# Symmetry \& Strategy to extract Kitaev interaction in spin-S Kitaev Materials 

Hae-Young Kee<br>University of Toronto

Novel Quantum States in Condensed Matter 2022,
Yukawa Institute for Theoretical Physics, Japan (Nov. 22, 2022)



## Collaborators

Theory

| J. Rau (Univ. of Windsor), |
| :--- |
| H.S. Kim (Kangwon Nat. Univ.), |
| A. Catuneanu (Dana/CanmetMaterials), |
| Q. Luo (Nanjiang Univ. of Aeronautics \& Astro) |
| P. Stavropoulos (Univ. of Minnesota) |
| J. Cen, $\quad$ J. Gordon |

E. Sorensen (McMaster Univ.), W. Yang, A. Nocera, I. Affleck (Univ. British Columbia), Y.-B. Kim group (Univ. of Toronto),
S. Trebst group (Univ. of Cologne),

Matthias Gohlke (Okinawa Univ.)

## Experiment

Y.-J. Kim group (Univ. of Toronto), K. Burch (Boston College), L. Yang (Tsinghua Univ.), D. Dessau (Univ. of Colorado Boulder), H. Takagi (Max Planck Institute), A. Seo (Kentucky Univ.)

Review article on "Beyond Kitaev physics", N. Perkins, I. Rousochatzakis, Q. Luo, HYK, in preparation


## S= I/2 Kitaev interaction \& <br> Kitaev spin liquid


bond-dependent Ising interaction

Kitaev spin liquid: emergent particles - Majorana fermion and vortices

under magnetic field
Example: Ising Topological Order (Z2 vortex \& Fermions)


$$
\psi \times \psi=1 \quad \psi \times \sigma=\sigma \quad \quad \sigma \times \sigma=1+\psi
$$

vortex carrying unpaired MF

## Spin Interaction: low energy model of $\mathbf{t}+\mathbf{U}$

$$
H=J \sum_{\langle i j\rangle} \vec{S}_{i} \cdot \vec{S}_{j} \quad \mathrm{SU}(2): \cup \text { and single-orbital }
$$

When orbital \& spin are not conserved via SOC

$$
H_{i j}=\left(S_{i}^{x} S_{i}^{y} S_{i}^{z}\right)\left(\begin{array}{lll}
J_{x x} & J_{x y} & J_{x z} \\
J_{y x} & J_{y y} & J_{y z} \\
J_{z x} & J_{z y} & J_{z z}
\end{array}\right)\left(\begin{array}{c}
S_{j}^{x} \\
S_{j}^{y} \\
S_{j}^{z}
\end{array}\right)
$$

: symmetry constrains matrix elements
insufficient to understand why one term is larger over other

## Kitaev Materials

: Kitaev interaction is the largest interaction in full H
Necessary (not sufficient) Requirements

- honeycomb Mott insulator : strong e-e interaction transition metals
- bond-dependent spin interaction for $S=1 / 2$

```
multi-orbital systems with Hund's coupling
spin-orbit coupling
G. Khaliullin on triangular lattice (2005);
    G. Jackeli, G. Khaliullin, Phys. Rev. Lett. IO2, 0I7205 (2009)
```


## Generic Spin Model in 2D honeycomb

nearest neighbour:
ideal honeycomb

$$
H=\sum_{\gamma \in x, y, z} H^{\gamma}
$$


another bond-dep. interaction

$$
\begin{aligned}
H^{z}= & \sum_{\langle i j\rangle \in z-b o n d}\left[K_{z} S_{i}^{z} S_{j}^{z}+\Gamma_{z}\left(S_{i}^{x} S_{j}^{y}+S_{i}^{y} S_{j}^{x}\right)\right]
\end{aligned}+J \mathbf{S}_{i} \cdot \mathbf{S}_{j}
$$

## Kitaev interaction in Candidates with Jeff= I/2 (doublet)

| 7 | V | Cr | Mn | $F e$ | Co | Ni |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Zr | Nb | Mo | Tc | - | Rh | Pd |
| Hf | Ta | W | Re | Os | Ir | Pt |



A2IrO3 (A = Na, Li): Y. Singh, et al, PRB 82, 064412 (2010);.
alpha-RuCl3 :K. Plumb, et al, PRB 90 04III2(R) (2014); ...
AlrO3 ( $A=M g, Z n$ ): Y. Haraguchi, et al, PRM 2, 0544II (2018), $\ldots$.


