

Theory of absorption in the Shastry-Sutherland material SrCu₂(BO₃)₂

Shin Miyahara (Fukuoka University, Japan)

Acknowledgement

Nobuo Furukawa (Aoyama Gakuin University, Japan)

Isao Maruyama (Fukuoka Institute of Technology, Japan)

Outline

- 1. Introduction
- 2. Frustrated magnetism $SrCu_2(BO_3)_2$
- 3. Dynamical magnetoelectric effects in SrCu₂(BO₃)₂
- 4. Conclusion

Magnetoelectric(ME) effects

conventional materials

P can be tuned by electric field *EM* can be tuned by magnetic field *H*

multiferroics coexistence of multi (anti)ferroic orders

> magnetoelectric multiferroics coexistence of *P* and *M*

P can be tuned by magnetic field *H M* can be tuned by electric field *E*

ferroelectricity *P*, ferromagnetism *M*

coupling between **P** and **M** e.g. spin current mechanism $P_{ij}^{sc} = de_{ij} \times (S_i \times S_j)$

Electric polarization due to spin current mechanism

Electric polarization due to spin-current (inverse DM interaction) mechanism

 $\boldsymbol{P}_{ij}^{\rm sc} = d\boldsymbol{e}_{ij} \times (\boldsymbol{S}_i \times \boldsymbol{S}_j)$

coupling between *P* and spin-pair

H. Katsura *et al.*, Phys. Rev. Lett. **95** 057205 (2005),
M. Mostovoy, Phys. Rev. Lett. **96** 067601 (2006)
I.A. Sergienko and E. Dagotto, Phys. Rev. Lett. **96** 067601 (2006)

Dynamical magentoelectric effects

dynamical ME effect: cross correlation by time-dependent fields $M(\omega)$ is induced by electric field $E(\omega)$ $P(\omega)$ is induced by magnetic field $H(\omega)$

exploring other cases of the electro-active magnetic excitation

spin gap system SrCu₂(BO₃)₂

Two-dimensional spin gap system SrCu₂(BO₃)₂

Cu(BO₃) plane spin singlet ground state spin gap $\Delta \sim 35$ K, 730 GHz magnetization plateaux

Shastry-Sutherland model exact dimer singlet states

B.S. Shastry and B. Sutherland, Physica B 108 1069 (1981)
H. Kageyama *et al.*, Phys. Rev. Lett. 82 3168 (1999)
S. Miyahara and K. Ueda, Phys. Rev. Lett. 82 3701 (1999)

Magnetic features of $SrCu_2(BO_3)_2$

spin gap $\Delta \sim$ 700 GHz B (T)

splitting of the triplet excitation due to DM interactions

H. Nojiri et al, J. Phys. Soc. Jpn. 68 2906 (1999), ibid. 72 3243 (2003)

T. Rõõm et al, Phys. Rev. B 61 14342 (2000)

O. Cepas et al, Phys. Rev. Lett. 87 167205 (2001)

magnetization plateaux at 1/4, 1/3, 1/2

Y.H. Matsuda et al, Phys. Rev. Lett. 111 137204 (2013)

Exact ground state and spin gap of the Shastry-Sutherland model

Absorption of spin excitation in $SrCu_2(BO_3)_2$

spin gap excitation

transition from singlet g.s. to triplet excitations forbidden transition in Heisenberg model

c.f. Anisotropic terms induce magneto active mode. *e.g.* M. Oshikawa , JPSJ **72** Suppl. B 36 (2003), T. Saka and H. Shiba JPSJ **63** 867 (1994) Experimentally, spin gap and bound states of triplet excitations have been observed in absorption

Purpose : clarify the origin of the spin gap excitation (selection rule of absorption)

Dynamical electric susceptibility

Dynamical electric susceptibility

$$\varepsilon_{\alpha\alpha}^{\beta}(\omega) \propto \left\langle 0 \left| \hat{P}_{\alpha}^{\beta\dagger} \frac{1}{\omega + E_0 + i\varepsilon - \hat{H}} \hat{P}_{\alpha}^{\beta} \right| 0 \right\rangle$$
$$\alpha = x, y, z \qquad \beta = AS, S$$

