Thermal properties of frustrated quantum magnets

F. Mila Ecole Polytechnique Fédérale de Lausanne Switzerland

Theorists

Stefan Wessel (Aachen) Andreas Honecker (Cergy) Bruce Normand (PSI) Philippe Corboz (Amsterdam) Olivier Gauthé (Lausanne)

Experimentalists

Henrik Ronnow (Lausanne) Christian Rüegg (Villigen)

and many more ...

Scope

Thermal properties: quantum Monte Carlo and minus sign Fully frustrated bilayer: \rightarrow Minus sign free QMC in dimer basis \rightarrow Ising critical point Shastry-Sutherland model: → From QMC to iPEPS (tensor network) \rightarrow SrCu₂(BO₃)₂ under pressure: Critical point □ J1-J2 model: \rightarrow Ising transition revealed by iPEPS Conclusions

Quantum Monte Carlo I

Partition function as a path integral
 Starting point:

$$Z = \operatorname{Tr}(e^{-\beta \mathcal{H}}) = \sum_{\alpha} \langle \alpha | e^{-\beta \mathcal{H}} | \alpha \rangle$$

Problem: to calculate the exponential of *H*, one needs to diagonalize it!

Quantum Monte Carlo II

$$Z = \sum_{\alpha} \langle \alpha | \prod_{l=1}^{L} e^{-\Delta \tau \mathcal{H}} | \alpha \rangle, \ \Delta \tau = \frac{\beta}{L}$$

$$Z = \sum_{\alpha_1, \dots, \alpha_L} \langle \alpha_1 | e^{-\Delta \tau \mathcal{H}} | \alpha_2 \rangle \langle \alpha_2 | e^{-\Delta \tau \mathcal{H}} | \alpha_3 \rangle \dots \langle \alpha_L | e^{-\Delta \tau \mathcal{H}} | \alpha_1 \rangle$$

$$Z \simeq \sum_{\alpha_1, \dots, \alpha_L} \langle \alpha_1 | 1 - \Delta \tau \mathcal{H} | \alpha_2 \rangle \langle \alpha_2 | 1 - \Delta \tau \mathcal{H} | \alpha_3 \rangle \dots \langle \alpha_L | 1 - \Delta \tau \mathcal{H} | \alpha_1 \rangle$$

 $\langle \alpha_i | 1 - \Delta \tau \mathcal{H} | \alpha_{i+1} \rangle > 0$ iff $\langle \alpha_i | \mathcal{H} | \alpha_{i+1} \rangle < 0$ when $\langle \alpha_i | \alpha_{i+1} \rangle = 0$

Quantum Monte Carlo III

Then
$$Z \simeq \sum_{\{\alpha\}} W(\{\alpha\})$$
 with $W(\{\alpha\}) > 0$ No minus sign!

$$\langle A \rangle = \frac{1}{Z} \sum_{\alpha_1, \dots, \alpha_L} \langle \alpha_1 | 1 - \Delta \tau \mathcal{H} | \alpha_2 \rangle \dots \langle \alpha_L | (1 - \Delta \tau \mathcal{H}) A | \alpha_1 \rangle$$

$$\langle A \rangle = \frac{\sum_{\{\alpha\}} A(\{\alpha\}) W(\{\alpha\})}{\sum_{\{\alpha\}} W(\{\alpha\})}$$

1

Monte Carlo sampling

where $A(\{\alpha\}) = A(\alpha_1)$ if A is diagonal

Quantum Monte Carlo IV

Heisenberg AF in configuration basis:
 → All off-diagonal matrix elements are positive!

→ Bipartite lattice: rotation by π on one sublattice to change the signs of all off-diagonal matrix elements
 → Non-bipartite lattice: no way out in

configuration basis

Fully frustrated dimer models Example: fully-frustrated ladder

$$J_{ imes} = J_{\parallel}$$

$$H = J_{\parallel} \sum_{i=1}^{L} \vec{T}_{i} \cdot \vec{T}_{i+1} + J_{\perp} \sum_{i=1}^{L} \left(\frac{1}{2} \vec{T}_{i}^{2} - S(S+1) \right)$$

 $\vec{T}_i = \vec{S}_i^1 + \vec{S}_i^2$ Total spin on a rung is a good quantum number

Hamiltonian in dimer basis

In general, involves both the sum and the difference of spins on a dimer
If all exchange integrals between the spins of coupled dimers are equal (maximal frustration), the Hamiltonian can be written

in terms of the sum only

→ QMC possible if bipartite lattice of dimers

PHYSICAL REVIEW LETTERS 121, 127201 (2018)

Thermal Critical Points and Quantum Critical End Point in the Frustrated Bilayer Heisenberg Antiferromagnet

J. Stapmanns,¹ P. Corboz,² F. Mila,³ A. Honecker,⁴ B. Normand,⁵ and S. Wessel¹

Fully frustrated bilayer

Ising critical point

Ising 2D: $\alpha = 0$ C α ln L

Physical realization?

