Symmetry & Strategy to extract Kitaev interaction in spin-S Kitaev Materials

Hae-Young Kee University of Toronto

Novel Quantum States in Condensed Matter 2022, Yukawa Institute for Theoretical Physics, Japan (Nov. 22, 2022)

Collaborators

J. Rau (Univ. of Windsor), H.S. Kim (Kangwon Nat. Univ.), A. Catuneanu (Dana/CanmetMaterials), Q. Luo (Nanjiang Univ. of Aeronautics & Astro) P. Stavropoulos (Univ. of Minnesota) J. Cen, J. Gordon

Experiment

Y.-J. Kim group (Univ. of Toronto), K. Burch (Boston College), L. Yang (Tsinghua) Univ.), D. Dessau (Univ. of Colorado Boulder), H. Takagi (Max Planck Institute), A. Seo (Kentucky Univ.)

Review article on "Beyond Kitaev physics", N. Perkins, I. Rousochatzakis, Q. Luo, HYK, in preparation

Theory

E. Sorensen (McMaster Univ.), W. Yang, A. Nocera, I. Affleck (Univ. British Columbia), Y.-B. Kim group (Univ. of Toronto), S. Trebst group (Univ. of Cologne), Matthias Gohlke (Okinawa Univ.)

S= I/2 Kitaev interaction & Kitaev spin liquid

$$H = K \sum_{\langle ij \rangle \in \gamma} S_{i}^{\gamma} S_{j}^{\gamma}$$

where
$$\gamma = x, y, z$$

bond-dependent Ising interaction

Kitaev spin liquid: emergent particles - Majorana fermion and vortices

A. Kitaev, Annals of Physics 321, 2 (2006)

under magnetic field

Example: Ising Topological Order (Z2 vortex & Fermions)

 $\psi \times \psi = 1$ $\psi \times \sigma = \sigma$ $\sigma \times \sigma = 1 + \psi$

vortex carrying unpaired MF

Spin Interaction: low energy model of t + U

$$H = J \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j$$

 $H_{ij} = \left(S_i^x \ S_i^y \ S_i^z \right) \bigg($

: symmetry constrains matrix elements

SU(2): U and single-orbital

When orbital & spin are not conserved via SOC

$$\begin{pmatrix} J_{xx} & J_{xy} & J_{xz} \\ J_{yx} & J_{yy} & J_{yz} \\ J_{zx} & J_{zy} & J_{zz} \end{pmatrix} \begin{pmatrix} S_j^x \\ S_j^y \\ S_j^z \end{pmatrix}$$

insufficient to understand why one term is larger over other

Kitaev Materials

: Kitaev interaction is the largest interaction in full H

Necessary (not sufficient) Requirements

honeycomb Mott insulator : strong e-e interaction transition metals

multi-orbital systems with Hund's coupling

spin-orbit coupling

bond-dependent spin interaction for S=1/2

G. Khaliullin on triangular lattice (2005); G. Jackeli, G. Khaliullin, Phys. Rev. Lett. 102, 017205 (2009)

Generic Spin Model in 2D honeycomb

nearest neighbour: ideal honeycomb

 $H^x = H^z(x \to y \to z \to x)$

another bond-dep. interaction

$$\Gamma_z (S_i^x S_j^y + S_i^y S_j^x)] + J \mathbf{S}_i \cdot \mathbf{S}_j$$

+ other interactions allowed by the symmetry

```
J. Rau, E. Lee, HYK, PRL 112, 077204 (2014)
other ref. - V. Katukuri, et al, New J. Phys. 16, 013056 (2014); Y. Yamaji, et al, PRL 113, 107201 (2014)
```

Kitaev interaction in Candidates with Jeff=1/2 (doublet)

Tĩ	V	Cr	Mn	Fe
Zr	Nb	Мо	Тс	Ru
Hf	Та	w	Re	Os

A2IrO3 (A = Na, Li): Y. Singh, et al, PRB 82, 064412 (2010);... alpha-RuCl3 : K. Plumb, et al, PRB 90 041112(R) (2014); ... AlrO3 (A = Mg, Zn): Y. Haraguchi, et al, PRM 2, 054411 (2018),....