В

Α

Π

х

y

spin current mechanism

$$\widehat{\boldsymbol{P}}^{\text{AS}} = \sum_{\text{n.n.}} d\boldsymbol{e}_{ij} \times (\boldsymbol{S}_i \times \boldsymbol{S}_j)$$

$$\boldsymbol{E}(\boldsymbol{\omega}) \perp z \quad \boldsymbol{E}(\boldsymbol{\omega}) \parallel z$$

exchange striction mechanism

$$\widehat{\boldsymbol{P}}^{\mathrm{S}} = \sum_{\mathrm{n.n.n.}} \Pi \boldsymbol{e}_{ij} \, \boldsymbol{S}_i \cdot \boldsymbol{S}_j$$

 $E(\boldsymbol{\omega}) \perp z$

the continued fraction method by using Lanczos method

Comparison with the perturbation calculation

Comparison with the perturbation calculation

3rd order of perturbation

K. Totsuka et al, Phys. Rev. Lett. 86 520 (2001)

Absorption of spin excitation in $SrCu_2(BO_3)_2$

spin gap excitation

transition from singlet g.s. to triplet excitations forbidden transition in Heisenberg model

c.f. Anisotropic terms induce magneto active mode. *e.g.* M. Oshikawa , JPSJ **72** Suppl. B 36 (2003), T. Saka and H. Shiba JPSJ **63** 867 (1994) Experimentally, spin gap and bound states of triplet excitations have been observed in absorption

Purpose : clarify the origin of the spin gap excitation (selection rule of absorption)

Effects of Dzyaloshinskii-Moriya interaction

$$\widehat{H}_{DM} = \sum_{n.n.} D_{ij} \cdot (S_i \times S_j) + \sum_{n.n.n.} D'_{ij} \cdot (S_i \times S_j)$$

$$D_{ij} = \begin{cases} (0, D, 0) & A \text{ bond} \\ (D, 0, 0) & B \text{ bond} \end{cases} D'_{ij} = (0, 0, \pm D')$$

$$D = D' \neq 0 \qquad |T\rangle$$

$$D = D' \neq 0 \qquad |S\rangle$$

$$D = D' = 0$$

$$B \qquad \text{splitting of the triplet excitation}$$

O. Cepas et al, Phys. Rev. Lett. 87 167205 (2001), K. Kodama et al, J. Phys.: Condens. Matter 17 L61 (2005)

B

Electro active magnetic excitation in $SrCu_2(BO_3)_2$

The peak positions and selection rules of the main peaks are consistent with FIR experiment.

The magneto active excitations

DM interactions allow magneto active excitation

T. Sakai et al. J. Phys. Soc. Jpn. 69 3521 (2000)

dynamical magnetic susceptibilities

$$\mu_{\alpha\alpha}(\omega) \propto \left\langle 0 \left| \widehat{M}_{\alpha}^{\dagger} \frac{1}{\omega + E_0 + i\varepsilon - \widehat{H}} \, \widehat{M}_{\alpha} \right| 0 \right\rangle$$
$$\widehat{M} = \sum S_i \qquad \alpha = x, y, z$$

dynamical electric susceptibility

$$J = 85 \text{K} \sim 59 \text{ cm}^{-1}, \frac{J'}{J} = 0.635, \frac{D}{J} = 0.034, \frac{D'}{J} = 0.02,$$

Magnetic field dependence $B^{ex} \parallel z$

singlet-triplet excitation allowed due DM interaction

singlet-triplet excitation induced by electric components of light bound states of two triples induced by electric components of light

Comparison with ESR

Comparison with FIR

Conclusion

Conclusion

- The spin-electron coupling and DM interactions allow an absorption in SrCu₂(BO₃)₂.
 - The selection rule is consistent with experimental observation
 - Magnetic excitations are allowed by the spin-electron coupling even in Heisenberg model.

c.f. TlCuCl₃: S. Kimura *et al.* J. Magn. Magn. Mater. **310** 1218 (2007), KCuCl₃: S. Kimura *et al.* Appl. Magn Reson. **46** 1035 (2015)

The clarification of magnetic excitation processes induced by $E(\omega)$ can play an important role in the investigation of magnetic excitation in non-magnetic ground states.

Open issues

The selection rule in the plaquette singlet state

pressure induced phase transition in in SrCu₂(BO₃)₂ T. Sakurai *et al*, J. Phys. Soc. Jpn. **87** 033701 (2018)

The proposal of the novel magnetic excitations and magnetoelectric effects in spin systems