb/rZWVtfWNzYLW8Xtnd29/dLB4YOOU0WZS2MRq7ZPNBNcMhc4CNZOFCORL1jLHzamfmvElOaxvIdxwryI9CUPOSVgJO+2F+BrXMPwWD13e6WyXbFnwMvEyUkZ5Wj2Sl/dIKZpxCRQQbTuOHYCXkYUcCrYpNhNNUsIHZI+6xgqScS0l82OnuBTowQ4jJUpCXim/p7ISKT1OPJNZ0RgoBe9qfif10khvPQyLpMUmKTzRWEqMMR4mgAOuGIUxNgQQhU3t2I6IIpQMDkVTQjO4svLxK1Wrir2Xa1cb+RpFNAxOkFnyEEXqI5uUBO5iKIn9Ixe0Zs1sl6sd+tj3rpi5TNH6A+szx+SmJA2</latexit>

� = 0
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: up to 4th order

P. Peter Stavropoulos, D. Pereira, HYK, PRL 123, 037203 (2019)

K = �2Jind ED calculation: S=1 KJ model

  

Probing the S=1 KH model with Exact Diagonalization

  

Probing the S=1 KH model with Exact Diagonalization

12 & 18 sites

  

Probing the S=1 KH model with Exact Diagonalization

Kitaev from heavy anion from ab-intio: C. Xu et al, npj Comput. Mater. 4,  57 (2018)



Single layer of CrI3 (S=3/2 honeycomb):

Ferromagnetic insulator


Kitaev interaction?
B. Huang et al, Nature 546, 7657 (2017)
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Figure 2 | MOKE measurements of monolayer CrI3. a, Polar MOKE signal for a CrI3 monolayer. 
Inset shows the optical image of an isolated monolayer. The scale bar is 2 μm. b, Power dependence 
of MOKE signal taken at incident powers of 3 μW (blue), 10 μW (pink), and 30 μW (red). c, MOKE 
maps at μ0H = 0 T, 0.15 T, and 0.3 T on a different monolayer. The scale bar is 1 μm. d, θK vs. μ0H 
sweeps taken at four points marked by dots on the μ0H = 0.3 T map in c. e, Temperature dependence 
of MOKE signal with the sample initially cooled at μ0H = 0 T (blue) and 0.15 T (red). 

Kerr rotation

Single layer (2D) Ferromagnet

Example 



P. P. Stavropoulos, Liu, HYK, PRR3, 013216 (2021)

n.n. model 

d-orbitals eg

t2g

trigonal distortion

5

a)

b)

Figure 3. a) The distorted octahedra in R3̄ is shown. The octa-
hedron made of X ligand can be viewed as two yellow triangles
normal to the ĉ = [1, 1, 1]/

p
3 direction. The blue arrows rep-

resent new positions of X due to the staggered rotations of the
two yellow triangular faces. The change of position X due to the
staggered rotations is parameterized by �x. In addition, there is
a compression of the two yellow triangles squezzed as shown by
the orange arrows parallel to the ĉ-axis. The change of position
due to the compression is parameterized by �x

0. b) A top view
of distortion in a unit cell is shown. The dotted circles indicate
the new position of X moving out of the page along +ĉ while
the circles with x inside indicate a new position of X moving
toward �ĉ. The exact positions of X(1,2,3,4,5,6) as a function of
�x, �x0 are found in the Appendix.

parameters induced by the distortions one makes use of the
Slater-Koster rotated bond formulas[66], with details of the
procedure described in the Appendix, leading to distorted
hopping matrices TMX.

The distortion-induced hopping matrices TMX have all
elements non-zero as a result of lowering the local symme-
try of the octahedron from Oh to D3. We denote the new
allowed hopping under distortion as �ti. Starting with the
distortion-induced hoppings, we follow the procedure de-
scribed in Section III. Using the distortion-induced TMX

matrices, we derive the e↵ective Te↵
M1M2

(t2g ⌦ t2g) and
Te↵

M1M2
(eg ⌦ t2g) (details in Appendix 4) which are then

treated perturbativly in the strong coupling pertubation.

Figure 4. An example of J,K,�,�0 and Ac values plotted for
�x = 2�x0. We set U

0 = U � 2JH , with U = 2.9eV and JH =
0.7eV [67], as well as �c = 1.25eV , �p = 0.8eV , � = 1.5eV ,
with indirect Slater-Koster parameters tpd⇡ = 400meV , tpd� =
�800meV as well as small direct tdd� = �1.5tdd⇡ = 6tdd� =
�30meV . The Heisenberg term is plotted as J/10 in order to
fit inside the panel along with the smaller K��0

Ac. See the
main text for general behaviors of J,K,�,�0 and Ac in terms of
the Kanamori interactions and hopping integrals.

The minimal spin model for the n.n. is finally given by

H =
X

hiji2↵�(�)

h
JSi · Sj +KS�

i
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j
+ �(S↵

i
S�

j
+ S�

i
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j
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j
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j
)
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+
X
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Ac(Si · ĉ),

(11)
where ↵,�, (�) refers to the � bond taking ↵ and � spin
components.[4, 55] If we included only Te↵

M1M2
(t2g ⌦ t2g)

hopping contributions, the strengths of the three new terms
are:

� = � 8(rte↵)2

9 (U + 2JH)

✓
�tc
t0

◆

�0 = � 4(rte↵)2

9 (U + 2JH)

✓
�tb
t0

◆

Ac = � 4(rte↵)2

(U + 3JH � U 0)

✓
�t↵
t0

◆
, (12)

where �t↵ and �tb,c are some combinations of di↵erent �ti.
A full form of the spin model including JK��0Ac to lead-
ing order in �ti as well as eg contributions are listed in
Table IV in the Appendix. Note that both Heisenberg and
Kitaev interactions are renormalized by the distortion, but
Heisenberg has a linear term in �t, while Kitaev does not.

Given that there are five spin interactions only within the
nearnest neighbor model, we do not intend to pin down
quantative values of these exchange terms. However, it
would be useful to present an example, and discuss how
they are a↵ected by U , JH , �, �c, �p, tpd�, tpd⇡, and �ti.
For CrI3 crystal structure in Ref.[48] it is straightforward
to extract the values of (�x, �x0) ' (0.0297, 0.0137). Set-
ting �x = 2�x0, we compute JK��0Ac as a function of �x.
An example case is shown in Fig.4 with U , U 0, JH , �c, �p,
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Given that there are five spin interactions only within the
nearnest neighbor model, we do not intend to pin down
quantative values of these exchange terms. However, it
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single-ion anisotropy,

from SOC + distortion

�,�0

S=3/2



CrI3

𝚫𝚫𝑯𝑯𝑩𝑩 arising from Quantum Fluctuation

19

out-of-plane 𝑯𝑯𝟎𝟎

in-plane 𝑯𝑯𝟎𝟎

CrI3

• No dependence of magnetic anisotropy 
on Γ at 𝜃𝜃 = 55°

𝛼𝛼𝛼𝛼 + 𝛼𝛼𝛽𝛽 + 𝛽𝛽𝛼𝛼 =
3
2 cos

2𝜃𝜃 −
1
2 = 0

→ 𝐽𝐽𝐾𝐾 model

• ∆𝐻𝐻𝐵𝐵 can be explained as the pinning 
effect of the quantum fluctuation in the 
presence of anisotropic Kitaev 
interactions.

Angle dependent Ferromagnetic Resonance (FMR): CrI3

Inhee Lee, et al, Phys. Rev. Lett. 124, 017201 (2020)

Kitaev dominant 
L. Chen et al, PRX 11, 031047 (2021)

Inelastic neutron scattering

J + DM interaction

: debate



Kitaev Materials

• honeycomb Mott insulator : strong e-e interaction

transition metals

• bond-dependent spin interaction for S=1/2

multi-orbital systems with Hund’s coupling
spin-orbit coupling

: Kitaev interaction is the largest interaction in full H

Necessary (not sufficient) Requirements

S >  1/2 : spin-orbit coupling in heavy ligand + Hund’s coupling in transition metal 

Debate over the strength of Kitaev interaction



Jiefu Cen, HYK, Commun. Phys. 5, 119 (2022);


Jiefu Cen, HYK, arXiv:2208.13807 (2022)

Goal: how to determine the Kitaev strength? 

Use Symmetry of full Hamiltonian



spin excitations under the two field angles at finite momenta using the linear spin wave

theory (LSWT), which further confirms our results based on the symmetry argument. Our

results will guide a future search of Kitaev materials.

RESULT

Model – The generic spin exchange Hamiltonian among magnetic sites with strong spin-

orbit coupling for the ideal edge sharing octahedra environment in the octahedral x �

y � z axes shown in Fig. 1(a) contains the Kitaev (K), Gamma (�), and Heisenberg (J)

interactions25:

H =
X

hiji2↵�(�)

h
JSi · Sj +KS

�
i S

�
j + �(S↵

i S
�
j + S

�
i S

↵
j )
i
, (1)

where S = 1
2~� with ~ ⌘ 1 and ~� is Pauli matrix, hiji denotes the nearest neighbor (n.n.)

magnetic sites, and ↵�(�) denotes the � bond taking the ↵ and � spin components (↵, �, � 2

{x,y,z}). The x-, y-, and z-bonds are shown in red, blue, and green colours, respectively in

Fig. 1(a). Further neighbour interactions and trigonal-distortion allowed interactions, and

their e↵ects will be discussed later.

To analyze the symmetry of the Hamiltonian, we rewrite the model in the a � b � c

axes32,33:
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,

(2)

where �� = 0, 2⇡3 , and
4⇡
3 for � = z-, x-, and y-bond respectively, and the exchange interac-

tions are given by

JX = J + Jac, JZ = J + Jab,

Jab =
1

3
K +

2

3
�, Jac =

1

3
K � 1

3
�.