Due to strong spin-orbit coupling: mixture of different orbitals and different spins
$\mathbf{J}_{\text {eff }}=1 / 2$ basis
spin down $\square$ spin up



$$
\begin{aligned}
& \frac{1}{\sqrt{3}}(|x y\rangle|\uparrow\rangle+|y z\rangle|\downarrow\rangle+i|x z\rangle|\downarrow\rangle) \\
& \delta L^{z}= \pm 2 \quad \delta J_{\mathrm{eff}}^{z}= \pm 2
\end{aligned}
$$

orbital non-conserving hopping
Heisenberg term


$$
H_{K}=K S_{i}^{z} S_{j}^{z}
$$

G. Jackeli, G. Khaliullin, Phys. Rev. Lett. 102, 0 I 7205 (2009)
orbital conserving hopping: Heisenberg + ...

3d7: Jeff= I/2 honeycomb Cobaltates:
R. Sano et al, PRB 97, 014408 (20I8), H. Liu, G. Khaliulin, PRB 97, 014407 (20I8), ....


Debate over the strength of Kitaev interaction $\left.{ }^{\frac{1}{3}} 1 \frac{1}{2}, 0\right\rangle+\frac{1}{\sqrt{6}}\left|-\frac{1}{2}, 1\right\rangle$


When dominated: Non-Kitaev, e.g., BaCo2(XO4)2, X=As, P:X. Liu, HYK, arXiv:22II. 03737

## Spin-S Kitaev

- Kitaev Exchange
$K \sum_{\langle i j\rangle \in \gamma} S_{i}^{\gamma} S_{j}^{\gamma}$


For arbitrary $\mathrm{S}, \quad W_{p}=e^{i \pi\left(S_{1}^{y}+S_{2}^{z}+S_{3}^{x}+S_{4}^{y}+S_{5}^{z}+S_{6}^{x}\right)}$
ultra-short range correlations
G. Baskaran, D. Sen, R. Shankar, PRB 78, II5II6 (2008)

Quantum spin liquid?
Majorana excitations?
half-integer vs. integer-S Kitaev?

## Spin $\mathrm{S}=1$ Kitaev model in the literature.

$\mathrm{S}=1$ Kitaev model:

[1] G. Baskaran, D. Sen, and R. Shankar, Phys. Rev. B 78, 115116 (2008).
[2] A. Koga, H. Tomishige, and J. Nasu, Journal of the Physical Society of Japan 87, 063703 (2018).
[3] J. Oitmaa, A. Koga, and R. R. P. Singh, Phys. Rev. B 98, 214404 (2018).

## Kitaev interaction in honeycomb insulators with general S

| Ma | V | Cr | Mn | E | Co | Ni |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Zr | Nb | Mo | Tc | Oh | Pd |  |
| Hf | Ta | W | Re | Os | Ir | Pt |



## Higher-spin Kitaev interaction



Crystal field splitting > Hund's coupling >> spin-orbit coupling (SOC)

> No mixture of different orbitals \& spins - No Kitaev?
on-site H0 = Kanamori (U, U', Hund's) + SOC

perturbation theory: hopping between two $M$ sites via heavy $A$ sites


$$
\text { Indirect } \quad K=-2 J_{\text {ind }}
$$

## Direct $J_{d}=4 t^{2} / U$

$$
\Gamma=0 \text { : up to th order }
$$

$$
H_{i j}^{\gamma}=K S_{k}^{\gamma} S_{j}^{\gamma}+J \mathbf{S}_{i} \cdot \mathbf{S}_{j}
$$

$$
\text { AF Kitaev } \quad J=-\left|J_{\text {ind }}\right|+J_{d}
$$

ED calculation: $S=I \mathrm{KJ}$ model 12 \& 18 sites

P. Peter Stavropoulos, D. Pereira, HYK, PRL I23, 037203 (2019)

## Example

Single layer of Crl3 (S=3/2 honeycomb):
Ferromagnetic insulator


Kitaev interaction?