alpha-RuCl3

Dq, the solution server a ferror type sections are the first the Blattice setting the base of the solution of the play an agonal compression gas to propose the first of the section of the effective Hamiltoe tot taled and set show of the past stear the tot and states en en en porte service en ling parties plan and sold states the second states and states $S_i^z S_j^z$ Verbagenal col Vectrons from a convision strategie and the state appression of the provision of the provisio Security of the stand were constrained to the standing by the standing of the This property is the second of zthat the E octobilator exchanges scheme to the top be the for st bet wee octh edet modents on equelsing and referred to as 180° and 8 E_{g} province and some the approximate angle of the superior the s PINS Kaomski exchange and orbiest hartgeen deess plintes different cases – when metaure. presented and that first shows be the set of the set o the strategy and provider below and complying and referred as 1202 and por Bought ap. We regard the

3d7: Jeff=1/2 honeycomb Cobaltates: R. Sano et al, PRB 97, 014408 (2018), H. Liu, G. Khaliulin, PRB 97, 014407 (2018),

When dominated: Non-Kitaev, e.g., BaCo2(XO4)2, X=As, P : X. Liu, HYK, arXiv:2211.03737

Kitaev Exchance
$$K \sum_{\langle ij \rangle \in \gamma} S_i^{\gamma} S_i$$

For arbitrary S,

ultra-short range correlations

Quantum spin liquid?

Majorana excitations?

half-integer vs. integer-S Kitaev?

Spin-S Kitaev

$W_p = e^{i\pi(S_1^y + S_2^z + S_3^x + S_4^y + S_5^z + S_6^x)}$

G. Baskaran, D. Sen, R. Shankar, PRB 78, 115116 (2008)

Spin S=1 Kitaev model in the literature.

S=1 Kitaev model:

Plaquette operators that commute with the Hamiltonian [1] (b)1.4

May be a gapless spin liquid [2]

Has incipient entropy plateau [2,3]

[1] G. Baskaran, D. Sen, and R. Shankar, Phys. Rev. B 78, 115116 (2008). [2] A. Koga, H. Tomishige, and J. Nasu, Journal of the Physical Society of Japan 87, 063703 (2018). [3] J. Oitmaa, A. Koga, and R. R. P. Singh, Phys. Rev. B 98, 214404 (2018).

Kitaev interaction in honeycomb insulators with general S

Ti	V	Cr	Mn	Fe	Co	Ni
Zr	Nb	Мо	Тс	Ru	Rh	Pd
Hf	Та	w	Re	Os	lr	Pt

d-orbitals

 $Ni^{2+}: 3d^8$

Higher-spin Kitaev interaction

P. Peter Stavropoulos, D. Pereira, HYK PRL 123, 037203 (2019)

ex: spin one (d8)

Crystal field splitting > Hund's coupling >> spin-orbit coupling (SOC)

No mixture of different orbitals & spins - No Kitaev?

on-site H0 = Kanamori (U, U', Hund's) + SOC

perturbation theory: hopping between two M sites via heavy A sites

 $H_{ij}^{\gamma} = KS_k^{\gamma}S_j^{\gamma} + J\mathbf{S}_i \cdot \mathbf{S}_j$

P. Peter Stavropoulos, D. Pereira, HYK, PRL 123, 037203 (2019)

Kitaev from heavy anion from ab-intio: C. Xu et al, npj Comput. Mater. 4, 57 (2018)

Example

Single layer of CrI3 (S=3/2 honeycomb): Ferromagnetic insulator

Kitaev interaction?

Kerr rotation

Single layer (2D) Ferromagnet B. Huang et al, Nature 546, 7657 (2017)

a)

b)

trigonal distortion

P. P. Stavropoulos, Liu, HYK, PRR3, 013216 (2021)

$$\begin{bmatrix} J\mathbf{S}_{i} \cdot \mathbf{S}_{j} + KS_{i}^{\gamma}S_{j}^{\gamma} + \Gamma(S_{i}^{\alpha}S_{j}^{\beta} + S_{i}^{\beta}S_{j}^{\alpha}) \\ + \Gamma'(S_{i}^{\alpha}S_{j}^{\gamma} + S_{i}^{\beta}S_{j}^{\gamma} + S_{i}^{\gamma}S_{j}^{\alpha} + S_{i}^{\gamma}S_{j}^{\beta}) \end{bmatrix}$$

$$\begin{bmatrix} A_{c}(\mathbf{S}_{i} \cdot \hat{\mathbf{c}})^{2}, \end{bmatrix}$$

single-ion anisotropy, Γ, Γ' from SOC + distortion

Angle dependent Ferromagnetic Resonance (FMR): Crl3

Kitaev dominant

Inhee Lee, et al, Phys. Rev. Lett. 124, 017201 (2020)

CrI3 : debate

Inelastic neutron scattering

| + DM interaction L. Chen et al, PRX 11, 031047 (2021)

Kitaev Materials

: Kitaev interaction is the largest interaction in full H

Necessary (not sufficient) Requirements

honeycomb Mott insulator : strong e-e interaction Debate over the strength of Kitaev interaction

- bond-dependent spin interaction for S=1/2

 - multi-orbital systems with Hund's coupling spin-orbit coupling

S > 1/2 : spin-orbit coupling in heavy ligand + Hund's coupling in transition metal

Goal: how to determine the Kitaev strength?

