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Figure 1 | Schematic representation of the magnetic excitations in a spin-1/2 (Heisenberg) antiferromagnetic chain and overview of the neutron
scattering results for CuSO4·5D2O. a, Fully polarized (saturated) state. The creation of a magnon by inelastic scattering of a neutron can be imagined as a
single spin flip. The Zeeman energy prevents any growth of the flipped section that propagates like a single entity. This magnon can classically be visualized
as a spin wave, a coherent precession of the local spin expectation value around the field direction. b, Zero magnetic field state. Snapshots of large
antiferromagnetically correlated regions of the ground state. The spins could be found in a locally antiferromagnetic configuration with equal probability in
any direction (for example, the opposite one (shadows)). The neutron acts on the singlet ground state and excites triplet states, which we may imagine as
a local spin flip surrounded by two domain walls, and which individually correspond to a spinon carrying spin-1/2. The spatial extent of a spinon depends
on the anisotropy: in the Ising limit, a local spin flip decomposes into two spinons; in the Heisenberg limit, it decomposes into a rapidly converging series of
states containing two, four and higher even numbers of such spinons. c, Intensity maps of the experimental and theoretical magnon dispersion in the fully
polarized phase of CuSO4·5D2O for µ0H= 5 T > µ0Hsat and T∼ 100 mK, above the Néel transition temperature to three-dimensional antiferromagnetic
ordering. The two observed branches (flat and cosine-shaped) are associated with two non-equivalent Cu2+ sites in CuSO4·5D2O (Cu1 and Cu2,
respectively). The cosine-shaped dispersion corresponds to the excited magnon of the saturated Heisenberg antiferromagnetic Cu1 chain and the flat
branch around 0.7 meV is a transition between two local Zeeman levels of the decoupled Cu2 sites. d, Intensity colour maps of the experimental inelastic
neutron scattering spectrum of the Cu1 chain spins in the zero-field phase of CuSO4·5D2O, and theoretical two- and four-spinon dynamic structure factor.

the fully polarized phase has already been successfully employed
to determine the microscopic parameters of the Hamiltonian of
a two-dimensional frustrated quantum antiferromagnet44. Here,
we go one step further and determine not only the microscopic
parameters from the dispersion of the magnon, but also exploit its

