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Open quantum many-body systems

cold atoms: highly controllable isolated quantum systems

foundation of statistical mechanics (thermalization)

quantum control of many-body systems (Floquet engineering)

important problem: taking into account the effect of dissipation
unavoidable dissipation in condensed matters

controlled dissipation in recent cold-atom experiments

—dissipation engineering

X aigelalast-laid J. T. Barreiro et al., Nature (2011)
SYSTEIT e G. Barontini et al., Phys. Rev. Lett. (2013)

T. Tomita et al., Sci. Adv. (2017)




Outline

relaxation time 7 in open quantum systems

do(t Liouvillian
p;t( ) D) L1

» Gap discrepancy problem and its resolution

TM and T. Shirai, Phys. Rev. Lett. 125, 230604 (2020)

g: spectral gap of & “Liouvillian gap” T g_l

» general upper bound on the auto-correlation function in the
steady state: “instantaneous decay rate”

TM and T. Shirai, to appear soon on arXiv



Lindblad equation (GKLS equation)

dynamics of open quantum systems
Markov approximation: Lindblad (GKLS) equation

dp(1)

| 1
el iH, p()] + ; (Lkﬂ(f)L,j - E{L,ij»P(f)})

L, : Lindblad jump operator
particle loss L, = b; two-body loss L, = (b;)?
particle gain L, = b; dephasing L, = b;bl-

boundary dissipation bulk dissipation

dissipation only at the boundaries dissipation in the bulk




Liouvillian and its eigenmodes

d I
—= = —i[H,p(O] + ) (Lkp(ﬁL,j - E{L,ka,ﬂ(f)}>
= — Zp(1) k

Z Liouvillian (superoperator)

eigenvalues and eigenmodes Zp, = 4,p,
p() = e~7'p(0) = p+ Y C,e™™'p,
n+0

n = 0: unique steady state Py = P
n # 0: decaying eigenmodes; decay rate = Re /4,



Liouvillian gap and relaxation time

Liouvillian gap g: the smallest decay rate

g = Re }, "asymptotic decay rate”

relaxation time 7: |[p(7r) — p .l =€ e: a fixed threshold

trace norm ||A||tr =Tr|A]

o) — plly S €78 (t > )



boundary dissipated systems

e.g. 1D spin system

energy flow
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bulk Hamiltonian: non-integrable (chaotic)

diffusive transport of energy

relaxation time scales as 7 ~ L?

Liouvillian gap should be scaled as g ~ L™



gap discrepancy problem

numerical evidence of g ~ L™ in chaotic spin chains with
boundary dissipation M. Znidaric, Phys. Rev. E (2015)

—1

(numerical results) 7> g TS g_l (naive expectation)

staggered XXZ model
1 1
H= Z( ;0 + 00  + Acio >+Zb0 b; = <—1,—5,o,—1,—5,o,...>

with boundary dephasing 1 %

Ly =,/r6] L,=4/r6}] g
_1 0.1 Ko
g~ L "whenA <1 :
This is not exceptional:
many models show g > L2 001F 475 6 78910L .
4 10 16 18

L



bulk Hamiltonian: 1D hard-core Bose-Hubbard
L—1 : : L—1 1 1
H=—h (b.b. +b b->+U R Y
iZZI i i+l i+171 lzzl <nz 2> <nz+1 2>
L-2 L—-2 1 1
-nYy (bjb,.+2 + bl zbi) rUy <nl- - 5) <n,.+2 _ 5)

h=U=1, h"=U=0.24

L L L L-1
N = 2 n, = Z b'b; is conserved: the sector of N = — or

i=1 i : :

This model is chaotic L.F. santos and M. Rigol, Phys. Rev. E (2010)

boundary dephasing



Liouvillian gap
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slope 1.6 —

0.01

g ~ L—1.6 > L—2



time evolution of the trace distance: two timescales

dT(t) — “,O(f) _ pss”tr 10° |

initial plateau At ~ L? &
sudden decay Ar ~ O(1)
asymptotic decay : g7! ~ L!° g
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overall relaxation time « L’ dashed lines: slope -g

The crossover time to the asymptotic regime diverges
in the thermodynamic limit



understanding from eigenmode decays

p() = e~ 7'p(0) = p+ ) Cie™Mp,  Ip(t) = pyll, < D' | C,|eReM
n#0 n#0

normalization for right eigenmodes: |p |, =1

(r,, p(0)) n : left eigenmodes 7, % = A,

C =
(Tp> Pn) inner product (A, B) = Tr[AB]

n

bi-orthogonality (z,.p,)=0forn#m

normalization for left eigenmodes: ||z ||, =1

trace norm and operator norm are dual: |{(A,B)| < HAHOPHBHU.



