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Open quantum many-body systems

system environment 
or bath

cold atoms: highly controllable isolated quantum systems

foundation of statistical mechanics (thermalization)

quantum control of many-body systems (Floquet engineering)

unavoidable dissipation in condensed matters

controlled dissipation in recent cold-atom experiments
dissipation engineering→

J. T. Barreiro et al., Nature (2011)

G. Barontini et al., Phys. Rev. Lett. (2013)

T. Tomita et al., Sci. Adv. (2017)

important problem: taking into account the effect of dissipation



➤ Gap discrepancy problem and its resolution


➤ general upper bound on the auto-correlation function in the 
steady state: “instantaneous decay rate”

Outline

TM and T. Shirai, Phys. Rev. Lett. 125, 230604 (2020)

TM and T. Shirai, to appear soon on arXiv

relaxation time  in open quantum systemsτ

dρS(t)
dt

= − ℒρS(t) ℒ → τ?
Liouvillian

: spectral gap of   “Liouvillian gap”g ℒ τ ≲ g−1



Lindblad equation (GKLS equation)

dynamics of open quantum systems
Markov approximation: Lindblad (GKLS) equation

dρ(t)
dt

= − i[H, ρ(t)] + ∑
k

(Lkρ(t)L†
k −

1
2

{L†
k Lk, ρ(t)})

 : Lindblad jump operatorLk
 particle loss Lk = bi

particle gain Lk = b†
i dephasing Lk = b†

i bi

two-body loss Lk = (bi)2

boundary dissipation bulk dissipation
dissipation only at the boundaries dissipation in the bulk



Liouvillian and its eigenmodes

dρ(t)
dt

= − i[H, ρ(t)] + ∑
k

(Lkρ(t)L†
k −

1
2

{L†
k Lk, ρ(t)})

= − ℒρ(t)

 Liouvillian (superoperator)ℒ

eigenvalues and eigenmodes ℒρn = λnρn

0 = λ0 < Re λ1 ≤ Re λ2 ≤ …

: unique steady state 
: decaying eigenmodes; decay rate

n = 0
n ≠ 0 = Re λn

ρ(t) = e−ℒtρ(0) = ρss + ∑
n≠0

Cne−λntρn

ρ0 = ρss



Liouvillian gap and relaxation time

ρ(t) = e−ℒtρ(0) = ρss + ∑
n≠0

Cne−λntρn

Liouvillian gap :  the smallest decay rateg

g = Re λ1

0 = λ0 < Re λ1 ≤ Re λ2 ≤ …

relaxation time :τ

τ ≲ g−1

∥ρ(τ) − ρss∥tr = ϵ

∥ρ(t) − ρss∥tr ≲ e−gt (t → ∞)

“asymptotic decay rate”

∥ ̂A∥tr = Tr | ̂A |trace norm

: a fixed thresholdϵ



boundary dissipated systems

e.g. 1D spin system

energy flow

bulk Hamiltonian: non-integrable (chaotic)

diffusive transport of energy

relaxation time scales as τ ∼ L2

Liouvillian gap should be scaled as g ∼ L−2

L



gap discrepancy problem

numerical evidence of  in chaotic spin chains with 
boundary dissipation

g ∼ L−1

This is not exceptional: 
many models show g ≫ L−2

M. Znidaric, Phys. Rev. E (2015)

staggered XXZ model

H =
L−1

∑
i=1

(σx
i σx

i+1 + σy
i σy

i+1 + Δσz
i σz

i+1) +
L

∑
i=1

biσz
i bi = (−1, −

1
2

,0, − 1, −
1
2

,0,…)

 when g ∼ L−1 Δ < 1

τ ≲ g−1τ ≫ g−1

L̂1 = γ ̂σz
1

with boundary dephasing

L̂2 = γ ̂σz
L

(naive expectation)(numerical results)



model

bulk Hamiltonian: 1D hard-core Bose-Hubbard

H = − h
L−1

∑
i=1

(b†
i bi+1 + b†

i+1bi) + U
L−1

∑
i=1

(ni −
1
2 ) (ni+1 −

1
2 )

h = U = 1, h′￼= U′￼= 0.24

This model is chaotic L. F. Santos and M. Rigol, Phys. Rev. E (2010)

boundary dephasing

L1 = γb†
1 b1, L2 = γb†

LbL γ = 4

 is conserved: the sector of N =
L

∑
i=1

ni =
L

∑
i=1

b†
i bi N =

L
2
 or 

L − 1
2

−h′￼

L−2

∑
i=1

(b†
i bi+2 + b†

i+2bi) + U′￼

L−2

∑
i=1

(ni −
1
2 ) (ni+2 −

1
2 )