(3)

The Hamiltonian H is invariant under ⇡-rotation around the b-axis denoted by C2b and
2⇡
3 -

rotation around the c-axis by C3c in addition to the inversion and time-reversal symmetry.
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Generic n.n. ideal octahedra model

(a) (b)
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I− below
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mirror plane

C2b = 180 rotation about b-axis

b is parallel to the bond; a/c-axis are perp. to the bond/plane
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I− above
I− below
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𝑧

NO mirror plane (bc plane)

C2a= 180 rotation about a-axisC2a

b is parallel to the bond; a/c-axis are perp. to the bond/plane
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advantage of this approach is that it readily captures the strong correlations inherent within this composite (fraction-
alized) representation along with the magnetic phases. The detailed derivation of the mean-field equations is provided
in the Appendix A.

The article is divided into three sections. The current introductory section is completed with the additional
discussion on the materialization process of the Kitaev model. In section II, we identify the thermal Hall coefficients
for the pure AF/F Kitaev model for arbitrary magnetic-field orientations and strengths. The critical field strength
and the angles for topological phase transitions are determined. In section III, the role of the additional off-diagonal
terms, Γ,Γp are examined. We complete this section by discussing the implications of our results for the recent
thermal Hall experiments on candidate materials.

A. Kitaev materials: α-RuCl3

The experimental side of the search of Kitaev materials has advanced by signatures of massively degenerate,
gapless excitations in the iridates XIrO3 and in α-RuCl3. The modeling of these specific materials requires additional
terms in the spin Hamiltonian. For concernitant materials, the symmetry group is D3d = {I, 2C3, 3C2, 2S6, 3M}
[37, 38, 41, 42], the symmetry allowed interactions are Kitaev type KαSα

j S
α
l , Heisenberg type JSj · Sl as well as

off-diagonal couplings Γα
(

Sβ
j S

γ
l + Sγ

j S
β
l

)

, and (when e.g. Ru-Cl environment differs from octahedra) the additional

allowed Γα
p terms Γα

p (S
β
j S

α
l + Sα

j S
β
l + Sγ

j S
α
l + Sα

j S
γ
l ). Therefore, a more general spin coupling term is considered,

Γαβ
ij Sα

i S
β
j where Γαα

ij → K, J and Γα!=β
ij → Γ,Γp. The additional interactions and their role are the subject of current

experiments [2, 3, 11–18], ab-initio calculations [66], exact-diagonalization methods [67–69] and effective low-energy
Hubbard Hamiltonians [31, 70, 71].

Here, we focus on α-RuCl3 because there are sufficient number of works to compare in the literature to ensure the
validity of our approach. The crystal structure of α−RuCl3 has a honeycomb structure in Ru-Ru bonds for a cut in
the [111] direction (see Fig.1). The Cl atoms are aligned as edge-sharing octahedras. The additional exchange paths
through Ru-Cl bonds -in the presence of strong spin-orbit coupling- create a destructive interference for the otherwise
leading term J , the Heisenberg exchange coupling [37, 38]. Therefore, a Kitaev type exchange coupling along with Γ
and Γp terms take stage. Experiments in zero magnetic field suggests a long range ZZ-z order for the GS of α−RuCl3
[2, 3, 11–18]. Yet, a finite magnetic field along x-y bonds melts the magnetic order and thereby allows for a transition
to a spin-liquid phase [52].

For the calculations described below, we switch to new orthogonal coordinate system (ê1, ê2, ê3) with the following
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Here, ê3 points along the [111] direction, while ê1, ê2 are in plane unit vectors perpendicular to x-bond and y-bond,
respectively.

II. KITAEV MODEL IN AN ARBITRARY MAGNETIC FIELD

In materials like α-RuCl3 and Na2IrO3, the Kitaev exchange coupling along all bond directions are likely to be equal
[37, 38]. We therefore consider an isotropic Kitaev coupling, Kα = K. The isotropic model supports the trivial gapless
B-phase [1]. It can host two types of fractionalized excitations, the Z2 vortices and itinerant fermionic excitations,
albeit a topologically trivial groundstate. The system can have a topological phase by an external magnetic field along
the [111] direction as it opens an energy gap proportional to ∆ ∼ h3

K2 [1] where h is the magnetic field strength. The
resulting phase is indexed by a finite integer Chern number. Naturally, the concernitant neutral anyonic excitations
do not lead to a quantized electric Hall conductivity, they reveal themselves by a quantized response to a temperature
gradient [1]. A significant connection between the integer valued Chern number and the ”half-integer” conductance
arises as the momentum space sum is over the half of the Brillouin zone.

In this section, we consider the Kitaev model in an arbitrarily oriented magnetic field. The Hamiltonian takes the
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Further neighbor interactions and trigonal distortion allowed
interactions, and their effects will be discussed later.

To analyze the symmetry of the Hamiltonian, we rewrite the
model in the a−b−c axes32–34:
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where ϕγ ¼ 0; 2π3 , and
4π
3 for γ= z-, x-, and y-bond respectively,

and the exchange interactions are given by

JXY ¼ J þ Jac; JZ ¼ J þ Jab;

Jab ¼
1
3
K þ

2
3
Γ; Jac ¼

1
3
K #

1
3
Γ:

ð3Þ

The Hamiltonian H is invariant under π-rotation around the b
axis denoted by C2b and 2π

3 -rotation around the c axis by C3c in
addition to the inversion and time-reversal symmetry.

Our proposed experimental design is based on the observation
that the H is not invariant under π-rotation about the a axis C2a
due to the presence of only Jac, i.e., if Jac= 0, C2a is also a
symmetry of H. Since the C2a is broken by Jac, if there is a way to
detect the broken C2a, that will signal the strength of Jac. We note
that the magnetic field sweeping from the c axis to a axis within
the a−c-plane does the job. The fields with angles of θ (blue line)
and −θ (red line) for 0< θ < π

2 shown in Fig. 1b, c are related by
C2a rotation, and thus measuring the spin excitation difference
between these two field directions will detect the strength of Jac.

To prove our symmetry argument, we consider a full model
with a magnetic field. Under a magnetic field, the total
Hamiltonian including the Zeeman term is given by

Htot ¼ HþHB ¼ H# g μB ∑
i
S
!

i & h
!

; ð4Þ

where the external field h
!

has the polar angle θ measured away
from the a−b honeycomb plane and the azimuthal angle ϕ from
the a-axis as shown in Fig. 1b. The magnetic anisotropy in the
spin excitation energies is defined as ωn(θ)= En(θ)− E0(θ), where
En and E0 are the excited and ground-state energy respectively.
This anisotropy is affected by all interactions other than the
isotropic Heisenberg limit (JXY= JZ), making it difficult to
quantify the effect of individual interactions. However, if we
compare the two excitation anisotropies, ωn(θ) and ωn(−θ) for a
given strength h and ϕ= 0 as shown in Fig. 1c, related by C2a
symmetry transformation, we can eliminate the effects of all other
interactions except Jac thanks to symmetries of the model. Since
our theory relies on the symmetry of the Hamiltonian, the ground
state should break the C2a symmetry only explicitly from the Jac
term. The magnetic field also contributes to the C2a breaking, but
by comparing two angles of θ and −θ, the effect of Jac is isolated.

We focus on the lowest energy excitation n= 1 which gives a
dominant resonance at low temperatures, and drop the n in ωn
from now on for simplicity, even though our proposal works for
all n. We define the excitation anisotropy between the magnetic
field with angles of θ and−θ as δωK(θ)≡ ω(θ)− ω(−θ) for
0< θ < π

2, and the conventional anisotropy between in- and out-
of-plane fields as δωA ' ωðθ ¼ 0Þ # ωðθ ¼ π

2Þ. Below we first
show how δωK arises from Jac under the field in the a−c plane
based on the symmetry.

Symmetry analysis. To understand the origin of a finite δωK for
ϕ= 0 under the magnetic field sweep, we first begin with a special

case when ϕ ¼ π
2, i.e, when the external field is in the b−c plane.

This is a special case where δωK= 0 for the following reason.
The Zeeman terms due to the field with the angle θ and with

−θ are related by a π rotation of the field about the b̂ axis,
denoted by

C2b;θ : HB / ðcos θSbi þ sin θSci Þ#!ðcos θSbi # sin θSci Þ: ð5Þ

The same can be achieved by a π-rotation of the lattice,

C2b : ðS
a; Sb; ScÞ ! ð#Sa; Sb;#ScÞ and ϕx $ ϕy; ð6Þ

which also indicates H is invariant under C2b. While HB breaks
the C2b symmetry of H, the total Hamiltonian HþHBðθÞ and
HþHBð#θÞ are related by C2b and therefore, share the same
eigenenergies, i.e., δωK= 0. The difference due to the field is
simply removed by a π rotation of the eigenstates about the b̂ axis.
The magnetic field sweeping from θ to −θ in the other planes
equivalent to b−c plane by C3c symmetry also gives δωK= 0.

Now let us consider when the magnetic field sweeps in the a−c
plane. Similarly, the magnetic field directions θ and −θ are related
by

C2a;θ : HB / ðcos θSai þ sin θSci Þ#!ðcos θSai # sin θSci Þ: ð7Þ

Considering a π rotation of the lattice about the â axis,

C2a : ðS
a; Sb; ScÞ ! ðSa;#Sb;#ScÞ and ϕx $ ϕy; ð8Þ

we find JXY, JZ, Jab, terms are invariant under C2a, while the Jac
terms transform as

C2a : Jac ! #Jac: ð9Þ

By the same argument, if Jac= 0, H is invariant under C2a, and
the eigenenergies of the total Hamiltonian for θ and −θ are the
same, i.e., δωK= 0. If Jac ≠ 0, the total Hamiltonian HþHBðθÞ
and HþHBð#θÞ cannot be related by C2a, and therefore,
δωK ≠ 0. We need to change the sign of Jac for the C2a relation to
hold, i.e., the transformation of the external field angles of θ to −θ
is equivalent to the change of Jac to −Jac. Thus, the lack of C2a
symmetry allows us to single out the Jac interaction through δωK.

Since Jac contains a combination of the Kitaev and Γ
interactions, we need other methods to subtract the Γ contribu-
tion. The in- and out-of-plane anisotropy, δωA offers precisely the
other information. We note that the in- and out-of-plane
anisotropy δωA is determined by JZ− JXY= Γ. Thus, for the ideal
edge-sharing octahedral environment, we can first estimate Γ
from the measured δωA, and then extract the Kitaev strength by
subtracting the Γ contribution from the measured δωK(θ).