SrCu₂(BO₃)₂ Smith and Keszler, JSSC 1991

Orthogonal dimer model

Exact Dimer Ground State and Quantized Magnetization Plateaus in the Two-Dimensional Spin System SrCu₂(BO₃)₂

H. Kageyama,^{1,2,*} K. Yoshimura,^{1,3,†} R. Stern,³ N. V. Mushnikov,² K. Onizuka,² M. Kato,¹ K. Kosuge,¹ C. P. Slichter,³ T. Goto,² and Y. Ueda²

Anomalies M=0 M=1/8 M=1/4 and many more

From orthogonal dimer to Shastry-Sutherland model

From FFB to Shastry-Sutherland

Fully-frustrated bilayer

GS = product of dimers

Shastry-Sutherland model

Thermal properties of Shastry-Sutherland model Hamiltonian : cannot be written

in terms of sum of spins of dimers

$$\langle A \rangle = \frac{\sum_{c} W_{c} A_{c}}{\sum_{c} W_{c}} = \frac{\sum_{c} \operatorname{sign}(W_{c}) |W_{c}| A_{c}}{\sum_{c} \operatorname{sign}(W_{c}) |W_{c}|} = \frac{\langle \operatorname{sign} A \rangle'}{\langle \operatorname{sign} \rangle'}$$

• Up to $J/J_D = 0.526...$

 \rightarrow The model with all off-diagonal matrix elements put arbitrarily negative has the same GS

- $\rightarrow <$ sign $>' \rightarrow 1$ as T $\rightarrow 0$
- \rightarrow QMC possible!

Thermodynamic properties of the Shastry-Sutherland model from quantum Monte Carlo simulations

Stefan Wessel,¹ Ido Niesen,² Jonas Stapmanns,¹ B. Normand,³ Frédéric Mila,⁴ Philippe Corboz,² and Andreas Honecker⁵

Specific heat and susceptibility

And above $J/J_D = 0.526$?

Tensor networks

$$|\psi\rangle = \sum_{i_1...i_N} c_{i_1...i_N} |i_1\rangle \otimes \cdots \otimes |i_N\rangle$$

 $c_{i_1...i_N} \simeq$ trace over a product of tensors

Example: Matrix product state in 1D (DMRG)

$$c_{i_1 i_2 i_3 \dots} \simeq \sum_{j_1 j_2 \dots} A_{i_1}^{j_1} B_{i_2}^{j_1 j_2} C_{i_3}^{j_2 j_3} \cdots$$

Generalization to 2D

PEPS = product of entangled pair states Verstraete and Cirac, 2004

$$A_i^{j_1 j_2 j_3 j_4} = \text{rank-5 tensor}$$

$$j_1, j_2, j_3, j_4 = 1, \dots, D$$

Variational approach

PEPS: minimize the energy w.r.t. tensor elements
 Other schemes: renormalization (MERA,...)
 Advantage: dim=pol(D,N), not exp(N)
 Why can it work?
 → reproduces the 'area law' for the entanglement entropy in the GS of a local Hamiltonian

$$S = -\mathrm{tr}\left(\rho_A \log \rho_A\right) \sim \partial A$$

How large should D be? It depends...