wave-vector-independent intensity to obtain an absolute intensity
scale. Having fixed energy and intensity scale at high magnetic
field, in the fully polarized classical phase, the quantum theory is
tested against the zero-field data without any adjustable parameters.
This approach avoids numerous uncertainties of previous attempts
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Figure 1 | Schematic representation of the magnetic excitations in a spin-1/2 (Heisenberg) antiferromagnetic chain and overview of the neutron
scattering results for CuSO4·5D2O. a, Fully polarized (saturated) state. The creation of a magnon by inelastic scattering of a neutron can be imagined as a
single spin flip. The Zeeman energy prevents any growth of the flipped section that propagates like a single entity. This magnon can classically be visualized
as a spin wave, a coherent precession of the local spin expectation value around the field direction. b, Zero magnetic field state. Snapshots of large
antiferromagnetically correlated regions of the ground state. The spins could be found in a locally antiferromagnetic configuration with equal probability in
any direction (for example, the opposite one (shadows)). The neutron acts on the singlet ground state and excites triplet states, which we may imagine as
a local spin flip surrounded by two domain walls, and which individually correspond to a spinon carrying spin-1/2. The spatial extent of a spinon depends
on the anisotropy: in the Ising limit, a local spin flip decomposes into two spinons; in the Heisenberg limit, it decomposes into a rapidly converging series of
states containing two, four and higher even numbers of such spinons. c, Intensity maps of the experimental and theoretical magnon dispersion in the fully
polarized phase of CuSO4·5D2O for µ0H= 5 T > µ0Hsat and T∼ 100 mK, above the Néel transition temperature to three-dimensional antiferromagnetic
ordering. The two observed branches (flat and cosine-shaped) are associated with two non-equivalent Cu2+ sites in CuSO4·5D2O (Cu1 and Cu2,
respectively). The cosine-shaped dispersion corresponds to the excited magnon of the saturated Heisenberg antiferromagnetic Cu1 chain and the flat
branch around 0.7 meV is a transition between two local Zeeman levels of the decoupled Cu2 sites. d, Intensity colour maps of the experimental inelastic
neutron scattering spectrum of the Cu1 chain spins in the zero-field phase of CuSO4·5D2O, and theoretical two- and four-spinon dynamic structure factor.
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Figure 1 | Schematic representation of the magnetic excitations in a spin-1/2 (Heisenberg) antiferromagnetic chain and overview of the neutron
scattering results for CuSO4·5D2O. a, Fully polarized (saturated) state. The creation of a magnon by inelastic scattering of a neutron can be imagined as a
single spin flip. The Zeeman energy prevents any growth of the flipped section that propagates like a single entity. This magnon can classically be visualized
as a spin wave, a coherent precession of the local spin expectation value around the field direction. b, Zero magnetic field state. Snapshots of large
antiferromagnetically correlated regions of the ground state. The spins could be found in a locally antiferromagnetic configuration with equal probability in
any direction (for example, the opposite one (shadows)). The neutron acts on the singlet ground state and excites triplet states, which we may imagine as
a local spin flip surrounded by two domain walls, and which individually correspond to a spinon carrying spin-1/2. The spatial extent of a spinon depends
on the anisotropy: in the Ising limit, a local spin flip decomposes into two spinons; in the Heisenberg limit, it decomposes into a rapidly converging series of
states containing two, four and higher even numbers of such spinons. c, Intensity maps of the experimental and theoretical magnon dispersion in the fully
polarized phase of CuSO4·5D2O for µ0H= 5 T > µ0Hsat and T∼ 100 mK, above the Néel transition temperature to three-dimensional antiferromagnetic
ordering. The two observed branches (flat and cosine-shaped) are associated with two non-equivalent Cu2+ sites in CuSO4·5D2O (Cu1 and Cu2,
respectively). The cosine-shaped dispersion corresponds to the excited magnon of the saturated Heisenberg antiferromagnetic Cu1 chain and the flat
branch around 0.7 meV is a transition between two local Zeeman levels of the decoupled Cu2 sites. d, Intensity colour maps of the experimental inelastic
neutron scattering spectrum of the Cu1 chain spins in the zero-field phase of CuSO4·5D2O, and theoretical two- and four-spinon dynamic structure factor.
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scattering results for CuSO4·5D2O. a, Fully polarized (saturated) state. The creation of a magnon by inelastic scattering of a neutron can be imagined as a
single spin flip. The Zeeman energy prevents any growth of the flipped section that propagates like a single entity. This magnon can classically be visualized
as a spin wave, a coherent precession of the local spin expectation value around the field direction. b, Zero magnetic field state. Snapshots of large
antiferromagnetically correlated regions of the ground state. The spins could be found in a locally antiferromagnetic configuration with equal probability in
any direction (for example, the opposite one (shadows)). The neutron acts on the singlet ground state and excites triplet states, which we may imagine as
a local spin flip surrounded by two domain walls, and which individually correspond to a spinon carrying spin-1/2. The spatial extent of a spinon depends
on the anisotropy: in the Ising limit, a local spin flip decomposes into two spinons; in the Heisenberg limit, it decomposes into a rapidly converging series of
states containing two, four and higher even numbers of such spinons. c, Intensity maps of the experimental and theoretical magnon dispersion in the fully
polarized phase of CuSO4·5D2O for µ0H= 5 T > µ0Hsat and T∼ 100 mK, above the Néel transition temperature to three-dimensional antiferromagnetic
ordering. The two observed branches (flat and cosine-shaped) are associated with two non-equivalent Cu2+ sites in CuSO4·5D2O (Cu1 and Cu2,
respectively). The cosine-shaped dispersion corresponds to the excited magnon of the saturated Heisenberg antiferromagnetic Cu1 chain and the flat
branch around 0.7 meV is a transition between two local Zeeman levels of the decoupled Cu2 sites. d, Intensity colour maps of the experimental inelastic
neutron scattering spectrum of the Cu1 chain spins in the zero-field phase of CuSO4·5D2O, and theoretical two- and four-spinon dynamic structure factor.
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Figure 1 | Schematic representation of the magnetic excitations in a spin-1/2 (Heisenberg) antiferromagnetic chain and overview of the neutron
scattering results for CuSO4·5D2O. a, Fully polarized (saturated) state. The creation of a magnon by inelastic scattering of a neutron can be imagined as a
single spin flip. The Zeeman energy prevents any growth of the flipped section that propagates like a single entity. This magnon can classically be visualized
as a spin wave, a coherent precession of the local spin expectation value around the field direction. b, Zero magnetic field state. Snapshots of large
antiferromagnetically correlated regions of the ground state. The spins could be found in a locally antiferromagnetic configuration with equal probability in
any direction (for example, the opposite one (shadows)). The neutron acts on the singlet ground state and excites triplet states, which we may imagine as
a local spin flip surrounded by two domain walls, and which individually correspond to a spinon carrying spin-1/2. The spatial extent of a spinon depends
on the anisotropy: in the Ising limit, a local spin flip decomposes into two spinons; in the Heisenberg limit, it decomposes into a rapidly converging series of
states containing two, four and higher even numbers of such spinons. c, Intensity maps of the experimental and theoretical magnon dispersion in the fully
polarized phase of CuSO4·5D2O for µ0H= 5 T > µ0Hsat and T∼ 100 mK, above the Néel transition temperature to three-dimensional antiferromagnetic
ordering. The two observed branches (flat and cosine-shaped) are associated with two non-equivalent Cu2+ sites in CuSO4·5D2O (Cu1 and Cu2,
respectively). The cosine-shaped dispersion corresponds to the excited magnon of the saturated Heisenberg antiferromagnetic Cu1 chain and the flat
branch around 0.7 meV is a transition between two local Zeeman levels of the decoupled Cu2 sites. d, Intensity colour maps of the experimental inelastic
neutron scattering spectrum of the Cu1 chain spins in the zero-field phase of CuSO4·5D2O, and theoretical two- and four-spinon dynamic structure factor.
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Figs. 2(b)–2(e). These states occupy large regions of phase
space even as Γ is introduced, with the AFM and FM states
covering most the phase diagram. Finite Γ breaks the
accidental spin rotational symmetry enjoyed by the FM and
AFM states in the (classical) HK limit, pinning the order-
ings to fixed spatial direction. For Γ > 0, the AFM state
becomes pinned along the [111] direction whereas the FM
state lies in the plane perpendicular to [111] with all
directions degenerate. The stripy and zigzag phases have
the spins in directions x, y; or z locked to the orientations of
the stripe and zigzag pattern, tilting slightly away from the
stripe and zigzag direction as Γ becomes nonzero.
The effects of Γ are most evident where a large