Below we show numerical results of spin excitations obtained
by ED on a 24-site cluster which can be measured by angle-
dependent FMR and INS techniques under magnetic field angles
of θ and −θ with ϕ= 0.

Angle-dependent ferromagnetic resonance. FMR is a powerful
probe to study ferromagnetic or spin correlated materials. FMR
spectrometers record the radio-frequency (RF) electromagnetic
wave that is absorbed by the sample of interest placed under an
external magnetic field. To observe the resonance signal, the
resonant frequency of the sample is changed to match that of the
RF wave under a scan of the external magnetic field, so the
excitation anisotropy δω(θ) leads to the anisotropy in the reso-
nant magnetic field. FMR provides highly resolved spectra over a
large energy range and has been used to investigate exchange
couplings35–38 and anisotropies39,40 due to its dependence on the
magnetic field angle. Here, for simplicity, we calculate the exci-
tation energy probed by the RF field (details can be found in the
Methods) with a set magnetic field strength for spin 1

2 using ED
on a C3-symmetric 24-site cluster.
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interactions, and their effects will be discussed later.
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where ϕγ ¼ 0; 2π3 , and
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The Hamiltonian H is invariant under π-rotation around the b
axis denoted by C2b and 2π

3 -rotation around the c axis by C3c in
addition to the inversion and time-reversal symmetry.

Our proposed experimental design is based on the observation
that the H is not invariant under π-rotation about the a axis C2a
due to the presence of only Jac, i.e., if Jac= 0, C2a is also a
symmetry of H. Since the C2a is broken by Jac, if there is a way to
detect the broken C2a, that will signal the strength of Jac. We note
that the magnetic field sweeping from the c axis to a axis within
the a−c-plane does the job. The fields with angles of θ (blue line)
and −θ (red line) for 0< θ < π

2 shown in Fig. 1b, c are related by
C2a rotation, and thus measuring the spin excitation difference
between these two field directions will detect the strength of Jac.

To prove our symmetry argument, we consider a full model
with a magnetic field. Under a magnetic field, the total
Hamiltonian including the Zeeman term is given by

Htot ¼ HþHB ¼ H# g μB ∑
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; ð4Þ

where the external field h
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has the polar angle θ measured away
from the a−b honeycomb plane and the azimuthal angle ϕ from
the a-axis as shown in Fig. 1b. The magnetic anisotropy in the
spin excitation energies is defined as ωn(θ)= En(θ)− E0(θ), where
En and E0 are the excited and ground-state energy respectively.
This anisotropy is affected by all interactions other than the
isotropic Heisenberg limit (JXY= JZ), making it difficult to
quantify the effect of individual interactions. However, if we
compare the two excitation anisotropies, ωn(θ) and ωn(−θ) for a
given strength h and ϕ= 0 as shown in Fig. 1c, related by C2a
symmetry transformation, we can eliminate the effects of all other
interactions except Jac thanks to symmetries of the model. Since
our theory relies on the symmetry of the Hamiltonian, the ground
state should break the C2a symmetry only explicitly from the Jac
term. The magnetic field also contributes to the C2a breaking, but
by comparing two angles of θ and −θ, the effect of Jac is isolated.

We focus on the lowest energy excitation n= 1 which gives a
dominant resonance at low temperatures, and drop the n in ωn
from now on for simplicity, even though our proposal works for
all n. We define the excitation anisotropy between the magnetic
field with angles of θ and−θ as δωK(θ)≡ ω(θ)− ω(−θ) for
0< θ < π

2, and the conventional anisotropy between in- and out-
of-plane fields as δωA ' ωðθ ¼ 0Þ # ωðθ ¼ π

2Þ. Below we first
show how δωK arises from Jac under the field in the a−c plane
based on the symmetry.

Symmetry analysis. To understand the origin of a finite δωK for
ϕ= 0 under the magnetic field sweep, we first begin with a special

case when ϕ ¼ π
2, i.e, when the external field is in the b−c plane.

This is a special case where δωK= 0 for the following reason.
The Zeeman terms due to the field with the angle θ and with

−θ are related by a π rotation of the field about the b̂ axis,
denoted by

C2b;θ : HB / ðcos θSbi þ sin θSci Þ#!ðcos θSbi # sin θSci Þ: ð5Þ

The same can be achieved by a π-rotation of the lattice,

C2b : ðS
a; Sb; ScÞ ! ð#Sa; Sb;#ScÞ and ϕx $ ϕy; ð6Þ

which also indicates H is invariant under C2b. While HB breaks
the C2b symmetry of H, the total Hamiltonian HþHBðθÞ and
HþHBð#θÞ are related by C2b and therefore, share the same
eigenenergies, i.e., δωK= 0. The difference due to the field is
simply removed by a π rotation of the eigenstates about the b̂ axis.
The magnetic field sweeping from θ to −θ in the other planes
equivalent to b−c plane by C3c symmetry also gives δωK= 0.

Now let us consider when the magnetic field sweeps in the a−c
plane. Similarly, the magnetic field directions θ and −θ are related
by
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we find JXY, JZ, Jab, terms are invariant under C2a, while the Jac
terms transform as
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By the same argument, if Jac= 0, H is invariant under C2a, and
the eigenenergies of the total Hamiltonian for θ and −θ are the
same, i.e., δωK= 0. If Jac ≠ 0, the total Hamiltonian HþHBðθÞ
and HþHBð#θÞ cannot be related by C2a, and therefore,
δωK ≠ 0. We need to change the sign of Jac for the C2a relation to
hold, i.e., the transformation of the external field angles of θ to −θ
is equivalent to the change of Jac to −Jac. Thus, the lack of C2a
symmetry allows us to single out the Jac interaction through δωK.

Since Jac contains a combination of the Kitaev and Γ
interactions, we need other methods to subtract the Γ contribu-
tion. The in- and out-of-plane anisotropy, δωA offers precisely the
other information. We note that the in- and out-of-plane
anisotropy δωA is determined by JZ− JXY= Γ. Thus, for the ideal
edge-sharing octahedral environment, we can first estimate Γ
from the measured δωA, and then extract the Kitaev strength by
subtracting the Γ contribution from the measured δωK(θ).

Below we show numerical results of spin excitations obtained
by ED on a 24-site cluster which can be measured by angle-
dependent FMR and INS techniques under magnetic field angles
of θ and −θ with ϕ= 0.

Angle-dependent ferromagnetic resonance. FMR is a powerful
probe to study ferromagnetic or spin correlated materials. FMR
spectrometers record the radio-frequency (RF) electromagnetic
wave that is absorbed by the sample of interest placed under an
external magnetic field. To observe the resonance signal, the
resonant frequency of the sample is changed to match that of the
RF wave under a scan of the external magnetic field, so the
excitation anisotropy δω(θ) leads to the anisotropy in the reso-
nant magnetic field. FMR provides highly resolved spectra over a
large energy range and has been used to investigate exchange
couplings35–38 and anisotropies39,40 due to its dependence on the
magnetic field angle. Here, for simplicity, we calculate the exci-
tation energy probed by the RF field (details can be found in the
Methods) with a set magnetic field strength for spin 1

2 using ED
on a C3-symmetric 24-site cluster.
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FIG. 1. Angle-dependent FMR for (a) CrI3, (b) CrBr3, and

(c) CrCl3 . The FMR data are shown by up- and down-

triangles, and the blue and red dots are obtatined by the

ED calcutations for S=3/2 using the Hamiltonian (1). The

estimated exchange parameters for each case are given in the

main text.

by the second order perturbation theory is found as[]
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where S is spin- 32 matrix, hiji denotes the nearest neigh-
bour (n.n.) magnetic sites, �� = 0, 2⇡

3 ,
4⇡
3 for � = z,x,y-

bond, and

JX = J + Jac, JZ = J + Jab, Jab = Jac =
1

3
K. (2)

J andK represent the n.n. Heiseenberg and Kitaev inter-
action, respectively. The DM interaction is between sec-
ond n.n. hhi, jii with the DM vector ~Dc = Dc sgn(ij)ĉ,
where ĉ is the out-of-plane, and sgn(ij) = +1 for the
cross product of ~Si,

~Sj indicated by the arrows in Fig.
??, in the octahedral axes x̂ŷẑ with ĉ = (x̂+ ŷ+ ĉ)/

p
3 as

shown in Fig. ??. When a trigonal distortion is present,
a single-ion anisotropy Ac is present for spin S > 1/2.
Furthermore, other bond-dependent interactions named
� and �0 are present, which modifies Jac =

1
3K�

1
3 (���0)

and Jab = 1
3K + 2

3 (� � �0). However, they are known
to be small because � appears only in the fourth order
perturbation term, and �0 arises from the trigonal distor-
tion induced hopping. Furthermore, the terms appear an
equal size � ⇠ �0 mapping to JX 6= JZ XXZ model with
the Kitaev interaction[] and making �� �0 contribution
to Jac and Jab negliable.
The Hamiltonian is invariant under ⇡-rotation around

the b-axis, while the ⇡-rotation around the a-axis is bro-
ken by the presence of Jac. [] Under the ⇡-rotation
around the a-axis denoted by C2a, each component trans-
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sgn(ij) ! �sgn(ij), and thus JX , JZ , Jab, Ac and Dc

terms are invariant under the rotation, while the Jac term
transform as Jac ! �Jac. The magnetic field serves as
a guide to measure the spin excitations di↵erence origi-
nated from the Jac interaction. Under a magnetic field,
the total Hamiltonian includes the Zeeman term

Htot = H+HB = H� gµB

X

i

~Si ·
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where ~H is the external field and the polar angle ✓ is
measured from the ab-plane and the in-plane compo-
nent is along the a-axis as shown in Fig.??. g is the
g-factor, and we set ~ ⌘ 1. When the magnetic field
is applied, one may ask how the spin excitations de-
pend on the field angle ✓. This angle-dependent mag-
netic anisotropy is defined as !n(✓) = En(✓) � E0(✓)
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in-plane vs. out-of-plane anisotropy due to Gamma
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Consequence of broken C2a

spin excitations under the two field angles at finite momenta using the linear spin wave

theory (LSWT), which further confirms our results based on the symmetry argument. Our

results will guide a future search of Kitaev materials.