Jiefu Cen, HYK, Commun. Phys. 5, 119 (2022);

Jiefu Cen, HYK, arXiv:2208.13807 (2022)

Use Symmetry of full Hamiltonian

Generic n.n. ideal octahedra model

$$\mathcal{H} = \sum_{\langle ij \rangle \in \alpha \beta(\gamma)} \left[J \mathbf{S}_i \cdot \mathbf{S}_j \right]$$

b is parallel to the bond; a/c-axis are perp. to the bond/plane

 $+KS_i^{\gamma}S_j^{\gamma} + \Gamma(S_i^{\alpha}S_j^{\beta} + S_i^{\beta}S_j^{\alpha})\Big],$

mirror plane

C_{2b} = 180 rotation about b-axis

NO mirror plane (bc plane) a

b is parallel to the bond; a/c-axis are perp. to the bond/plane

$$\begin{pmatrix} \hat{e}_a \\ \hat{e}_b \\ \hat{e}_c \end{pmatrix} = \frac{1}{\sqrt{6}} \begin{pmatrix} 1 & 1 & -2 \\ -\sqrt{3} & \sqrt{3} & 0 \\ \sqrt{2} & \sqrt{2} & \sqrt{2} \end{pmatrix} \begin{pmatrix} \hat{e}_x \\ \hat{e}_y \\ \hat{e}_z \end{pmatrix}$$

٠

H in abc coordinate

$$\begin{aligned} \mathcal{H} &= \sum_{\langle i,j \rangle} \Big[J_{XY} \Big(S_i^a S_j^a + S_i^b S_j^b \Big) + J_Z S_i^c S_j^c \\ &+ J_{ab} \Big[\cos \phi_{\gamma} \Big(S_i^a S_j^a - S_i^b S_j^b \Big) - \sin \phi_{\gamma} \Big(S_i^a S_j^b + S_i^b S_j^a \Big) \Big] \\ &- \sqrt{2} J_{ac} \Big[\cos \phi_{\gamma} \Big(S_i^a S_j^c + S_i^c S_j^a \Big) + \sin \phi_{\gamma} \Big(S_i^b S_j^c + S_i^c S_j^b \Big) \Big] \Big], \end{aligned}$$

$$\phi_{\gamma} = 0, \frac{2\pi}{3}, \frac{4\pi}{3} \text{ for } \gamma = z, x, y \text{- bond} \qquad J_{XY} = J + J_{ac}, \ J_Z = J + J_{ab},$$
$$J_{ab} = \frac{1}{3}K + \frac{2}{3}\Gamma, \ J_{ac} = \frac{1}{3}K - \frac{1}{3}\Gamma.$$

Note:
$$J_Z - J_{XY} = J_{ab} - J_{ac} = \Gamma$$

in-plane vs. out-of-plane anisotropy due to Gamma

J. Chaloupka, G. Khaliullin, PRB 92, 24413 (2015); Pyrochlore lattice, S. Onoda, J. Phys.:Conf. Ser. 320, 012065 (2011); K. Ross, et al, PRX 1, 021002 (2011)

$$C_{2a}: (S^a, S^b, S^c) \to (S^a, -S^b, -S^c) \text{ and } \phi_x \leftrightarrow \phi_y$$

$$\mathcal{H} = \sum_{\langle i,j \rangle} \left[J_X (S_i^a S_j^a + S_j^a) \right]$$

 $+ J_{ab} \left[\cos \phi_{\gamma} (S_i^a S \right]$

$$-\sqrt{2}J_{ac}\left[\cos\phi_{\gamma}\left(S_{i}^{a}S_{j}^{c}+S_{i}^{c}S_{j}^{a}\right)+\sin\phi_{\gamma}\left(S_{i}^{b}S_{j}^{c}+S_{i}^{c}S_{j}^{b}\right)\right]$$

+ single-ion anisotropy, DM on 2nd n.n. with d//c, further n.n. Heisenberg + ...