Single layer (2D) Ferromagnet
B. Huang et al, Nature 546, 7657 (2017)

n.n. model

$$
\left.\begin{array}{c}
H=\sum_{\langle i j\rangle \in \alpha \beta(\gamma)}\left[J \mathbf{S}_{i} \cdot \mathbf{S}_{j}+K S_{i}^{\gamma} S_{j}^{\gamma}+\Gamma\left(S_{i}^{\alpha} S_{j}^{\beta}+S_{i}^{\beta} S_{j}^{\alpha}\right)\right. \\
\left.+\Gamma^{\prime}\left(S_{i}^{\alpha} S_{j}^{\gamma}+S_{i}^{\beta} S_{j}^{\gamma}+S_{i}^{\gamma} S_{j}^{\alpha}+S_{i}^{\gamma} S_{j}^{\beta}\right)\right]
\end{array}\right] \begin{gathered}
\text { single-ion anisotropy, } \Gamma, \Gamma^{\prime} \\
\text { from SOC + distortion }
\end{gathered}
$$

CrI3 : debate

Angle dependent Ferromagnetic Resonance (FMR): $\mathrm{Crl}_{3}$


Kitaev dominant
Inhee Lee, et al, Phys. Rev. Lett. I24, 0 I720I (2020)

Inelastic neutron scattering


J + DM interaction
L. Chen et al, PRX II, 03I047 (202I)

## Kitaev Materials

: Kitaev interaction is the largest interaction in full H
Necessary (not sufficient) Requirements

- honeycomb Mott insulator : strong e-e interaction


## Debate over the strength of Kitaev interaction

- bond-dependent spin interaction for $S=1 / 2$

> multi-orbital systems with Hund's coupling spin-orbit coupling

S > I/2 : spin-orbit coupling in heavy ligand + Hund's coupling in transition metal

# Goal: how to determine the Kitaev strength? 

## Use Symmetry of full Hamiltonian

Jiefu Cen, HYK, Commun. Phys. 5, II9 (2022);
Jiefu Cen, HYK, arXiv:2208.I3807 (2022)

Generic n.n. ideal octahedra model

$$
\mathcal{H}=\sum_{\langle i j\rangle \in \alpha \beta(\gamma)}\left[J \mathbf{S}_{i} \cdot \mathbf{S}_{j}+K S_{i}^{\gamma} S_{j}^{\gamma}+\Gamma\left(S_{i}^{\alpha} S_{j}^{\beta}+S_{i}^{\beta} S_{j}^{\alpha}\right)\right],
$$

## 


$\mathrm{C} 2 \mathrm{~b}=180$ rotation about b -axis
$b$ is parallel to the bond; $a / c$-axis are perp. to the bond/plane

b is parallel to the bond; $\mathrm{a} / \mathrm{c}$-axis are perp. to the bond/plane

## $H$ in abc coordinate

$$
\begin{aligned}
\mathcal{H}= & \sum_{\langle i, j\rangle}\left[J_{X Y}\left(S_{i}^{a} S_{j}^{a}+S_{i}^{b} S_{j}^{b}\right)+J_{Z} S_{i}^{c} S_{j}^{c}\right. \\
& +J_{a b}\left[\cos \phi_{\gamma}\left(S_{i}^{a} S_{j}^{a}-S_{i}^{b} S_{j}^{b}\right)-\sin \phi_{\gamma}\left(S_{i}^{a} S_{j}^{b}+S_{i}^{b} S_{j}^{a}\right)\right] \\
& \left.-\sqrt{2} J_{a c}\left[\cos \phi_{\gamma}\left(S_{i}^{a} S_{j}^{c}+S_{i}^{c} S_{j}^{a}\right)+\sin \phi_{\gamma}\left(S_{i}^{b} S_{j}^{c}+S_{i}^{c} S_{j}^{b}\right)\right]\right]
\end{aligned}
$$