RESULT

Model – The generic spin exchange Hamiltonian among magnetic sites with strong spin-

orbit coupling for the ideal edge sharing octahedra environment in the octahedral x �

y � z axes shown in Fig. 1(a) contains the Kitaev (K), Gamma (�), and Heisenberg (J)

interactions25:

H =
X

hiji2↵�(�)

h
JSi · Sj +KS

�
i S

�
j + �(S↵

i S
�
j + S

�
i S

↵
j )
i
, (1)

where S = 1
2~� with ~ ⌘ 1 and ~� is Pauli matrix, hiji denotes the nearest neighbor (n.n.)

magnetic sites, and ↵�(�) denotes the � bond taking the ↵ and � spin components (↵, �, � 2

{x,y,z}). The x-, y-, and z-bonds are shown in red, blue, and green colours, respectively in

Fig. 1(a). Further neighbour interactions and trigonal-distortion allowed interactions, and

their e↵ects will be discussed later.

To analyze the symmetry of the Hamiltonian, we rewrite the model in the a � b � c

axes32,33:
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#
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where �� = 0, 2⇡3 , and
4⇡
3 for � = z-, x-, and y-bond respectively, and the exchange interac-

tions are given by

JX = J + Jac, JZ = J + Jab,

Jab =
1

3
K +

2

3
�, Jac =

1

3
K � 1

3
�.

(3)

The Hamiltonian H is invariant under ⇡-rotation around the b-axis denoted by C2b and
2⇡
3 -

rotation around the c-axis by C3c in addition to the inversion and time-reversal symmetry.

4

C2a : (Sa, Sb, Sc) ! (Sa,�Sb,�Sc) and �x $ �y
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+ single-ion anisotropy, DM on 2nd n.n. with d//c,  further n.n. Heisenberg + … 

All interactions are invariant under !!"	 "#$%&'
("$ → −("$

Further neighbor interactions and trigonal distortion allowed
interactions, and their effects will be discussed later.

To analyze the symmetry of the Hamiltonian, we rewrite the
model in the a−b−c axes32–34:

H ¼ ∑
hi;ji

JXY Sai S
a
j þ Sbi S

b
j

! "
þ JZS

c
i S

c
j

h

þ Jab cos ϕγ Sai S
a
j # Sbi S
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j

! "
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b
j þ Sbi S
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j

! "h i

#
ffiffiffi
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Jac cos ϕγ Sai S

c
j þ Sci S

a
j

! "
þ sin ϕγ Sbi S

c
j þ Sci S

b
j

! "h ii
;

ð2Þ

where ϕγ ¼ 0; 2π3 , and
4π
3 for γ= z-, x-, and y-bond respectively,

and the exchange interactions are given by

JXY ¼ J þ Jac; JZ ¼ J þ Jab;

Jab ¼
1
3
K þ

2
3
Γ; Jac ¼

1
3
K #

1
3
Γ:

ð3Þ

The Hamiltonian H is invariant under π-rotation around the b
axis denoted by C2b and 2π

3 -rotation around the c axis by C3c in
addition to the inversion and time-reversal symmetry.

Our proposed experimental design is based on the observation
that the H is not invariant under π-rotation about the a axis C2a
due to the presence of only Jac, i.e., if Jac= 0, C2a is also a
symmetry of H. Since the C2a is broken by Jac, if there is a way to
detect the broken C2a, that will signal the strength of Jac. We note
that the magnetic field sweeping from the c axis to a axis within
the a−c-plane does the job. The fields with angles of θ (blue line)
and −θ (red line) for 0< θ < π

2 shown in Fig. 1b, c are related by
C2a rotation, and thus measuring the spin excitation difference
between these two field directions will detect the strength of Jac.

To prove our symmetry argument, we consider a full model
with a magnetic field. Under a magnetic field, the total
Hamiltonian including the Zeeman term is given by

Htot ¼ HþHB ¼ H# g μB ∑
i
S
!

i & h
!

; ð4Þ

where the external field h
!

has the polar angle θ measured away
from the a−b honeycomb plane and the azimuthal angle ϕ from
the a-axis as shown in Fig. 1b. The magnetic anisotropy in the
spin excitation energies is defined as ωn(θ)= En(θ)− E0(θ), where
En and E0 are the excited and ground-state energy respectively.
This anisotropy is affected by all interactions other than the
isotropic Heisenberg limit (JXY= JZ), making it difficult to
quantify the effect of individual interactions. However, if we
compare the two excitation anisotropies, ωn(θ) and ωn(−θ) for a
given strength h and ϕ= 0 as shown in Fig. 1c, related by C2a
symmetry transformation, we can eliminate the effects of all other
interactions except Jac thanks to symmetries of the model. Since
our theory relies on the symmetry of the Hamiltonian, the ground
state should break the C2a symmetry only explicitly from the Jac
term. The magnetic field also contributes to the C2a breaking, but
by comparing two angles of θ and −θ, the effect of Jac is isolated.

We focus on the lowest energy excitation n= 1 which gives a
dominant resonance at low temperatures, and drop the n in ωn
from now on for simplicity, even though our proposal works for
all n. We define the excitation anisotropy between the magnetic
field with angles of θ and−θ as δωK(θ)≡ ω(θ)− ω(−θ) for
0< θ < π

2, and the conventional anisotropy between in- and out-
of-plane fields as δωA ' ωðθ ¼ 0Þ # ωðθ ¼ π

2Þ. Below we first
show how δωK arises from Jac under the field in the a−c plane
based on the symmetry.

Symmetry analysis. To understand the origin of a finite δωK for
ϕ= 0 under the magnetic field sweep, we first begin with a special

case when ϕ ¼ π
2, i.e, when the external field is in the b−c plane.

This is a special case where δωK= 0 for the following reason.
The Zeeman terms due to the field with the angle θ and with

−θ are related by a π rotation of the field about the b̂ axis,
denoted by

C2b;θ : HB / ðcos θSbi þ sin θSci Þ#!ðcos θSbi # sin θSci Þ: ð5Þ

The same can be achieved by a π-rotation of the lattice,

C2b : ðS
a; Sb; ScÞ ! ð#Sa; Sb;#ScÞ and ϕx $ ϕy; ð6Þ

which also indicates H is invariant under C2b. While HB breaks
the C2b symmetry of H, the total Hamiltonian HþHBðθÞ and
HþHBð#θÞ are related by C2b and therefore, share the same
eigenenergies, i.e., δωK= 0. The difference due to the field is
simply removed by a π rotation of the eigenstates about the b̂ axis.
The magnetic field sweeping from θ to −θ in the other planes
equivalent to b−c plane by C3c symmetry also gives δωK= 0.

Now let us consider when the magnetic field sweeps in the a−c
plane. Similarly, the magnetic field directions θ and −θ are related
by

C2a;θ : HB / ðcos θSai þ sin θSci Þ#!ðcos θSai # sin θSci Þ: ð7Þ

Considering a π rotation of the lattice about the â axis,

C2a : ðS
a; Sb; ScÞ ! ðSa;#Sb;#ScÞ and ϕx $ ϕy; ð8Þ

we find JXY, JZ, Jab, terms are invariant under C2a, while the Jac
terms transform as

C2a : Jac ! #Jac: ð9Þ

By the same argument, if Jac= 0, H is invariant under C2a, and
the eigenenergies of the total Hamiltonian for θ and −θ are the
same, i.e., δωK= 0. If Jac ≠ 0, the total Hamiltonian HþHBðθÞ
and HþHBð#θÞ cannot be related by C2a, and therefore,
δωK ≠ 0. We need to change the sign of Jac for the C2a relation to
hold, i.e., the transformation of the external field angles of θ to −θ
is equivalent to the change of Jac to −Jac. Thus, the lack of C2a
symmetry allows us to single out the Jac interaction through δωK.

Since Jac contains a combination of the Kitaev and Γ
interactions, we need other methods to subtract the Γ contribu-
tion. The in- and out-of-plane anisotropy, δωA offers precisely the
other information. We note that the in- and out-of-plane
anisotropy δωA is determined by JZ− JXY= Γ. Thus, for the ideal
edge-sharing octahedral environment, we can first estimate Γ
from the measured δωA, and then extract the Kitaev strength by
subtracting the Γ contribution from the measured δωK(θ).

Below we show numerical results of spin excitations obtained
by ED on a 24-site cluster which can be measured by angle-
dependent FMR and INS techniques under magnetic field angles
of θ and −θ with ϕ= 0.

Angle-dependent ferromagnetic resonance. FMR is a powerful
probe to study ferromagnetic or spin correlated materials. FMR
spectrometers record the radio-frequency (RF) electromagnetic
wave that is absorbed by the sample of interest placed under an
external magnetic field. To observe the resonance signal, the
resonant frequency of the sample is changed to match that of the
RF wave under a scan of the external magnetic field, so the
excitation anisotropy δω(θ) leads to the anisotropy in the reso-
nant magnetic field. FMR provides highly resolved spectra over a
large energy range and has been used to investigate exchange
couplings35–38 and anisotropies39,40 due to its dependence on the
magnetic field angle. Here, for simplicity, we calculate the exci-
tation energy probed by the RF field (details can be found in the
Methods) with a set magnetic field strength for spin 1

2 using ED
on a C3-symmetric 24-site cluster.
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• A magnetic field can detect the broken !!" symmetry and be used to isolate 
the interaction that breaks !!".

En(✓)� En(�✓) / Jac
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  Two different directions of field related by C2a: 

different excitation energies only if Jac finite

Htotal = H� gµB
~h · ~S
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field is in the ac-plane



Recipe to isolate Kitaev

7. subtract Gamma from 5, then single out the Kitaev interaction!

4. measure the spin excitations

3. rotate B with angle of �✓
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2. measure the spin excitations

1. apply  B in the ac-plane with  ✓
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Further neighbor interactions and trigonal distortion allowed
interactions, and their effects will be discussed later.