classical degeneracy is present, such as near the Kitaev
points at ðϕ; θÞ ¼ ð�π=2; π=2Þ and near (0,0), where we

only have the bond-dependent Γ term. Here, two new
states are introduced: 120° order and an incommensurate
spiral. The 120° order with wave vector Q⃗ ¼ K appears
near the (antiferromagnetic) Kitaev limit at (π=2, π=2).
This is a coplanar spiral, with the spins lying in the
plane perpendicular to [111]. The spins are at relative
angles 0, �2π=3 on the same sublattice [as shown in
Fig. 2(f)], with the relative angle between sublattices
unconstrained. An additional degenerate point appears at
ðϕ; θÞ ¼ ð3π=4; cos−1ð1=

ffiffiffi
3

p
ÞÞwhere J ¼ −K ¼ −Γ, with

the 120°, FM, and zigzag phases meeting at a single point
[40]. The second large region of zigzag phase appearing
when Γ ≫ jJj, jKj has the spins predominantly oriented
along the [11̄ 1̄], [1̄11̄], and [1̄ 1̄ 1] directions, tilting away
slightly as one explores the phase. The IS phase remains
coplanar despite the Q⃗ vector varying throughout the
phase. The magnitude of the IS wave vector lies in the
range 1:2 < jQ⃗j < 1:8 as shown in Fig. 2(g).
Exact diagonalization.—To gain an understanding of