Liouvillian gap
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time evolution of the trace distance: two timescales

dT(t) = ∥ρ(t) − ρss∥tr
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The crossover time to the asymptotic regime diverges 
in the thermodynamic limit

asymptotic decay：g−1 ∼ L1.6

initial plateau Δt ∼ L2

overall relaxation time ∝ L2

sudden decay Δt ∼ O(1)



understanding from eigenmode decays

ρ(t) = e−ℒtρ(0) = ρss + ∑
n≠0

Cne−λntρn

normalization for right eigenmodes: ∥ρn∥tr = 1

Cn =
⟨πn, ρ(0)⟩
⟨πn, ρn⟩

: left eigenmodesπn π†
nℒ = λnπ†

n

inner product ⟨A, B⟩ = Tr [A†B]

bi-orthogonality ⟨πn, ρm⟩ = 0 for n ≠ m

normalization for left eigenmodes: ∥πn∥op = 1

trace norm and operator norm are dual: |⟨A, B⟩ | ≤ ∥A∥op∥B∥tr

∥ρ(t) − ρss∥tr ≤ ∑
n≠0

|Cn |e−Re λnt



upper bounds on expansion coefficients

|⟨A, B⟩ | ≤ ∥A∥op∥B∥tr

Cn =
⟨πn, ρ(0)⟩
⟨πn, ρn⟩

|Cn | ≤
1

⟨πn, ρn⟩

|⟨πn, ρ(0)⟩ | ≤ ∥πn∥op∥ρ(0)∥tr = 1

vanishingly small eigenmode overlap  diverging expansion coeff.→

ρ(t) = e−ℒtρ(0) = ρss + ∑
n≠0

Cne−λntρn

decay time for th eigenmode: n

τn ∼
ln |Cn |
Re λn

≤
ln Φn

Re λn
=: τ̄n

maximum relaxation time is identified with

Φn = ⟨πn, ρn⟩−1

τ ≲ τmax := max
n≠0

τ̄n



Comparison with the previous formula

previous formula

τmax = max
n≠0

ln(1/ϵ)
Re λn

=
ln(1/ϵ)

g
τmax = max

n≠0

ln(Φn/ϵ)
Re λn

new formula

Φn = ⟨πn, ρn⟩−1

Small eigenmode overlap can alter the relaxation time

If  depends on the system size , it even changes the scaling in Φn L L



evidence of large  (= small eigenmode overlap)Cn
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1D Bose-Hubbard with boundary dephasing

τ̄n =
ln Φn

Re λn
= O(L2) diffusive relaxation time!



summary of diffusive relaxation time

➤ System size dependence of the relaxation time is not 
necessarily determined by the Liouvillian gap 
(gap discrepancy problem)


➤ Trace distance from the steady state shows an initial plateau 
over a time interval , and then rapidly decays and 
enters the asymptotic regime with the decay rate 


➤ Explosively large expansion coefficients  at 
 leads to 


➤ Vanishingly small eigenmode overlaps  give 
rise to such large expansion coefficients

Δt ∼ L2

g

|Cn | ∼ eO(L2)

Re λn = O(1) τ̄n ∼ L2

⟨πn, ρn⟩ = e−O(L2)

TM and T. Shirai, Phys. Rev. Lett. (2020)



comment 1: exceptional points

Large expansion coefficients are typically observed near an 
exceptional point

Near an exceptional point , the eigenmode overlap 
typically vanishes as 

|λn − λm | = ϵ
⟨πn, ρn⟩ ∼ ϵ

Vanishingly small eigenmode overlaps  found in 
the boundary dissipated 1D Bose-Hubbard model are not due 
to an exceptional point