upper bounds on expansion coefficients

[{AB) | < ANl IBlly 147 pO) | < 17, llopllp O, = 1

_ {7, p(0)) C | < 1

(T ) (T )

Cn

vanishingly small eigenmode overlap — diverging expansion coeff.

p(t) = e7'p(0) = py + Z C,.e™'p,
n+0

decay time for nth eigenmode:

In|C,| _ In®d, |
T, ~ =7 O = N
" Red, ~Rex, " T P

maximum relaxation time is identified with 7 < 7, ;= max7,
n+0



Comparison with the previous formula

previous formula new formula
In(1/¢) In(1/¢) In(®, /€)
T ... = Max = T... = Max
n#0 Red, g n#0 ReA,

D, = (1, p,)"

Small eigenmode overlap can alter the relaxation time

If & depends on the system size L, it even changes the scaling in L



evidence of large C, (= small eigenmode overlap)
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- In®,
" Rel,

= O(L?) diffusive relaxation time!



summary of diffusive relaxation time

TM and T. Shirai, Phys. Rev. Lett. (2020)

» System size dependence of the relaxation time is not
necessarily determined by the Liouvillian gap
(gap discrepancy problem)

» Trace distance from the steady state shows an initial plateau
over a time interval At ~ L?, and then rapidly decays and

enters the asymptotic regime with the decay rate g

» Explosively large expansion coefficients |C, | ~ eOL) at
Reld, = O(1)leadsto 7, ~ L*

- . _O(LY) -
> Vanishingly small eigenmode overlaps (x,, p,) = e %L give
rise to such large expansion coefficients



comment 1: exceptional points

Large expansion coefficients are typically observed near an
exceptional point

Near an exceptional point |4, — 4 | = ¢, the eigenmode overlap

typically vanishes as (7, p,) ~ €

Vanishingly small eigenmode overlaps (z, p,) = e 2L found in
the boundary dissipated 1D Bose-Hubbard model are not due
to an exceptional point
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comment 2: effect of non-Hermiticity

Hermitian case 7, xp, |z llop =1, Mloplle =1

1

T, p,) >— =
(s Pp) 5

e~ %L D dimension of the Hilbert space

Gap discrepancy can happen even in Hermitian case,
[} — 2 [ ] [ ] [ )
but super-exponentially small overlap (,, p,) = e %" is impossible

Non-Hermiticity of the Liouvillian is essential for diffusive
relaxation time 7 ~ L? in boundary dissipated chaotic systems



comment 2: effect of non-Hermiticity

Liouvillian skin effect
T. Haga, M. Nakagawa, R. Hamazaki, and M. Ueda, Phys. Rev. Lett. (2021)

a simple model of single particle with asymmetric hopping

YR
=
R -
o o0 o -2 X (LaPL S (L, ,a,p}>
(- i=1 a=left,right
YL '
Li,left — yLbi bi+1 Li,right \/ l_|_1 z
YR~ VL Vi < Yr _ ow
<ﬂn9 pn) = €
g = O(1)



comment 3: classical Markov processes

Gap discrepancy problem also happens in classical Markov jump
processes

spectral gap g of the transition rate matrix R

relaxation time 7

In some models, 7 > g~ ! (gap discrepancy)

Gap discrepancy problem is not a quantum effect



comment 4: metastability

So far, metastability has been characterized as a vanishingly small
gap of Liouvillian or transition-rate matrix

0<g=Rei <KReld, <ReHK < ...

A mathematical theory on how to construct metastable states was

developed

B. Gaveau and L. S. Schulman, J. Phys. A (1987)
B. Gaveau and L. S. Schulman, J. Math. Phys. (1998)
G. Biroli and J. Kurchan, Phys. Rev. E (2001)

metastability in open quantum systems:

K. Macieszczak, M. Guta, l. Lesanovsky,and J. P. Garrahan, Phys. Rev. Lett. (2016)
D. C. Rose, K. Macieszczak, I. Lesanovsky, and J. P. Garrahan, Phys .Rev. E (2016)

Metastability associated with a small eigenmode overlap?



comment 4: metastability TM, Phys. Rev. Res. (2021)