the features of the classical results that carry over to the full
quantum mechanical model, we have performed exact
diagonalization. We consider a 24-site cluster that has
been used previously to study the HK model [13,18,19],
providing a reasonable description of the phases found at
the classical level as well as the Kitaev spin liquids. In the
HK limit, the existence of a local spin rotation [13,41] that
maps J → −J andK → K þ 2J gives four well-understood
magnetic limits in addition to the two exactly solvable
Kitaev points. These are the FM, AFM, and their zigzag
and stripy images under the mapping. This transformation
is no longer useful as Γ is included [42], but the phases
surrounding these points can still be identified with each
respective limit. While the IS phase is unlikely to be well
represented on such a small cluster, the remaining phases
such as the 120° phase are compatible with the cluster
geometry. We note that the transformation used to relate
Γ > 0 to Γ < 0 no longer applies in the quantum case, and
so both regions must be analyzed separately.
To identify the phase boundaries, we have computed the

second derivatives of the ground-state energy, −∂2E=∂ϕ2

and −∂2E=∂θ2, looking for singular features that indicate
changes in the ground-state characteristics. Phases con-
taining exactly solvable or well-understood points, such as
the zigzag, stripy, AFM, FM, and the Kitaev spin liquids
can be readily identified. The remaining phases were
identified by examining the spin-spin correlation functions
hSαi Sβj i, primarily through the static structure factor

SQ ¼ 1

N

X

ij

eiQ⃗·ðr⃗i−r⃗jÞhS⃗i · S⃗ji (8)

in both the original basis and after applying the local spin
rotation discussed above [13]. The resulting phase dia-
grams for Γ > 0 and Γ < 0 are presented in Fig. 3, with
the structure factor for each phase plotted using the colors
from Fig. 2(a) and then overlayed. Contours indicating

FIG. 2 (color online). (a) Combined Luttinger-Tisza and single-
Q analysis. Solid colors correspond to exact classical ground
states from Luttinger-Tisza while the region indicated by the
white dashed line is the single-Q results. [(b)—(f)] Ground-state
spin configurations in each phase. (g) Magnitude of the ordering
wave vector Q⃗ in the IS phase.
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Figure 5: Phase diagram of the model. The triangle is the section of the positive octant
(Jx, Jy, Jz � 0) by the plane Jx + Jy + Jz = 1. The diagrams for the other octants are similar.

gapped phases, Ax, Ay, and Az, are algebraically distinct, though related to each other by
rotational symmetry. They differ in the way lattice translations act on anyonic states (see
Section 5.2). Therefore a continuous transition from one gapped phase to another is impossible,
even if we introduce new terms in the Hamiltonian. On the other hand, the 8 copies of each
phase (corresponding to different sign combinations of Jx, Jy, Jz) have the same translational
properties. It is unknown whether the 8 copies of the gapless phase are algebraically different.

We now consider the zeros of the spectrum that exist in the gapless phase. The momentum q
is defined modulo the reciprocal lattice, i.e., it belongs to a torus. We represent the momentum
space by the parallelogram spanned by (q1,q2) — the basis dual to (n1,n2). In the symmetric
case (Jx = Jy = Jz) the zeros of the spectrum are given by

q2
q

1

*q *q− q∗ ≡ 1
3
q1 + 2

3
q2 (mod q1,q2)

−q∗ ≡ 2
3
q1 + 1

3
q2 (mod q1,q2)

(34)

If |Jx| and |Jy| decrease while |Jz| remains constant, q∗ and −q∗ move toward each other (within
the parallelogram) until they fuse and disappear. This happens when |Jx| + |Jy| = |Jz|. The
points q∗ and −q∗ can also effectively fuse at opposite sides of the parallelogram. (Note that
the equation q∗ = −q∗ has three nonzero solutions on the torus).