To analyze the symmetry of the Hamiltonian, we rewrite the
model in the a−b−c axes32–34:

H ¼ ∑
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c
j

h

þ Jab cos ϕγ Sai S
a
j # Sbi S

b
j

! "
# sin ϕγ Sai S

b
j þ Sbi S

a
j

! "h i

#
ffiffiffi
2

p
Jac cos ϕγ Sai S

c
j þ Sci S

a
j

! "
þ sin ϕγ Sbi S

c
j þ Sci S

b
j

! "h ii
;

ð2Þ

where ϕγ ¼ 0; 2π3 , and
4π
3 for γ= z-, x-, and y-bond respectively,

and the exchange interactions are given by

JXY ¼ J þ Jac; JZ ¼ J þ Jab;

Jab ¼
1
3
K þ

2
3
Γ; Jac ¼

1
3
K #

1
3
Γ:

ð3Þ

The Hamiltonian H is invariant under π-rotation around the b
axis denoted by C2b and 2π

3 -rotation around the c axis by C3c in
addition to the inversion and time-reversal symmetry.

Our proposed experimental design is based on the observation
that the H is not invariant under π-rotation about the a axis C2a
due to the presence of only Jac, i.e., if Jac= 0, C2a is also a
symmetry of H. Since the C2a is broken by Jac, if there is a way to
detect the broken C2a, that will signal the strength of Jac. We note
that the magnetic field sweeping from the c axis to a axis within
the a−c-plane does the job. The fields with angles of θ (blue line)
and −θ (red line) for 0< θ < π

2 shown in Fig. 1b, c are related by
C2a rotation, and thus measuring the spin excitation difference
between these two field directions will detect the strength of Jac.

To prove our symmetry argument, we consider a full model
with a magnetic field. Under a magnetic field, the total
Hamiltonian including the Zeeman term is given by

Htot ¼ HþHB ¼ H# g μB ∑
i
S
!

i & h
!

; ð4Þ

where the external field h
!

has the polar angle θ measured away
from the a−b honeycomb plane and the azimuthal angle ϕ from
the a-axis as shown in Fig. 1b. The magnetic anisotropy in the
spin excitation energies is defined as ωn(θ)= En(θ)− E0(θ), where
En and E0 are the excited and ground-state energy respectively.
This anisotropy is affected by all interactions other than the
isotropic Heisenberg limit (JXY= JZ), making it difficult to
quantify the effect of individual interactions. However, if we
compare the two excitation anisotropies, ωn(θ) and ωn(−θ) for a
given strength h and ϕ= 0 as shown in Fig. 1c, related by C2a
symmetry transformation, we can eliminate the effects of all other
interactions except Jac thanks to symmetries of the model. Since
our theory relies on the symmetry of the Hamiltonian, the ground
state should break the C2a symmetry only explicitly from the Jac
term. The magnetic field also contributes to the C2a breaking, but
by comparing two angles of θ and −θ, the effect of Jac is isolated.

We focus on the lowest energy excitation n= 1 which gives a
dominant resonance at low temperatures, and drop the n in ωn
from now on for simplicity, even though our proposal works for
all n. We define the excitation anisotropy between the magnetic
field with angles of θ and−θ as δωK(θ)≡ ω(θ)− ω(−θ) for
0< θ < π

2, and the conventional anisotropy between in- and out-
of-plane fields as δωA ' ωðθ ¼ 0Þ # ωðθ ¼ π

2Þ. Below we first
show how δωK arises from Jac under the field in the a−c plane
based on the symmetry.

Symmetry analysis. To understand the origin of a finite δωK for
ϕ= 0 under the magnetic field sweep, we first begin with a special

case when ϕ ¼ π
2, i.e, when the external field is in the b−c plane.

This is a special case where δωK= 0 for the following reason.
The Zeeman terms due to the field with the angle θ and with

−θ are related by a π rotation of the field about the b̂ axis,
denoted by

C2b;θ : HB / ðcos θSbi þ sin θSci Þ#!ðcos θSbi # sin θSci Þ: ð5Þ

The same can be achieved by a π-rotation of the lattice,

C2b : ðS
a; Sb; ScÞ ! ð#Sa; Sb;#ScÞ and ϕx $ ϕy; ð6Þ

which also indicates H is invariant under C2b. While HB breaks
the C2b symmetry of H, the total Hamiltonian HþHBðθÞ and
HþHBð#θÞ are related by C2b and therefore, share the same
eigenenergies, i.e., δωK= 0. The difference due to the field is
simply removed by a π rotation of the eigenstates about the b̂ axis.
The magnetic field sweeping from θ to −θ in the other planes
equivalent to b−c plane by C3c symmetry also gives δωK= 0.

Now let us consider when the magnetic field sweeps in the a−c
plane. Similarly, the magnetic field directions θ and −θ are related
by

C2a;θ : HB / ðcos θSai þ sin θSci Þ#!ðcos θSai # sin θSci Þ: ð7Þ

Considering a π rotation of the lattice about the â axis,

C2a : ðS
a; Sb; ScÞ ! ðSa;#Sb;#ScÞ and ϕx $ ϕy; ð8Þ

we find JXY, JZ, Jab, terms are invariant under C2a, while the Jac
terms transform as

C2a : Jac ! #Jac: ð9Þ

By the same argument, if Jac= 0, H is invariant under C2a, and
the eigenenergies of the total Hamiltonian for θ and −θ are the
same, i.e., δωK= 0. If Jac ≠ 0, the total Hamiltonian HþHBðθÞ
and HþHBð#θÞ cannot be related by C2a, and therefore,
δωK ≠ 0. We need to change the sign of Jac for the C2a relation to
hold, i.e., the transformation of the external field angles of θ to −θ
is equivalent to the change of Jac to −Jac. Thus, the lack of C2a
symmetry allows us to single out the Jac interaction through δωK.

Since Jac contains a combination of the Kitaev and Γ
interactions, we need other methods to subtract the Γ contribu-
tion. The in- and out-of-plane anisotropy, δωA offers precisely the
other information. We note that the in- and out-of-plane
anisotropy δωA is determined by JZ− JXY= Γ. Thus, for the ideal
edge-sharing octahedral environment, we can first estimate Γ
from the measured δωA, and then extract the Kitaev strength by
subtracting the Γ contribution from the measured δωK(θ).

Below we show numerical results of spin excitations obtained
by ED on a 24-site cluster which can be measured by angle-
dependent FMR and INS techniques under magnetic field angles
of θ and −θ with ϕ= 0.

Angle-dependent ferromagnetic resonance. FMR is a powerful
probe to study ferromagnetic or spin correlated materials. FMR
spectrometers record the radio-frequency (RF) electromagnetic
wave that is absorbed by the sample of interest placed under an
external magnetic field. To observe the resonance signal, the
resonant frequency of the sample is changed to match that of the
RF wave under a scan of the external magnetic field, so the
excitation anisotropy δω(θ) leads to the anisotropy in the reso-
nant magnetic field. FMR provides highly resolved spectra over a
large energy range and has been used to investigate exchange
couplings35–38 and anisotropies39,40 due to its dependence on the
magnetic field angle. Here, for simplicity, we calculate the exci-
tation energy probed by the RF field (details can be found in the
Methods) with a set magnetic field strength for spin 1

2 using ED
on a C3-symmetric 24-site cluster.
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We set our units the magnetic field h= 1 and g= μB≡ 1,
leading to the excitation energy of a free spin, ω0= gμBh= 1, so
the excitation energies calculated are normalized by ω0. A few sets
of different interaction parameters (in units of ω0) are
investigated. Figure 2(a) shows the J=−1 and K= Γ= 0.5 case
with no δωK(θ) between−π/2 < θ < 0 (red line) and 0 < θ < π/2
(blue line), since Jac= 0. The conventional anisotropy δωA is
finite, because the Γ interaction generates a strong anisotropy
between the plane θ= 0 and the c-axis θ= π/2, i.e., JXY ≠ JZ due to
a finite Γ contribution. The black line is for only J=−1 showing a
uniform FMR independent of angles which serves as a reference.
Figure 2b shows the J=−1, K= 1, and Γ= 0 case, which shows a
finite δωK(θ) between−π/2 < θ < 0 and 0 < θ < π/2 in the a−c
plane. On the other hand, no δωK(θ) by sweeping θ in the b−c
plane (up and down triangles with green line) is observed,
consistent with the symmetry analysis presented above. Note the
conventional anisotropy δωA in both a−c and b−c planes are not
exactly zero, because the Kitaev interaction selects the magnetic
moment along the cubic axes in the ferromagnetic state via order
by disorder31,41. This leads to a tiny anisotropy between the plane
θ= 0 and the c-axis θ= π/2 when Γ= 0 and JXY= JZ. This
anisotropy becomes weaker when the magnetic field increases, i.e,
when the moment polarization overcomes the order by disorder
effect. Supplementary Note 1 shows that the anisotropy is almost
gone when the field is increased by three times with the same set
of parameters, where the Heisenberg limit (black line) is added
for reference. When Γ becomes finite favouring either the a−b
plane or the c axis depending on the sign of the Γ, this
conventional anisotropy is determined by the Γ interaction as
shown in Fig. 2c, d, and the order by disorder effect becomes
silent. Figure 2c shows the J=−0.5, Γ= 0.5, and K= 0 case. The
Γ interaction alone can generate a finite δωK due to the broken

C2a by Jac. In addition, the Γ interaction generates a large δωA,
different from Fig. 2b. Figure 2d presents the J=−0.1, K=−1,
and Γ= 0.5 case, which is close to a set of parameters proposed
for Jeff ¼ 1

2 Kitaev candidate materials28. Clearly, δωK(θ) is
significant due to a finite Jac, and δωA is also large due to a
finite Γ. While a magnetic field of strength h= 1 is used to
polarize the ground state where the finite-size effect is small as
shown in Supplementary Note 2, our symmetry argument works
for any finite field. However, we note that the finite-size effect of
ED is minimal when the ground state is polarized.