$$
\begin{array}{ll}
\phi_{\gamma}=0, \frac{2 \pi}{3}, \frac{4 \pi}{3} \text { for } \gamma=\mathrm{z}, \mathrm{x}, \mathrm{y} \text { - bond } \quad J_{X Y} & =J+J_{a c}, J_{Z}=J+J_{a b}, \\
J_{a b} & =\frac{1}{3} K+\frac{2}{3} \Gamma, J_{a c}=\frac{1}{3} K-\frac{1}{3} \Gamma .
\end{array}
$$

Note:

$$
J_{Z}-J_{X Y}=J_{a b}-J_{a c}=\Gamma
$$

## in-plane vs. out-of-plane anisotropy due to Gamma

$$
C_{2 a}:\left(S^{a}, S^{b}, S^{c}\right) \rightarrow\left(S^{a},-S^{b},-S^{c}\right) \text { and } \phi_{x} \leftrightarrow \phi_{y}
$$

## Consequence of broken $\mathrm{C}_{2 \mathrm{a}}$

$$
\begin{aligned}
\mathcal{H}=\sum_{\langle i, j\rangle} & {\left[J_{X}\left(S_{i}^{a} S_{j}^{a}+S_{i}^{b} S_{j}^{b}\right)+J_{Z} S_{i}^{c} S_{j}^{c}\right.} \\
& +J_{a b}\left[\cos \phi_{\gamma}\left(S_{i}^{a} S_{j}^{a}-S_{i}^{b} S_{j}^{b}\right)-\sin \phi_{\gamma}\left(S_{i}^{a} S_{j}^{b}+S_{i}^{b} S_{j}^{a}\right)\right] \\
& -\sqrt{2} J_{a c}\left[\cos \phi_{\gamma}\left(S_{i}^{a} S_{j}^{c}+S_{i}^{c} S_{j}^{a}\right)+\sin \phi_{\gamma}\left(S_{i}^{b} S_{j}^{c}+S_{i}^{c} S_{j}^{b}\right)\right]
\end{aligned}
$$

+ single-ion anisotropy, DM on 2nd n.n. with d//c, further n.n. Heisenberg + ...
All interactions are invariant under $C_{2 a}$ Except

$$
\begin{gathered}
J_{a c} \rightarrow-J_{a c} \\
J_{a c}=\frac{1}{3} K-\frac{1}{3} \Gamma .
\end{gathered}
$$

- A magnetic field can detect the broken $C_{2 a}$ symmetry and be used to isolate the interaction that breaks $C_{2 a}$.

$$
H_{\text {total }}=\mathcal{H}-g \mu_{B} \vec{h} \cdot \vec{S}
$$

Two different directions of field related by C2a: different excitation energies only if Jac finite

$$
E_{n}(\theta)-E_{n}(-\theta) \propto J_{a c}
$$

field is in the ac-plane



## Recipe to isolate Kitaev

I. apply B in the ac-plane with $\theta$
2. measure the spin excitations
3. rotate $\mathbf{B}$ with angle of $-\theta$
4. measure the spin excitations
5. energy difference between 2 \& 4:

$$
\delta \omega_{K}=\omega(\theta)-\omega(-\theta) \propto K-\Gamma
$$

6. In-plane and out-of-plane energy excitation $=$ Gamma

$$
\delta \omega_{A}=\omega(\theta=0)-\omega\left(\theta=90^{\circ}\right) \quad \text { for } S=I / 2
$$

7. subtract Gamma from 5, then single out the Kitaev interaction!