At the points ±q∗ the spectrum has conic singularities (assuming that q∗ 6= −q∗):

qδ y

qδ x

ε(q)

ε(q) ≈ ±
p

gαβ δqα δqβ,

where δq = q − q∗ or δq = q + q∗.
(35)
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FIG. 1. Spectrum λ1−6/|Γ| of the matrix Λk entering the Fourier
transform of the classical energy, see Supplementary material. [49]

Classical limit – Let us consider the classical limit where Si

are vectors of length S, and begin with the simplest 2D honey-
comb case (we generalize to 3D below). The highly frustrated
nature of this model is first revealed by the fact that the low-
est eigenvalue of the 6×6 interaction matrix Λk in momentum
space [49] is completely flat. In fact, the same is true for all six
bands, see Fig.1. Specifically, λ1 =−|Γ|, λ2 = λ3 =−|Γ|/2,
λ4 =λ5 = |Γ|/2, and λ6 = |Γ|.

To understand the structure of the ground states and why
there is an infinite number of them, we search for states that
saturate the lower bound of the energy per site λ1S

2. [49]
Consider a pair of NN spins, say S0 and S1 of (1), which
interact with a term Γ (Sx

0 Sy
1 + Sy

0Sx
1 ). If these spins were

isolated from the rest, then their mutual energy would be min-
imized by placing the spins on the xy-plane with Sx

1 = ζSy
0 ,

Sy
1 = ζSx

0 , where ζ = −sgn(Γ). Similarly, for the x-bond of
(1), we would get Sy

3 = ζSz
0 , Sz

3 = ζSy
0 , and for the y-bond

of (1), Sx
2 = ζSz

0 , Sz
2 = ζSx

0 . Returning to the lattice prob-
lem, the idea is to require that the two components involved
in each Γ term satisfy the respective relations above, without
specifying the third component for the moment. This is done
as follows: (i) We choose a direction for the central spin of (1)
and parametrize it as

S0 = (η1a, η2b, η3c), (3)

where a= |Sx
0 |, b= |Sy

0 |, c= |Sz
0 |, η1 =sgn(Sx

0 ), η2 =sgn(Sy
0 )

and η3 = sgn(Sz
0 ). Then, (ii) we fix two components of the

three neighboring spins as follows:

S1 = (ζη2b, ζη1a, Sz
1 ), S2 = (ζη3c, S

y
2 , ζη1a),

S3 = (Sx
3 , ζη3c, ζη2b).

(4)

Then, (iii) we fix accordingly two components of the neigh-
bors of S1, S2, and S3, and so on, until we cover the whole
lattice. It is easy to see that the total energy of the gener-
ated configurations saturates the lower energy bound, and are
therefore ground states. Indeed, the contribution to the energy
from the cluster (1) is E =−2(a2 + b2 + c2)|Γ|=−2|Γ|S2,
and the same is true for any such cluster in the lattice. Since
each bond is shared by two sites, the total energy per site is
E/N =−|Γ|S2, which saturates the lower energy bound.

Now, the reason why there are infinite ground states lies in
the freedom to choose the third component of the spins, i.e.,

FIG. 2. Classical ground states of the Γ model on the 2D honeycomb
lattice, where a2 + b2 + c2 =S2 and ηi =±1.

Sz
1 , Sy

2 , Sx
3 , etc. Imposing the spin length constraint shows

that this freedom is associated with the signs of these compo-
nents:

Sz
1 = ζη4c, Sy

2 = ζη5b, Sx
3 = ζη6a, (5)

where ηi = ±1 are Ising-like variables. The choice of signs
in front of the η’s give the simplest representation of the state
as we see below, but is otherwise arbitrary. To find out how
many independent η’s exist, we examine more closely what
happens around the central cluster (1), see Fig. 2. This picture
shows that each ηi appears only around a single hexagon, and
so we can label the ground states by assigning the η’s to the
hexagons. This parametrization in terms of local Ising vari-
ables gives a total of 2N/2 states for a fixed choice of {a, b, c}.
Note that if two (or one) of {a, b, c} vanish then 2/3 (resp. 1/3)
of the η’s are idle and we get 2N/6 (resp. 2N/3) states instead.
On top of this degeneracy, there is also the continuous degen-
eracy associated to the choice of {a, b, c}.