Inelastic neutron scattering. Complementary to FMR, INS can
measure excitations between different points in the reciprocal
space based on the momentum transfer of the scattered neu-
trons. The magnon dispersions of the ordered states of magnetic
materials measured via INS have been used to determine the
spin-exchange Hamiltonian parameters10,17,42–46. Figure 3a, b
show the spin excitations at accessible wavevectors on a C3-
symmetric 24-site cluster with the same exchange parameters
for Fig. 2d and with h= 1 and h= 8, respectively. The cluster
and the accessible momenta are shown in c, d, respectively. We
set the magnetic field angles θ= 30∘ (blue) and θ=−30∘ (red)
in a−c plane. The square boxes denote the excitation energies
obtained by the ED, and the color bars indicate the intensity of
DSSF ∑αSαα(q, ω) (details can be found in the Methods). The
structure factor is convolved with a Gaussian of finite width to
emulate finite experimental resolution. We observe a clear dif-
ference between the two field directions, δωK at every
momentum points. In particular, δωK is the largest at M2-point,
while it is tiny at the K1-point. Note that M1 and M3 are related
by the C2b and inversion.

Fig. 2 Angle-dependent spin excitations in ferromagnetic resonance (FMR) using exact diagonalizaiton on a C3-symmetric 24-site cluster. Various sets
of parameters with Zeeman energy gμBh= 1 are used. δωA is the difference in the spin excitation energies ω between fields along a axis and c axis, and δωK

is the difference between ω(θ) (blue) and ω(−θ) (red), as highlighted by the arrows. J, K, and Γ are the Heisenberg, Kitaev and off-diagonal interactions
respectively. a J=−1 and K= Γ= 0.5. b J=−1, K= 1, and Γ= 0. FMR in the b−c plane is shown in green: θ (up triangle) and−θ (down triangle).
c J=−0.5, Γ= 0.5, and K= 0. d J=−0.1, K=−1, Γ= 0.5. See the FMR subsection for implication of the results.
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out-of-plane h//ch//a-axis

For S=1/2

Further neighbor interactions and trigonal distortion allowed
interactions, and their effects will be discussed later.

To analyze the symmetry of the Hamiltonian, we rewrite the
model in the a−b−c axes32–34:

H ¼ ∑
hi;ji

JXY Sai S
a
j þ Sbi S

b
j

! "
þ JZS

c
i S

c
j

h

þ Jab cos ϕγ Sai S
a
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þ sin ϕγ Sbi S
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j þ Sci S

b
j

! "h ii
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ð2Þ

where ϕγ ¼ 0; 2π3 , and
4π
3 for γ= z-, x-, and y-bond respectively,

and the exchange interactions are given by

JXY ¼ J þ Jac; JZ ¼ J þ Jab;

Jab ¼
1
3
K þ

2
3
Γ; Jac ¼

1
3
K #

1
3
Γ:

ð3Þ

The Hamiltonian H is invariant under π-rotation around the b
axis denoted by C2b and 2π

3 -rotation around the c axis by C3c in
addition to the inversion and time-reversal symmetry.

Our proposed experimental design is based on the observation
that the H is not invariant under π-rotation about the a axis C2a
due to the presence of only Jac, i.e., if Jac= 0, C2a is also a
symmetry of H. Since the C2a is broken by Jac, if there is a way to
detect the broken C2a, that will signal the strength of Jac. We note
that the magnetic field sweeping from the c axis to a axis within
the a−c-plane does the job. The fields with angles of θ (blue line)
and −θ (red line) for 0< θ < π

2 shown in Fig. 1b, c are related by
C2a rotation, and thus measuring the spin excitation difference
between these two field directions will detect the strength of Jac.

To prove our symmetry argument, we consider a full model
with a magnetic field. Under a magnetic field, the total
Hamiltonian including the Zeeman term is given by

Htot ¼ HþHB ¼ H# g μB ∑
i
S
!

i & h
!

; ð4Þ

where the external field h
!

has the polar angle θ measured away
from the a−b honeycomb plane and the azimuthal angle ϕ from
the a-axis as shown in Fig. 1b. The magnetic anisotropy in the
spin excitation energies is defined as ωn(θ)= En(θ)− E0(θ), where
En and E0 are the excited and ground-state energy respectively.
This anisotropy is affected by all interactions other than the
isotropic Heisenberg limit (JXY= JZ), making it difficult to
quantify the effect of individual interactions. However, if we
compare the two excitation anisotropies, ωn(θ) and ωn(−θ) for a
given strength h and ϕ= 0 as shown in Fig. 1c, related by C2a
symmetry transformation, we can eliminate the effects of all other
interactions except Jac thanks to symmetries of the model. Since
our theory relies on the symmetry of the Hamiltonian, the ground
state should break the C2a symmetry only explicitly from the Jac
term. The magnetic field also contributes to the C2a breaking, but
by comparing two angles of θ and −θ, the effect of Jac is isolated.

We focus on the lowest energy excitation n= 1 which gives a
dominant resonance at low temperatures, and drop the n in ωn
from now on for simplicity, even though our proposal works for
all n. We define the excitation anisotropy between the magnetic
field with angles of θ and−θ as δωK(θ)≡ ω(θ)− ω(−θ) for
0< θ < π

2, and the conventional anisotropy between in- and out-
of-plane fields as δωA ' ωðθ ¼ 0Þ # ωðθ ¼ π

2Þ. Below we first
show how δωK arises from Jac under the field in the a−c plane
based on the symmetry.

Symmetry analysis. To understand the origin of a finite δωK for
ϕ= 0 under the magnetic field sweep, we first begin with a special

case when ϕ ¼ π
2, i.e, when the external field is in the b−c plane.

This is a special case where δωK= 0 for the following reason.
The Zeeman terms due to the field with the angle θ and with

−θ are related by a π rotation of the field about the b̂ axis,
denoted by

C2b;θ : HB / ðcos θSbi þ sin θSci Þ#!ðcos θSbi # sin θSci Þ: ð5Þ

The same can be achieved by a π-rotation of the lattice,

C2b : ðS
a; Sb; ScÞ ! ð#Sa; Sb;#ScÞ and ϕx $ ϕy; ð6Þ

which also indicates H is invariant under C2b. While HB breaks
the C2b symmetry of H, the total Hamiltonian HþHBðθÞ and
HþHBð#θÞ are related by C2b and therefore, share the same
eigenenergies, i.e., δωK= 0. The difference due to the field is
simply removed by a π rotation of the eigenstates about the b̂ axis.
The magnetic field sweeping from θ to −θ in the other planes
equivalent to b−c plane by C3c symmetry also gives δωK= 0.

Now let us consider when the magnetic field sweeps in the a−c
plane. Similarly, the magnetic field directions θ and −θ are related
by

C2a;θ : HB / ðcos θSai þ sin θSci Þ#!ðcos θSai # sin θSci Þ: ð7Þ

Considering a π rotation of the lattice about the â axis,

C2a : ðS
a; Sb; ScÞ ! ðSa;#Sb;#ScÞ and ϕx $ ϕy; ð8Þ

we find JXY, JZ, Jab, terms are invariant under C2a, while the Jac
terms transform as

C2a : Jac ! #Jac: ð9Þ

By the same argument, if Jac= 0, H is invariant under C2a, and
the eigenenergies of the total Hamiltonian for θ and −θ are the
same, i.e., δωK= 0. If Jac ≠ 0, the total Hamiltonian HþHBðθÞ
and HþHBð#θÞ cannot be related by C2a, and therefore,
δωK ≠ 0. We need to change the sign of Jac for the C2a relation to
hold, i.e., the transformation of the external field angles of θ to −θ
is equivalent to the change of Jac to −Jac. Thus, the lack of C2a
symmetry allows us to single out the Jac interaction through δωK.

Since Jac contains a combination of the Kitaev and Γ
interactions, we need other methods to subtract the Γ contribu-
tion. The in- and out-of-plane anisotropy, δωA offers precisely the
other information. We note that the in- and out-of-plane
anisotropy δωA is determined by JZ− JXY= Γ. Thus, for the ideal
edge-sharing octahedral environment, we can first estimate Γ
from the measured δωA, and then extract the Kitaev strength by
subtracting the Γ contribution from the measured δωK(θ).

Below we show numerical results of spin excitations obtained
by ED on a 24-site cluster which can be measured by angle-
dependent FMR and INS techniques under magnetic field angles
of θ and −θ with ϕ= 0.

Angle-dependent ferromagnetic resonance. FMR is a powerful
probe to study ferromagnetic or spin correlated materials. FMR
spectrometers record the radio-frequency (RF) electromagnetic
wave that is absorbed by the sample of interest placed under an
external magnetic field. To observe the resonance signal, the
resonant frequency of the sample is changed to match that of the
RF wave under a scan of the external magnetic field, so the
excitation anisotropy δω(θ) leads to the anisotropy in the reso-
nant magnetic field. FMR provides highly resolved spectra over a
large energy range and has been used to investigate exchange
couplings35–38 and anisotropies39,40 due to its dependence on the
magnetic field angle. Here, for simplicity, we calculate the exci-
tation energy probed by the RF field (details can be found in the
Methods) with a set magnetic field strength for spin 1

2 using ED
on a C3-symmetric 24-site cluster.
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out-of-plane 𝑯𝑯𝟎𝟎

in-plane 𝑯𝑯𝟎𝟎

CrI3

• No dependence of magnetic anisotropy 
on Γ at 𝜃𝜃 = 55°

𝛼𝛼𝛼𝛼 + 𝛼𝛼𝛽𝛽 + 𝛽𝛽𝛼𝛼 =
3
2 cos

2𝜃𝜃 −
1
2 = 0

→ 𝐽𝐽𝐾𝐾 model

• ∆𝐻𝐻𝐵𝐵 can be explained as the pinning 
effect of the quantum fluctuation in the 
presence of anisotropic Kitaev 
interactions.

I. Lee et al, PRL 124, 017201 (2020)
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(see the Supplemental Material). In order to account for
the di↵erence in the resonant fields between ✓ and �✓
as presented in Ref. [30], the relative strength between
the Kitaev and Heisenberg interactions is required to be
|K| ⇠ 0.4|J |. The single-ion anisotropy Ac and g-factor
anisotropy g? = 2.24, gk = 1.69 are determined from
the in- and out-of-plane magnetic anisotropy of the res-
onant field. The calculated resonant field for our model
is shown in Fig. 2 by blue (✓) and red (�✓) filled circles.