- Consequence of broken C_{2a}
 - $S_i^b S_j^b) + J_Z S_i^c S_j^c$

$$S_j^a - S_i^b S_j^b) - \sin \phi_\gamma (S_i^a S_j^b + S_i^b S_j^a) \Big]$$

All interactions are invariant under C_{2a} Except $J_{ac} \rightarrow -J_{ac}$

$$J_{ac} = \frac{1}{3}K - \frac{1}{3}\Gamma.$$

$$H_{total} = \mathcal{H} - g\mu_B \vec{h} \cdot \vec{S}$$

Two different directions of field related by C2a: different excitation energies only if Jac finite

$$E_n(\theta) - E_n(-\theta)$$

• A magnetic field can detect the broken C_{2a} symmetry and be used to isolate the interaction that breaks C_{2a} .

field is in the ac-plane

- I. apply B in the ac-plane with θ
- 2. measure the spin excitations
- 3. rotate B with angle of $-\theta$
- 4. measure the spin excitations
- 5. energy difference between 2 & 4:
- 6. In-plane and out-of-plane energy excitation = Gamma

$$V_{ac} = \frac{1}{3}K - \frac{1}{3}\Gamma.$$

Recipe to isolate Kitaev

$$\delta\omega_K = \omega(\theta) - \omega(-\theta) \propto K - \Gamma$$

$$\delta \omega_A = \omega(\theta = 0) - \omega(\theta = 90^\circ)$$
 for S=I

7. subtract Gamma from 5, then single out the Kitaev interaction!

For S=1/2
$$J_{ac} = \frac{1}{3}K - \frac{1}{3}\Gamma.$$

Application to CrI3

I. Lee et al, PRL 124, 017201 (2020)

Interaction	value (meV)	Interaction	value (meV)
J	-2.5	J_2	-0.09
K	1.1	J_3	0.13
Γ	~ 0	J_{c1}	0.048
Γ'	~ 0	J_{c2}	-0.071
A_c	-0.23	D_c	0.17

Inelastic Neutron Scattering

$$K = -1, \Gamma = 0.5, J = -0.1$$
$$\theta = \pm 30^{\circ}$$

Jiefu Cen, HYK, Commun. Phys. 5, 119 (2022)

Symmetry of H

	\mathcal{T}	C_{2b}	$\mathcal{T}C_{2b}$	C_{2a}	$\mathcal{T}C_{2a}$	
$\mathbf{h} = 0$	0	0	0	\times / \circ	\times / O	
$ \mathbf{h} \text{ in } a - c \text{ plane} $	X	X	0	X	X	$J_{ac} \neq 0$
$ \mathbf{h} \text{ in } b - c \text{ plane} $	X	X	X	X	\times / O	$J_{ac} = 0$

- Can we use a "fixed" magnetic field direction?
- Two different momenta under a certain magnetic field

$J_{ac} \propto (K - \Gamma)$

- I.apply B in the bc-plane with an
- 2. measure the spire
- 3. energy difference between MI + M3

Jieful Cen, HYK, arXiv:2208.13807 (2022)

In higher-S, $\Gamma \sim 0 \rightarrow J_{ac} \sim K$ +45° a *K*₁ *K*₂ M_2 M_3 M_1

bc-plane: no mirror symmetry -> finite (Kitaev - Gamma) interaction

Example J = -1, K=0.5, h =1

Application to CrI3

Angle dependent Ferromagnetic Resonance (FMR): Crl3 Inelastic neutron scattering

Kitaev dominant

Inhee Lee, et al, Phys. Rev. Lett. 124, 017201 (2020)

Current debate

+ DM interaction

L. Chen et al, PRX 11, 031047 (2021)

Applying our theory

Interaction	value (meV)	Interaction	value (meV)
J	-2.5	J_2	-0.09
K	1.1	J_3	0.13
Γ	~ 0	J_{c1}	0.048
Γ'	~ 0	J_{c2}	-0.071
A_c	-0.23	D_c	0.17

on	value (meV)	Interaction	value (meV)
	-2.5	J_2	-0.09
	1.1	J_3	0.13
	~ 0	J_{c1}	0.048
	~ 0	J_{c2}	-0.071
	-0.23	D_c	0.17

Summary

- Higher-spin S Kitaev interaction: combination of Hund's at transition metal + SOC in ligand
- Proposal to estimate the Kitaev interaction for general S: apply magnetic field in the bc-plane; difference is due to Kitaev interaction (Gamma, Gamma' ~ 0 for spin > 1/2)

measure spin excitations at two momenta (MI and M3) - broken mirror symmetry