Tensor network for T>0

 Purified state: density matrix can be written as the partial trace of a quantum state in an enlarged Hilbert space (with extra "ancilla" degrees of freedom)

T infinite: Singlets between physical and ancilla degrees of freedom

Finite T: imaginary-time evolution from T infinite

F. Verstraete, J. J. Garcia-Ripoll, and J. I. Cirac, PRL 2004

PHYSICAL REVIEW B 86, 245101 (2012)

Projected entangled pair states at finite temperature: Imaginary time evolution with ancillas

Piotr Czarnik,¹ Lukasz Cincio,² and Jacek Dziarmaga¹

PHYSICAL REVIEW B 92, 035120 (2015)

Projected entangled pair states at finite temperature: Iterative self-consistent bond renormalization for exact imaginary time evolution

Piotr Czarnik and Jacek Dziarmaga

PHYSICAL REVIEW B 99, 245107 (2019)

Finite correlation length scaling with infinite projected entangled pair states at finite temperature

Piotr Czarnik¹ and Philippe Corboz²

PHYSICAL REVIEW B 103, 075113 (2021)

Tensor network study of the $m = \frac{1}{2}$ magnetization plateau in the Shastry-Sutherland model at finite temperature

Piotr Czarnik,¹ Marek M. Rams¹,² Philippe Corboz,³ and Jacek Dziarmaga²

Thermodynamic properties of the Shastry-Sutherland model throughout the dimer-product phase

Alexander Wietek^(D),^{1,2,*} Philippe Corboz,³ Stefan Wessel,⁴ B. Normand,⁵ Frédéric Mila,⁶ and Andreas Honecker⁷

From FFB to Shastry-Sutherland

Fully-frustrated bilayer

GS = product of dimers

Shastry-Sutherland model

PHYSICAL REVIEW B 87, 115144 (2013)

Tensor network study of the Shastry-Sutherland model in zero magnetic field

Philippe Corboz¹ and Frédéric Mila²

¹Theoretische Physik, ETH Zürich, CH-8093 Zürich, Switzerland ²Institut de théorie des phénomènes physiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland (Received 13 December 2012; revised manuscript received 27 February 2013; published 27 March 2013)

iPEPS with various setups and bond dimension up to 10

iPEPS for Shastry-Sutherland

Critical point

SrCu₂(BO₃)₂ under pressure

Pressure: expected to change J/J_D and found to increase it NMR (Waki et al 2007): intermediate phase around 24 kbar, but 2 Cu sites \rightarrow NOT the expected plaquette phase! Intermediate phase confirmed by neutron scattering (Zayed et a, 2017), ESR (Sakurai et al, 2018), and specific heat (Guo et al, 2020)

Journal of the Physical Society of Japan Vol. 76, No. 7, July, 2007, 073710 ©2007 The Physical Society of Japan

A Novel Ordered Phase in SrCu₂(BO₃)₂ under High Pressure

Takeshi WAKI^{1*}, Koichi ARAI^{1†}, Masashi TAKIGAWA^{1‡}, Yuta SAIGA^{1,2}, Yoshiya UWATOKO¹, Hiroshi KAGEYAMA³, and Yutaka UEDA¹

¹Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581 ²Graduate School of Science and Engineering, Saitama University, Saitama 338-8570 ³Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502

(Received May 2, 2007; accepted May 31, 2007; published July 10, 2007)

Intermediate phase under pressure, but two types of Cu sites

NOT the empty plaquette phase

ARTICLE

Received 17 Jun 2015 | Accepted 16 May 2016 | Published 20 Jun 2016

DOI: 10.1038/ncomms11956

OPEN

Crystallization of spin superlattices with pressure and field in the layered magnet $SrCu_2(BO_3)_2$

S. Haravifard^{1,2,3}, D. Graf⁴, A.E. Feiguin⁵, C.D. Batista^{6,7,8}, J.C. Lang³, D.M. Silevitch^{2,9}, G. Srajer³, B.D. Gaulin¹⁰, H.A. Dabkowska¹⁰ & T.F. Rosenbaum^{2,9}

Second derivative of magnetization

Magnetic field response under pressure

Confirmation of a phase transition around 2GPa

physics

4-spin plaquette singlet state in the Shastry-Sutherland compound SrCu₂(BO₃)₂

M. E. Zayed^{1,2,3*}, Ch. Rüegg^{2,4,5}, J. Larrea J.^{1,6}, A. M. Läuchli⁷, C. Panagopoulos^{8,9}, S. S. Saxena⁸, M. Ellerby⁵, D. F. McMorrow⁵, Th. Strässle², S. Klotz¹⁰, G. Hamel¹⁰, R. A. Sadykov^{11,12}, V. Pomjakushin², M. Boehm¹³, M. Jiménez-Ruiz¹³, A. Schneidewind¹⁴, E. Pomjakushina¹⁵, M. Stingaciu¹⁵, K. Conder¹⁵ and H. M. Rønnow¹