⟨πn, ρn⟩ = e−O(L2)
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|λn − λm | = e−O(L) ≫ ⟨πn, ρn⟩ = e−O(L2)



comment 2: effect of non-Hermiticity

Hermitian case πn ∝ ρn ∥πn∥op = 1, ∥ρn∥tr = 1

⟨πn, ρn⟩ >
1
D

= e−O(L)

Gap discrepancy can happen even in Hermitian case, 
but super-exponentially small overlap  is impossible⟨πn, ρn⟩ = e−O(L2)

Non-Hermiticity of the Liouvillian is essential for diffusive 
relaxation time  in boundary dissipated chaotic systemsτ ∼ L2

 dimension of the Hilbert spaceD



comment 2: effect of non-Hermiticity

a simple model of single particle with asymmetric hopping

dρ
dt

=
L−1

∑
i=1

∑
α=left,right

(Li,αρL†
i,α −

1
2

{L†
i,αLi,α, ρ})

Li,left = γLb†
i bi+1 Li,right = γRb†

i+1bi

γR

γL

Liouvillian skin effect
T. Haga, M. Nakagawa, R. Hamazaki, and M. Ueda, Phys. Rev. Lett. (2021)

πn ρn
⟨πn, ρn⟩ = e−O(L)

x = 0 x = L

γR > γL

τ = O(L)
g = O(1)

γL ↔ γR



comment 3: classical Markov processes

Gap discrepancy problem also happens in classical Markov jump 
processes

d
dt

Pn(t) = − ∑
m

RnmPm(t)

spectral gap  of the transition rate matrix g R

relaxation time τ

In some models,  (gap discrepancy)τ ≫ g−1

Gap discrepancy problem is not a quantum effect



comment 4: metastability

So far, metastability has been characterized as a vanishingly small 
gap of Liouvillian or transition-rate matrix

0 < g = Re λ1 ≪ Re λ2 ≤ Re λ3 ≤ …

A mathematical theory on how to construct metastable states was 
developed

Metastability associated with a small eigenmode overlap?

B. Gaveau and L. S. Schulman, J. Phys. A (1987)

B. Gaveau and L. S. Schulman, J. Math. Phys. (1998) 
G. Biroli and J. Kurchan, Phys. Rev. E (2001)
metastability in open quantum systems:
K. Macieszczak, M. Guta, I. Lesanovsky,and J. P. Garrahan, Phys. Rev. Lett. (2016)

D. C. Rose, K. Macieszczak, I. Lesanovsky, and J. P. Garrahan, Phys .Rev. E (2016)



comment 4: metastability

EB
g

g

double-well potential with barrier EB

and energy difference ε

 : interaction between particles in the same wellg

Hamiltonian H = N+ε −
g
N [ N+(N+ − 1)

2
+

N−(N− − 1)
2 ]

 particlesN− = N − N+

Markov jump with detailed balance

metastability induced by large  or large EB g

 particlesN+

For sufficiently large , the gap of the 
transition rate matrix  is 
independent of 

N
R

g

d
dt

⃗P (t) = − R ⃗P
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gap

metastability at strong  is not captured 
by the spectral gap
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independent of g



comment 4: metastability

EB
g

g

double-well potential with barrier EB

and energy difference ε

 : interaction between particles in the same wellg

Hamiltonian H = N+ε −
g
N [ N+(N+ − 1)

2
+

N−(N− − 1)
2 ]

 particlesN− = N − N+

Markov jump with detailed balance

metastability induced by large  or large EB g

 particlesN+

For sufficiently large , the gap of the 
transition rate matrix  is 
independent of 

N
R

g

TM, Phys. Rev. Res. (2021)

metastability with large  is explained by 
vanishing eigenmode overlaps: 

g
τmax ∼ eβg
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➤ Gap discrepancy problem and its resolution


➤ general upper bound on the auto-correlation function in the 
steady state: “instantaneous decay rate”

Outline

TM and T. Shirai, Phys. Rev. Lett. 125, 230604 (2020)

