Exploring Quantum Phases of Matter on Quantum Processors

Frank Pollmann

Technische Universität München

With: Yujie Liu,TUM Bernhard Jobst,TUM Adam Smith,TUM → Nottingham Michael Knap,TUM

> Andrew Green, London Christina Knapp, Microsoft

Kevin Satzinger, Google Pedram Roushan, Google

Novel Quantum States in Condensed Matter 2022 Kyoto Nov. 21, 2022

Complexity of Quantum Many-Body Systems

Computational Complexity grows **exponentially** with system size!

Noise Intermediate Scale Quantum (NISQ)

Identify problems that are hard on classical computers but doable on near term NISQ devices!

Classical versus Quantum Computer

Quantum Computer:

Exploring Quantum Phases of Matter on Quantum Processors

Crossing a Symmetry Protected Topological (SPT) phase transition on quantum processor

[Smith, Jobst, Green, FP, PRR **4**, L022020 (2022)] [Liu, Smith, Knap, FP (in preparation)]

Realizing and characterizing **Topologically Ordered States** on a quantum processor

[K. J. Satzinger, Y. Liu, A. Smith, C. Knapp et al., Science **374**, 6572 (2021)]

Exact quantum circuit crossing a phase transition

Exact quantum circuit connecting the SPT and the trivial phase

Circuit Construction

Exact quantum circuit

Thermodynamic limit: Dominant eigenvector as circuit:

Detecting a topological phase transition

Cluster state model:

Non-local "string" order parameter [den Nijs and Rommelse '89, FP and Turner '12]

Quantum circuit crossing an SPT phase transition

Results on a 20 qubit IBM-Q device: $S^{O}(g) = \langle \psi | \hat{O}_{i} \left(\prod_{j=i+2}^{k-2} \hat{\sigma}_{j}^{x} \right) \hat{O}_{k}' | \psi \rangle$

Quantum circuit crossing an SPT phase transition

Results on a 20 qubit IBM-Q device: $S^{O}(g) = \langle \psi | \hat{O}_{i} \left(\prod_{j=i+2}^{k-2} \hat{\sigma}_{j}^{x} \right) \hat{O}_{k}' | \psi \rangle$

- Accurate representation on real machine!
- Generalization to the entire one-dimensional BDI class
 [Jones et al., PRR 3, 033265 (2021)]

Quantum Convolutional Networks (QCNN)

QCNN instead of string order parameter [Cong et al. 2018]

Model independent learning

Mask short range correlations with symmetric noise

[Liu, Smith, Knap, FP (in preparation)]

Model independent learning

Example: Custer state with two layers of noise

[Liu, Smith, Knap, FP (in preparation)]

Model independent learning

Benchmark on physical models

[Liu, Smith, Knap, FP (in preparation)]

Exploring Quantum Phases of Matter on Quantum Processors

Crossing a Symmetry Protected Topological (SPT) phase transition on quantum processor

[Smith, Jobst, Green, FP, PRR **4**, L022020 (2022)] [Liu, Smith, Knap, FP (in preparation)]

Realizing and characterizing **Topologically Ordered States** on a quantum processor

[K. J. Satzinger, Y. Liu, A. Smith, C. Knapp et al., Science **374**, 6572 (2021)]

Intrinsic topological order and anyons

 $\begin{array}{ll} \mbox{Toric code model} & H_{TC} = -J \sum_v A_v - J \sum_p B_p, \ J > 0 \\ \mbox{[Kitaev '03]} \end{array}$

$$A_{v} = \prod_{i \in v} \sigma_{i}^{z}, B_{p} = \prod_{i \in p} \sigma_{i}^{x}$$
$$[A_{v}, B_{p}] = 0 \implies \text{Exactly solvable}$$
$$|\psi_{0}\rangle = |\mathbf{O}_{0}\rangle + |\mathbf{O}_{0}^{0}\rangle + \dots$$

• \mathbb{Z}_2 topological order

Realizing the toric code on a quantum processor

Toric code ground state $|G\rangle \propto \prod (1+B_p)|0\rangle$

Linear depth in system width

[K. J. Satzinger, Y. Liu, A. Smith, C. Knapp et al., Science **374**, 1237 (2021)] [See also Semeghini et al., Science **374**, 1242 (2021)]

Realizing the toric code on a quantum processor

Toric code ground state $|G\rangle \propto \prod (1+B_p)|0\rangle$

31 qubits, average stabilizer fidelity 0.92 ±0.06 [K. J. Satzinger, Y. Liu, A. Smith, C. Knapp et al., Science **374**, 1237 (2021)]

Probing topological entanglement

Topological entanglement entropy $S = \alpha L - \gamma$

[Kitaev and Preskill '06, Levin and Wen '06]

Subtraction scheme cancels area law boundary terms!

$$S_{\text{topo}} = -\gamma = S_A + S_B + S_C - S_{AB} - S_{AC} - S_{BC} + S_{ABC}$$

[K. J. Satzinger, Y. Liu, A. Smith, C. Knapp et al., Science **374**, 1237 (2021)]

Probing topological entanglement

Toric code: $S_{\text{topo}} = -\ln 2$

Full state tomography for 4 and 6 qubits

Randomized measurements for 9 qubits

Average over location and orientation

[K. J. Satzinger, Y. Liu, A. Smith, C. Knapp et al., Science **374**, 1237 (2021)]

Anyonic braiding statistics

Exchange: U-matrix Can take rational phases other than ± 1 Mutual: S-matrix No analogue for fundamental fermions/ bosons in 3D

Simulating anyonic statistics

[K. J. Satzinger, Y. Liu, A. Smith, C. Knapp et al., Science **374**, 6572 (2021)]

Simulating anyonic statistics

[K. J. Satzinger, Y. Liu, A. Smith, C. Knapp et al., Science **374**, 1237 (2021)]

Surface code logical qubits

Towards logical qubits

Boundary conditions lead to ground state degeneracy

Perform state injection / readout over Bloch sphere

Linear quantum circuits for string-net models and quantum gates for braiding abelian and non-abelian anyons [Liu, Smith, Shtengel, FP, arXiv:2110.02020]

[K. J. Satzinger, Y. Liu, A. Smith, C. Knapp et al., Science 374, 1237 (2021)]

Exploring Quantum Phases of Matter on Quantum Processors

Crossing a Symmetry Protected Topological (SPT) phase transition on quantum processor

[Smith, Jobst, Green, FP, PRR **4**, L022020 (2022)] [Liu, Smith, Knap, FP (in preparation)]

Realizing and characterizing **Topologically Ordered States** on a quantum processor

[K. J. Satzinger, Y. Liu, A. Smith, C. Knapp et al., Science **374**, 6572 (2021)]

Thank you!

Thank you!

Yujie Liu

Adam Smith

Michael Knap

Christina Knapp

Kevin Satzinger

Pedram Roushan

Andrew Green

Bernhard Jobst

[Smith, Jobst, Green, FP, PRR **4**, L022020 (2022)]

[K. J. Satzinger, Y. Liu, A. Smith, C. Knapp et al., Science 374, 6572 (2021)]