Neutron scattering

J/J_D increases

Full plaquette intermediate phase

https://doi.org/10.7566/JPSJ.87.033701

Direct Observation of the Quantum Phase Transition of SrCu₂(BO₃)₂ by High-Pressure and Terahertz Electron Spin Resonance

Takahiro Sakurai^{1*}, Yuki Hirao², Keigo Hijii³, Susumu Okubo³, Hitoshi Ohta³, Yoshiya Uwatoko⁴, Kazutaka Kudo⁵, and Yoji Koike⁶

Quantum Phases of SrCu₂(BO₃)₂ from High-Pressure Thermodynamics

Jing Guo[®],¹ Guangyu Sun[®],^{1,2} Bowen Zhao[®],³ Ling Wang[®],^{4,5} Wenshan Hong,^{1,2} Vladimir A. Sidorov,⁶ Nvsen Ma,¹ Qi Wu,¹ Shiliang Li,^{1,2,7} Zi Yang Meng[®],^{1,8,7,*} Anders W. Sandvik[®],^{3,1,†} and Liling Sun[®],^{1,2,7,‡}

10

0.0

0.5

1.0

Pressure (GPa)

1.5

PS

2.0

Intermediate phase with critical temperature around 2K

Article

A quantum magnetic analogue to the critical point of water Nature | Vol 592 | 15 April 2021

https://doi.org/10.1038/s41586-021-03411-8

Received: 30 September 2020

J. Larrea Jiménez^{1,2}, S. P. G. Crone^{3,4}, E. Fogh², M. E. Zayed⁵, R. Lortz⁶, E. Pomjakushina⁷, K. Conder⁷, A. M. Läuchli⁸, L. Weber⁹, S. Wessel⁹, A. Honecker¹⁰, B. Normand^{2,11}, Ch. Rüegg^{2,11,12,13}, P. Corboz^{3,4}, H. M. Rønnow² & F. Mila²

Accepted: 26 February 2021

iPEPS for Shastry-Sutherland

Critical point around P=19 kbar and T=3.3K

Critical point in various models...

Ising in a field

 $T_c=374^{\circ}$ C $P_c=218$ bar

Shastry-Sutherland

FFB

1822: Cagniard de la Tour

J_1 - J_2 model on square lattice

 $\mathcal{H} = J_1 \sum \mathbf{S}_i \cdot \mathbf{S}_j + J_2 \sum \mathbf{S}_i \cdot \mathbf{S}_j$ NNNNN

Chandra and Douçot, PRB 1988

 $\alpha = J_2/J_1$

iPEPS for J₁-J₂ model

 \square Two helical states in collinear phase at large J_2 \rightarrow Ising transition at finite temperature Chandra, Coleman and Larkin, PRL 1990 Numerical confirmation? \rightarrow QMC: very severe minus sign problem \rightarrow iPEPS: Yes if SU(2) symmetry strictly enforced during imaginary time evolution

PHYSICAL REVIEW LETTERS 128, 227202 (2022)

Thermal Ising Transition in the Spin- $1/2 J_1$ - J_2 Heisenberg Model

Olivier Gauthé[®] and Frédéric Mila[®]

specific heat order parameter energy (c) 2.00-0.525 $+ A\tau \log \tau$ 1.2 1.2 $-E_c - B\tau \log -(\tau)$ 1.75 $\chi = 180$ 1.0 $\chi = 256$ -0.5301.0 0.8 1.500.61.25 -0.5350.8 0.4 1.00.21.000.6 -0.5400.06 0.08 0.10 0.12 0.75 10^{-3} 10^{-2} 10^{-1} 0.4-0.5450.50 0.2 $\beta = 0.125$ 0.25-0.550 $\chi = 180$ = 180 $\gamma = 256$ $\chi = 256$ 0.150 0.0 0.0500.0750.1000.1250.51.01.52.0 0.050 0.0750.100 0.1250.150 T/J_1 T/J_1 T/J_1

 $J_2/J_1 = 0.85$

Ising transition for J_2/J_1 large enough from finite T iPEPS

Phase diagram of J₁-J₂ model

Conclusions

Thermal properties of frustrated quantum magnets are no longer inaccessible \rightarrow QMC: sometimes possible, e.g. in dimer basis \rightarrow iPEPS: thermal Ising transition and critical point in J₁-J₂ and Shastry-Sutherland models Extensions: \rightarrow QMC: generalize to other situations \rightarrow iPEPS: combine with real-time evolution to access T dependence of spectral function