Hamiltonian H = N,e - o

double-well potential with barrier Ey

and energy difference ¢

g ' interaction between particles in the same well

N,(N,-1) N_(N_-1)
+

2 2

Markov jump with detailed balance i?(t) = —RP

metastability induced by large E; or large g

4

5 L

For sufficiently large N, the gap of the 035 |
transition rate matrix R is .

independent of g 9apP .|
metastability at strong g is not captured Oolj :

0.05

by the spectral gap

03t

dt

independent of g

0



comment 4: metastability TM, Phys. Rev. Res. (2021)

double-well potential with barrier Ey

and energy difference ¢

g ' interaction between particles in the same well

1 _
g | NL(V, ) n N_(N_-1)

Hamiltonian H = N,e -
2 2

Markov jump with detailed balance di?(t) = —RP
!

metastability induced by large Ez or large g 100 |

Tnax —+—
For sufficiently large N, the gap of the
transition rate matrix R is
independent of g
metastability with large g is explained by 10
vanishing eigenmode overlaps: 7, ~ e/ o bz0 4



Outline

relaxation time 7 in open quantum systems

» Gap discrepancy problem and its resolution

do(t Liouvillian
p;t( ) D) L1

TM and T. Shirai, Phys. Rev. Lett. 125, 230604 (2020)

g: spectral gap of & “Liouvillian gap” T

~

\_

steady state: “instantaneous decay rate”

TM and T. Shirai, to appear soon on arXiv

~

» general upper bound on the auto-correlation function in the

J




asymptotic and instantaneous decay rates

autocorrelation in the steady state

C () = TrI[A(DAp,] Tr[Ap.] =0

Va\

A(r) = e_gtA Zis an adjointof & Tr[AZp] = Tr[(ZA)p]
—Fp=—ilHl p]+ Zk: (ikpli;g - %{Ii;gtk, p}>
Zh=in A1+ Y (z:;m:k . {z:;;z:k,A}>

asymptotic decay rate: Liouvillian ggap

Cyn(t) ~ €78 (t — o0)

but crossover time to the asymptotic regime might be too long

instantaneous decay rate in a transient regime?



characterization of the instantaneous decay rate

define an inner product (A,I?)SS = Tr[/ﬁépss] o (A, B) = Tr[A'B]
R. Alicki, Rep. Math. Phys. (1976)

Coia(D) = (A(D),A),, (A=A"

SS

symmetrized Liouvillian % =

L+ L* Hermitian in the Hilbert space
2

associated with ( -, - )

Theorem |C, ()] < e hK&aC, (0)
(A(t), HA®D)),,
(A(f), A1) )

instantaneous decay rate K,(7) =



properties of the instantaneous decay rate

A(r), KAt
instantaneous decay rate K,(f) = AW D)ss FH =

(A(D), A(1))

® it converges to the Liouvillian gap in the long-time limit

lim K,(1) = g

[— o0

® itis bounded from below by the spectral gap gy of the

symmetrized Liouvillian # (“symmetrized Liouvillian gap”)
K,(t) > gk | Cy4(0) ] < e78C, 4 (0) We can show 0 < g, < g
® The detailed balance condition implies g = g

R. Alicki, Rep. Math. Phys. (1976) [¥, &¥*] =0

(eigenvalue of #') = (real part of eigenvalue of &)



Numerics in Born-Markov-secular Lindblad equation

interacting double quantum dots

Pr = Pr;

Hp = KR

€1

I Cunt) = (A0OA),,

—— auto-correlation function
Liouvillian gap
symmetrized Liouvillian gap

Cpypy()/ Cpypy(0)

v
—
<4
U

Pr# Pr»  Mp F Mg

—— auto-correlation function

Liouvillian gap
symmetrized Liouvillian gap
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summary and outlook

TM and T. Shirai, Phys. Rev. Lett. 125, 230604 (2020)

» The Liouvillian gap does not necessarily give the maximum
relaxation time (gap discrepancy problem)

» This problem is resolved by taking into account an explosive
growth of expansion coefficients due to vanishingly small
eigenmode overlaps

TM and T. Shirai, to appear soon on arXiv

» We give a bound on the autocorrelation function in the steady
state by using the instantaneous decay rate K,(?)

» The instantaneous decay rate is generally bounded from below by
the spectral gap of the symmetrized Liouvillian

» Our numerical calculations show that the symmetrized Liouvillian
gap gives a tight bound at short times