The Heisenberg J and Kitaev K interactions are then
estimated using the INS data with no magnetic field by
Chen et al. [25]. We use LSWT since the spin excitations
are well defined due to the dominant FM Heisenberg J .
The same small DM interaction (Dc) with an out-of-plane
D-vector and interlayer Heisenberg couplings (Jc1, Jc2)
as suggested by Chen et al. [25] are used to account
for the spin gap at the Dirac point and the out-of-plane
momentum dependence respectively. Small second and
third n.n. Heisenberg interactions (J2, J3) are added to
improve the fit, but they do not alter the main findings.
The INS data adopted from Ref. [25] is shown in Fig.
4(a) to make a comparison to the calculated spin wave
spectrum without a field in Fig. 4(b). The interlayer
couplings are taken into account by integrating over the
out-of-plane momentum. All the small Heisenberg inter-
actions have negligible e↵ects on the FMR resonant field
calculation shown in Fig. 3.

Interaction value (meV) Interaction value (meV)
J -2.5 J2 -0.09
K 1.1 J3 0.13
� ⇠0 Jc1 0.048
�0 ⇠0 Jc2 -0.071
Ac -0.23 Dc 0.17

TABLE II. Spin exchange interactions that can accommodate
both the FMR and INS experiments for CrI3.

Table II lists the spin interactions obtained from the
above analysis of the FMR and INS data. Note the sam-
ples used in the INS and FMR experiments are di↵erent,
but we expect them to have similar intralayer couplings
since the Cr-Cr distances are similar. The interlayer cou-
plings can vary a lot due to the di↵erent c-axis layer spac-
ing, but they do not a↵ect the broken C2a symmetry.
Thus our method to determine the Kitaev interaction
applies to both samples. Here we assume the samples
to be perfect single crystals. However, the mosaicity of
the sample in the FMR experiment is unknown, and the
e↵ect of sample mosaicity will be discussed later.

Using the obtained parameters of the spin model, we
predict that the magnon spectrum under a bc-plane mag-
netic field should reflect the size of the Kitaev interac-
tion. The result with a field angle of ✓ = 45� and a field
strength of 8.6T is shown in Fig. 5. As expected, there
is a noticeable di↵erence in the magnon energies between
M1 and M3. In the Supplemental Material, we also show

the magnon spectrum under two ac-plane fields for the
obtained CrI3 model.

FIG. 5. Magnon spectrum of our model under a magnetic field
in the bc plane with an angle of ✓ = 45� and a field strength
of 8.6T. The di↵erence between M1 and M3 highlighted by
the white arrows is due to the Kitaev interaction.

Summary and Discussion – In summary, we show how
to determine the Kitaev interaction for a general-S model
using the magnon energies at two momenta only related
by the broken bc-plane mirror symmetry under the bc-
plane field. We apply this method to CrI3 with S = 3

2
and show that it is a sub-Kitaev material, i.e, the Kitaev
interaction is the second largest after the FM Heisenberg
interaction. We predict its magnon spectrum that re-
flects the strength of the Kitaev interaction. Our method
here requires INS measurement for a fixed magnetic field,
which is advantageous over the method described in Ref.
[30] that needs INS measurements under rotated ac-
plane fields, though it applies to zero-momentum exci-
tations detected by optical spectroscopies such as angle-
dependant FMR.
The relative strength of the Kitaev interaction for CrI3

determined from the FMR data does not consider sam-
ple mosaicity. The e↵ect of in-plane mosaicity can be
estimated by applying a Gaussian filter in the in-plane
field angle. The di↵erences in the FMR resonances with
the field angles above and below the honeycomb plane,
which manifest the Kitaev interaction, are maximal when
the field is in the ac plane. Thus, Gaussian averaging the
in-plane field angle will always decrease the resonance en-
ergy di↵erences. The strength of the Kitaev interaction
in CrI3 could be larger if the FMR sample had in-plane
mosaicity, which needs to be clarified in the future.
This work was supported by the Natural Sciences and
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FIG. 3. Dynamic spin structure factor (DSSF) of the spin excitations at accessible wavevectors

for spin 1
2 using ED on a C3-symmetric 24-site cluster are shown by red and blue boxes, with the

same parameters for Fig. 2(d), i.e. (J,K,�) = (�0.1,�1, 0.5), equivalent to (JX , JZ , Jab, Jac) =

(�0.6,�0.1, 0,�0.5) in units of !0. The magnetic field angles in the a� c plane are 30� (blue) and

�30� (red). The dashed lines are DSSF obtained by LSWT. (b) DSSF with the same parameter set

as (a) except the field h = 8 shows a better match between the ED and LSWT results; see the main

text for further discussions. The colour bars represent the intensity of DSSF. (c) C3-symmetric

24-site cluster used for the ED. (d) Accessible momentum points labeled in x-axis of (a) and (b).

respectively. We set the magnetic field angles ✓ = 30� (blue) and ✓ = �30� (red) in the a� c

plane. The square boxes denote the excitation energies, and the colour bars indicate the

intensity of DSSF
P

↵ S
↵↵(q,!) (details can be found in the Methods). The structure factor

is convolved with a Gaussian of finite width to emulate finite experimental resolution. We

observe a clear di↵erence between the two field directions, �!K at every momentum points.
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FIG. 1. Crystal structure and further Heisenberg in-

teractions. (a) Schematic of the honeycomb lattice of tran-
sition metal ions (purple) in edge sharing octahedra environ-
ment of anions (above the honeycomb plane: gray, below the
plane: light gray). Octahedral xyz axes, abc axes, and the
Kitaev bonds x (red), y (green), z (blue) are indicated. (b)
further neighbour and interlayer Heisenberg interactions Jn

can be included in our model.

tum since JXY 6= JZ . It was shown that �,�0
⌧ Ac

for CrI3 with S=3/2 []. This is rather expected, as
�(S+

i S+
j � S�

i S�
j ) requires flipping two spins and get

back to its original state, which occurs only in higher
order perturbations beyond the second order in S > 1/2.
�0 is even smaller as it further requires the trigonal distor-
tion. Thus we will use Ac to account for the anisotropy
and set � and �0 roughly zero for higher-S models. For
S = 1/2, � interaction becomes significant, while the
single-ion anisotropy Ac becomes a constant, and we re-
fer to our earlier study to di↵erentiate the contributions
from � and Kitaev interactions.[]

Symmetry Analysis – The symmetries of the Hamilto-
nian are listed in the first row of Table I. The cross and
circle refer to the broken and preserved symmetry, re-
spectively. T is the time reversal symmetry T : S ! �S;
C2a and C2b are ⇡ rotations of the lattice about the â and
b̂ axis respectively.[] The spatial inversion and translation
symmetries are intact. Since the octahedron forms two
triangles above and below the transition metal M plane
as shown in Fig. 1 (a), the mirror plane exists only in
the ac-plane equivalent to C2b because of spatial inver-
sion. The mirror symmetry about the bc plane (i.e., C2a)
is broken, which results in a finite Jac in the Hamiltonian.
The red crosses are the broken symmetries due to a finite
Jac and the blue circles are the preserved symmetries if
Jac was zero. These symmetries can be probed using two
magnetic field directions in the ac�plane to determine
Jac as discussed in our earlier study.[]

The second and third rows show how the symmetry is
a↵ected under special magnetic field directions. When
the magnetic field is applied, T is broken, and the com-
bined operation T C2b is also broken when the field is
in the bc plane. However, if Jac were absent, T C2a is
preserved, as indicated by the blue circle at the bottom
corner of the table. Since the lack of T C2a only comes
from a finite Jac in H, the di↵erences in the spin excita-
tions between two momenta related by T C2a in magnon
spectrum can be used to determine Jac.

T C2b T C2b C2a T C2a

h = 0 � � � ⇥/� ⇥/�
h in a� c plane ⇥ ⇥ � ⇥ ⇥
h in b� c plane ⇥ ⇥ ⇥ ⇥ ⇥/�

TABLE I. Symmetries of the Hamiltonian under di↵erent
magnetic field directions. The cross and circle refer to broken
and preserved symmetry, respectively. The red cross indi-
cates the broken symmetry due to a finite Jac, and the blue
circle the preserved symmetry if Jac were absent. We assume
that the spatial inversion and translation symmetries are in-
tact, and there is no spontaneous symmetry breaking due to
a magnetic ordering.

A Simple Example – Based on the symmetry relation
summarized in the table I, we investigate the spin wave
under the magnetic field in the bc plane. We expect that
the di↵erence in magnon energy between two momenta
related by the T C2a will signal the presence of Jac.
As an example, we check the simplest case of J = �1,

K = 0.5, and set gµBh = 1. The spin wave with the field
in the bc-plane with the angle of ✓ = 45� is shown in Fig.
2(a)-(b). The momentum path � � M1 � K1 and � �

M3�K2 shown Fig. 2(c) are related by the combination
T C2a. The excitations along these two paths are di↵erent
when C2a reflects a nonzero Kitaev interaction due to the
broken mirror symmetry of bc plane. The paths K1 �

M2 and K2 � M2 have the same energies because the
spatial inversion symmetry (k ! �k) is still intact. For
example, the significant di↵erence in the energy between
M1 and M3 as indicated by the white dashed lines.

FIG. 2. Dynamic spin structure factor (DSSF) of the spin
wave spectrum of our model under magnetic fields in the b�c

planes with angles ✓ = 45�. The di↵erences between M1 and
M3, highlighted by the white arrows, are due to the Kitaev
interaction.

Application to CrI3 – As we discussed above, for S >
1/2, � and �0 are negligible, so it is the Kitaev interac-
tion that reflects the broken bc mirror as shown in the
red cross in the first row of Table I. Table II lists the spin
interactions in our model, obtained from FMR and INS
experiments. We first obtain the relative strength of the
Kitaev interaction in our model from the resonant mag-
netic field data in the FMR experiment with 240 GHz
resonant frequency at 5 K by Lee et al []. The field direc-
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Jac = 0
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Jac 6= 0

Symmetry of H

Can we use a “fixed” magnetic field direction?