Angle-dependent Ferromagnetic Resonance,
NMR, Optical spectroscopy


## Application to CrI3


I. Lee et al, PRL I24, 0I720I(2020)


| Interaction | value $(\mathrm{meV})$ | Interaction | value $(\mathrm{meV})$ |
| :---: | :---: | :---: | :---: |
| $J$ | -2.5 | $J_{2}$ | -0.09 |
| $K$ | 1.1 | $J_{3}$ | 0.13 |
| $\Gamma$ | $\sim 0$ | $J_{c 1}$ | 0.048 |
| $\Gamma^{\prime}$ | $\sim 0$ | $J_{c 2}$ | -0.071 |
| $A_{c}$ | -0.23 | $D_{c}$ | 0.17 |



## Inelastic Neutron Scattering

$$
\begin{gathered}
K=-1, \Gamma=0.5, J=-0.1 \\
\theta= \pm 30^{\circ}
\end{gathered}
$$



Jiefu Cen, HYK, Commun. Phys. 5, II9 (2022)

Can we use a "fixed" magnetic field direction?

- Two different momenta under a certain magnetic field


## Symmetry of H

|  | $\mathcal{T}$ | $C_{2 b}$ | $\mathcal{T} C_{2 b}$ | $C_{2 a}$ | $\mathcal{T} C_{2 a}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{y y y y y y n} \mathbf{h}=0$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\times / \bigcirc$ | $\times / \bigcirc$ |
| $\mathbf{h}$ in $a-c$ plane | $\times$ | $\times$ | $\bigcirc$ | $\times$ | $\times$ |
| $\mathbf{h}$ in $b-c$ plane | $\times$ | $\times$ | $\times$ | $\times$ | $\times / \bigcirc$ |

## 2nd Recipe to isolate Jac

$$
J_{a c} \propto(K-\Gamma)
$$

I. apply B in the bc-plane with angle theta
2. measure the spin excitations at MI and M3
3. energy difference between MI-M3 $\propto(K-\Gamma)$

bc-plane: no mirror symmetry

In higher-S, $\quad \Gamma \sim 0 \rightarrow J_{a c} \sim K$

$$
\begin{gathered}
\text { Example } \\
\mathrm{J}=-1, \mathrm{~K}=0.5, \mathrm{~h}=1
\end{gathered}
$$



## Application to CrI3

## Current debate

Angle dependent Ferromagnetic Resonance (FMR): Crl3


Kitaev dominant
Inhee Lee, et al, Phys. Rev. Lett. I24, 0 I720I (2020)

Inelastic neutron scattering


J + DM interaction
L. Chen et al, PRX II, 03I047 (202I)

## Applying our theory



| Interaction | value $(\mathrm{meV})$ | Interaction | value $(\mathrm{meV})$ |
| :---: | :---: | :---: | :---: |
| $J$ | -2.5 | $J_{2}$ | -0.09 |
| $K$ | 1.1 | $J_{3}$ | 0.13 |
| $\Gamma$ | $\sim 0$ | $J_{c 1}$ | 0.048 |
| $\Gamma^{\prime}$ | $\sim 0$ | $J_{c 2}$ | -0.071 |
| $A_{c}$ | -0.23 | $D_{c}$ | 0.17 |



## Prediction using our 2nd recipe: Crl3



| Interaction | value $(\mathrm{meV})$ | Interaction | value $(\mathrm{meV})$ |
| :---: | :---: | :---: | :---: |
| $J$ | -2.5 | $J_{2}$ | -0.09 |
| $K$ | 1.1 | $J_{3}$ | 0.13 |
| $\Gamma$ | $\sim 0$ | $J_{c 1}$ | 0.048 |
| $\Gamma^{\prime}$ | $\sim 0$ | $J_{c 2}$ | -0.071 |
| $A_{c}$ | -0.23 | $D_{c}$ | 0.17 |

Future experiments - search for candidate materials:

Jiefu Cen, HYK, arXiv:2208.I3807 (2022)


## Summary

- Higher-spin S Kitaev interaction:
combination of Hund's at transition metal + SOC in ligand
- Proposal to estimate the Kitaev interaction for general S: apply magnetic field in the bc-plane; measure spin excitations at two momenta (MI and M3) - broken mirror symmetry difference is due to Kitaev interaction (Gamma, Gamma' $\sim 0$ for spin > I/2)