TM and T. Shirai, to appear soon on arXiv

relaxation time  in open quantum systemsτ

dρS(t)
dt

= − ℒρS(t) ℒ → τ?
Liouvillian

: spectral gap of   “Liouvillian gap”g ℒ τ ≲ g−1



asymptotic and instantaneous decay rates

autocorrelation in the steady state

CAA(t) = Tr[ ̂A(t) ̂Aρss]

̂A(t) = e−ℒ̃t ̂A  is an adjoint of ℒ̃ ℒ

−ℒρ = − i[Ĥ, ρ] + ∑
k

(L̂kρL̂†
k −

1
2

{L̂†
kL̂k, ρ})

Tr[ ̂Aℒρ] = Tr[(ℒ̃ ̂A)ρ]

−ℒ̃ ̂A = i[Ĥ, ̂A] + ∑
k

(L̂†
k

̂AL̂k −
1
2

{L̂†
kL̂k, ̂A})

asymptotic decay rate: Liouvillian gap

CAA(t) ∼ e−gt (t → ∞)

but crossover time to the asymptotic regime might be too long

instantaneous decay rate in a transient regime?

Tr[ ̂Aρss] = 0



characterization of the instantaneous decay rate

define an inner product ⟨ ̂A, B̂⟩ss = Tr[ ̂A†B̂ρss]

CAA(t) = ⟨ ̂A(t), ̂A⟩ss

KA(t) =
⟨ ̂A(t), 𝒦 ̂A(t)⟩ss

⟨ ̂A(t), ̂A(t)⟩ss
instantaneous decay rate

symmetrized Liouvillian 𝒦 =
ℒ̃ + ℒ̃*

2

|CAA(t) | ≤ e− ∫t
0 KA(s)dsCAA(0)

( ̂A = ̂A†)

↔ ⟨ ̂A, B̂⟩ = Tr[ ̂A†B̂]
R. Alicki, Rep. Math. Phys. (1976)

Theorem

 is defined by ℒ̃* ⟨ ̂A, ℒ̃B̂⟩ss = ⟨ℒ̃* ̂A, B̂⟩ss

Hermitian in the Hilbert space 
associated with ⟨ ⋅ , ⋅ ⟩ss



properties of the instantaneous decay rate

KA(t) =
⟨ ̂A(t), 𝒦 ̂A(t)⟩ss

⟨ ̂A(t), ̂A(t)⟩ss
instantaneous decay rate

KA(t) ≥ gK

𝒦 =
ℒ̃ + ℒ̃*

2

|CAA(t) | ≤ e−gKtCAA(0) We can show 0 ≤ gK ≤ g

it converges to the Liouvillian gap in the long-time limit

lim
t→∞

KA(t) = g

it is bounded from below by the spectral gap  of the 
symmetrized Liouvillian  (“symmetrized Liouvillian gap”)

gK
𝒦

The detailed balance condition implies g = gK
R. Alicki, Rep. Math. Phys. (1976) [ℒ̃, ℒ̃*] = 0

(eigenvalue of ) = (real part of eigenvalue of )𝒦 ℒ̃



Numerics in Born-Markov-secular Lindblad equation

e−gt
e−gKt

βL ≠ βR, μL ≠ μRβL = βR, μL = μR

interacting double quantum dots

βL, μL βR, μR

ε1 ε2v

U

e−gt = e−gKt

CHH(t) = ⟨ĤS(t)ĤS⟩ss

CHH(t)/CHH(0)



summary and outlook

➤ The Liouvillian gap does not necessarily give the maximum 
relaxation time (gap discrepancy problem)


➤ This problem is resolved by taking into account an explosive 
growth of expansion coefficients due to vanishingly small 
eigenmode overlaps 

➤ We give a bound on the autocorrelation function in the steady 
state by using the instantaneous decay rate 


➤ The instantaneous decay rate is generally bounded from below by 
the spectral gap of the symmetrized Liouvillian


➤ Our numerical calculations show that the symmetrized Liouvillian 
gap gives a tight bound at short times

KA(t)

TM and T. Shirai, Phys. Rev. Lett. 125, 230604 (2020)

TM and T. Shirai, to appear soon on arXiv