— Two different momenta under a certain magnetic field



2. measure the spin excitations at M1 and M3

(a) (b)

(c)

1

Jieful Cen, HYK, arXiv:2208.13807 (2022)

3. energy difference between M1 - M3   / (K � �)
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2nd Recipe to isolate Jac

1. apply  B in the bc-plane with angle theta

Jac / (K � �)
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bc-plane: no mirror symmetry                                              



J = -1, K=0.5,  h =1
Example(a) (b)

(c)

1

bc-plane: no mirror symmetry -> finite (Kitaev - Gamma) interaction

In higher-S, Jac ⇠ K
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� ⇠ 0
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out-of-plane 𝑯𝑯𝟎𝟎

in-plane 𝑯𝑯𝟎𝟎

CrI3

• No dependence of magnetic anisotropy 
on Γ at 𝜃𝜃 = 55°

𝛼𝛼𝛼𝛼 + 𝛼𝛼𝛽𝛽 + 𝛽𝛽𝛼𝛼 =
3
2 cos

2𝜃𝜃 −
1
2 = 0

→ 𝐽𝐽𝐾𝐾 model

• ∆𝐻𝐻𝐵𝐵 can be explained as the pinning 
effect of the quantum fluctuation in the 
presence of anisotropic Kitaev 
interactions.

Angle dependent Ferromagnetic Resonance (FMR): CrI3

Inhee Lee, et al, Phys. Rev. Lett. 124, 017201 (2020) L. Chen et al, PRX 11, 031047 (2021)

Inelastic neutron scattering

Kitaev dominant J + DM interaction

Current debate



L. Chen et al, PRX 8, 041028 (2018)

L. Chen et al, PRB 101, 134418 (2020)
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(see the Supplemental Material). In order to account for
the di↵erence in the resonant fields between ✓ and �✓
as presented in Ref. [30], the relative strength between
the Kitaev and Heisenberg interactions is required to be
|K| ⇠ 0.4|J |. The single-ion anisotropy Ac and g-factor
anisotropy g? = 2.24, gk = 1.69 are determined from
the in- and out-of-plane magnetic anisotropy of the res-
onant field. The calculated resonant field for our model
is shown in Fig. 2 by blue (✓) and red (�✓) filled circles.

The Heisenberg J and Kitaev K interactions are then
estimated using the INS data with no magnetic field by
Chen et al. [25]. We use LSWT since the spin excitations
are well defined due to the dominant FM Heisenberg J .
The same small DM interaction (Dc) with an out-of-plane
D-vector and interlayer Heisenberg couplings (Jc1, Jc2)
as suggested by Chen et al. [25] are used to account
for the spin gap at the Dirac point and the out-of-plane
momentum dependence respectively. Small second and
third n.n. Heisenberg interactions (J2, J3) are added to
improve the fit, but they do not alter the main findings.
The INS data adopted from Ref. [25] is shown in Fig.
4(a) to make a comparison to the calculated spin wave
spectrum without a field in Fig. 4(b). The interlayer
couplings are taken into account by integrating over the
out-of-plane momentum. All the small Heisenberg inter-
actions have negligible e↵ects on the FMR resonant field
calculation shown in Fig. 3.

Interaction value (meV) Interaction value (meV)
J -2.5 J2 -0.09
K 1.1 J3 0.13
� ⇠0 Jc1 0.048
�0 ⇠0 Jc2 -0.071
Ac -0.23 Dc 0.17

TABLE II. Spin exchange interactions that can accommodate
both the FMR and INS experiments for CrI3.

Table II lists the spin interactions obtained from the
above analysis of the FMR and INS data. Note the sam-
ples used in the INS and FMR experiments are di↵erent,
but we expect them to have similar intralayer couplings
since the Cr-Cr distances are similar. The interlayer cou-
plings can vary a lot due to the di↵erent c-axis layer spac-
ing, but they do not a↵ect the broken C2a symmetry.
Thus our method to determine the Kitaev interaction
applies to both samples. Here we assume the samples
to be perfect single crystals. However, the mosaicity of
the sample in the FMR experiment is unknown, and the
e↵ect of sample mosaicity will be discussed later.

Using the obtained parameters of the spin model, we
predict that the magnon spectrum under a bc-plane mag-
netic field should reflect the size of the Kitaev interac-
tion. The result with a field angle of ✓ = 45� and a field
strength of 8.6T is shown in Fig. 5. As expected, there
is a noticeable di↵erence in the magnon energies between
M1 and M3. In the Supplemental Material, we also show

the magnon spectrum under two ac-plane fields for the
obtained CrI3 model.

FIG. 5. Magnon spectrum of our model under a magnetic field
in the bc plane with an angle of ✓ = 45� and a field strength
of 8.6T. The di↵erence between M1 and M3 highlighted by
the white arrows is due to the Kitaev interaction.

Summary and Discussion – In summary, we show how
to determine the Kitaev interaction for a general-S model
using the magnon energies at two momenta only related
by the broken bc-plane mirror symmetry under the bc-
plane field. We apply this method to CrI3 with S = 3

2
and show that it is a sub-Kitaev material, i.e, the Kitaev
interaction is the second largest after the FM Heisenberg
interaction. We predict its magnon spectrum that re-
flects the strength of the Kitaev interaction. Our method
here requires INS measurement for a fixed magnetic field,
which is advantageous over the method described in Ref.
[30] that needs INS measurements under rotated ac-
plane fields, though it applies to zero-momentum exci-
tations detected by optical spectroscopies such as angle-
dependant FMR.
The relative strength of the Kitaev interaction for CrI3

determined from the FMR data does not consider sam-
ple mosaicity. The e↵ect of in-plane mosaicity can be
estimated by applying a Gaussian filter in the in-plane
field angle. The di↵erences in the FMR resonances with
the field angles above and below the honeycomb plane,
which manifest the Kitaev interaction, are maximal when
the field is in the ac plane. Thus, Gaussian averaging the
in-plane field angle will always decrease the resonance en-
ergy di↵erences. The strength of the Kitaev interaction
in CrI3 could be larger if the FMR sample had in-plane
mosaicity, which needs to be clarified in the future.
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Prediction using our 2nd recipe: CrI3
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FIG. 3. FMR resonant field Hres at 240 GHz resonant fre-
quency as the field angle ✓H is varied. Hres is normalized by
that of a free spin. Inset is the 12-site cluster used in exact
diagonalization of spin- 32 to calculate the resonant field.

tion was in the a � c plane with angles ✓ (0 < ✓ < ⇡/2)
above and below the honeycomb plane. Previous analysis
on the FMR data using the free energy of a mean-field
Hamiltonian cannot account for bond-dependent inter-
actions properly for spin excitations at zero momentum,
so we use exact diagonalization (ED). The resonant field
at each field angle is calculated by matching the zero-
monemtum spin excitation to 240 GHz in ED of a 12-site
cluster shown in the inset of Fig. 2. The zero-momentum
spin excitations show negligible finite-size e↵ect with this
magnetic field strength.In order to account for the di↵er-
ence in the resonant field between ✓ and �✓ as discussed
in the symmetry analysis, the Kitaev interaction is esti-
mated to be |K| ⇠ 0.4|J |. The single-ion anisotropy Ac

and g-factor anisotropy g? = 2.24, gk = 1.69 are deter-
mined from the in- and out-of-plane magnetic anisotropy
of the resonant field. The calculated resonant field for
our model is shown in Fig. 2.

Interaction value (meV) Interaction value (meV)
J -2.5 J2 -0.09
K 1.1 J3 0.13
� ⇠0 Jc1 0.048
�0 ⇠0 Jc2 -0.071
Ac -0.23 Dc 0.17

TABLE II. Spin exchange interactions that can accommodate
both the FMR and INS experiments for CrI3.

The Heisenberg J and Kitaev K interactions are fur-
ther determined from the INS data with no magnetic

field by Chen et al [] using LSWT, since the spin ex-
citation energy is dominated by J and K. The same
small DM interaction with out-of-plane vector Dc and
interlayer Heisenberg couplings as suggested are used to
account for the spin gap at the Dirac point and out-of-
plane momentum dependence respectively in the data.
Small second and third nearest neighbour Heisenberg in-
teractions are added to improve the fit. All these small
interactions have negligible e↵ects on the FMR calcula-
tion. The INS data alone do not strongly constrain K
and |K|  |J | is allowed, since the contribution of K to
the spin gap is small compared to Dc. Therefore, the
importance of the Kitaev interaction can only be deter-
mined by the symmetry analysis for the FMR data, i.e.
by comparing the spin excitations under two magnetic
field directions with angles above and below the honey-
comb plane. Figure 3 shows the calculated dynamic spin
structure factor (DSSF) of the spin wave spectrum with-
out a field for our model. The interlayer couplings are
taken into account by integrating over the out-of-plane
momentum kc.
Note the samples used in the two experiments are dif-

ferent, but we expect them to have similar intralayer cou-
plings since the Cr-Cr distances are similar. The inter-
layer couplings can vary a lot due to the di↵erent c-axis
layer spacing, but they do not a↵ect our method to de-
termine the Kitaev interaction, since they do not a↵ect
the C2a symmetry. Here we assume the samples to be
perfect single crystal, since the mosaicity of the sample
in the FMR experiment is unknown. The e↵ect of sample
mosaicity will be discussed later.

FIG. 4. (a) Inelastic neutron scattering data reproduced from
Ref. []. Dynamic spin structure factor (DSSF) of the spin
wave spectrum of our model without a magnetic field using
linear spin wave theory (LSWT). The momentum path (yel-
low) is shown in the inset. The calculation agrees with the
INS data well.

The spin waves can be measured under two magnetic
field direction in the a� c plane with angles ✓ above and
below the honeycomb plane. Figure 4 emphasizes the
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Future experiments — search for candidate materials



• Proposal to estimate the Kitaev interaction for general S:

    apply magnetic field in the bc-plane;

    measure spin excitations at two momenta (M1 and M3) - broken mirror symmetry

    difference is due to Kitaev interaction (Gamma, Gamma’ ~ 0 for spin > 1/2)

Summary

• Higher-spin S Kitaev interaction:  

    combination of Hund’s at transition metal + SOC in ligand