The η-parametrization reveals that the local zero-energy
modes responsible for the extensive degeneracy correspond
to flipping one particular component of each of the six spins
of a hexagon. For the η1 hexagon of Fig. (2), for example,
the zero mode amounts to simultaneously flipping the signs of
Sx

0 , Sy
1 , Sz

4 , Sx
5 , Sy

10, and Sz
2 . This operation is in fact a sym-

metry of the classical Hamiltonian, so the ground state degen-
eracy associated with the η’s is not accidental but symmetry
related. Inspecting the form of the Γ terms, these symmetries
involve strings of alternating x-y-z bonds which happen to be
hexagons in the 2D honeycomb case. We shall come back to
this when we discuss the 3D cases below.

Another key aspect of the η variables is that they split into
three inequivalent types that occupy the vertices of three inter-
penetrating triangular sublattices A, B and C (denoted by red,
green and blue in Fig. 2). Type-A (resp. B, C) hexagons are
characterized by alternating spin components with magnitude
a (resp. b, c). This structure is reflected directly in the values
of the so-called fluxes {Wh}, that are known from the quan-

Γ limit
I classical: spin liquid with extensive

degeneracy
I quantum: zigzag order? QSL?

I. Rousochatzakis, N. Perkins, PRL 118, 147204 (2017)
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Kitaev-Gamma model, isotropic limit dz = 1, numerous results ...

Because of the spin-orbit coupling, the symmetry group of
the model, G ¼ D3d × ZT

2 where ZT
2 ¼ fE; Tg is time

reversal, is finite, meaning its elements are discrete oper-
ations combining the space-time and spin degrees of
freedom.
We find the ground state of the S ¼ 1=2 K-J-Γmodel by

VMC calculations, which is a powerful method for the study
of spin-liquid phases. We first introduce the fermionic
slave-particle representation Smi ¼ 1

2
C†
i σ

mCi, where C†
i ¼

ðc†i↑; c†i↓Þ, m≡ x; y; z, and σm are Pauli matrices. The

particle-number constraint, N̂i ¼ c†i↑ci↑ þ c†i↓ci↓ ¼ 1,
should be imposed at every site to ensure that the size of
the fermion Hilbert space is the same as that of the physical
spin. This complex fermion representation is equivalent to
the Majorana representation introduced by Kitaev [1]. It
has a local SU(2) symmetry that is independent of the
SU(2) spin-rotation operations and can be considered as a
gauge structure [26], as discussed in Sec. S1A of the
Supplemental Material (SM) [27]. The spin interactions
in Eq. (1) are rewritten in terms of interacting fermionic
operators and decoupled into a noninteracting mean-field
Hamiltonian (Sec. S1B of the SM [27]), which for the most
general spin-orbit-coupled spin liquid has the form

Hmf ¼
X

hi;ji∈γ
Tr½Uð0Þ

ji ψ
†
iψ j�þ Tr½Uð1Þ

ji ψ
†
i ðiRγ

αβÞψ j�

þ Tr½Uð2Þ
ji ψ

†
i σ

γψ j�þ Tr½Uð3Þ
ji ψ

†
i σ

γRγ
αβψ j�; ð2Þ

where ψ i¼ðCiC̄iÞ, C̄i¼ðc†i↓;−c†i↑ÞT ,R
γ
αβ¼−iðσαþσβÞ=

ffiffiffi
2

p

is a rotation matrix, and the quantitiesUðmÞ
ji , with γ specified

by hi; ji, are mean-field parameters.
In the states described by Eq. (2), the SU(2) gauge

symmetry is usually reduced to U(1) or Z2, which is known
as the invariant gauge group (IGG) [35]. The Majorana
mean-field solution of the Kitaev model has IGG Z2.
Because the KSL is a special (exactly soluble) point in
the model of Eq. (1), one expects a finite regime of QSL
states connected adiabatically to it; following Ref. [36] we
call this the generic KSL (GKSL). A QSL ground state
preserves the full symmetry groupG and so does the mean-
field Hamiltonian. However, a general symmetry operation
of this Hamiltonian is a space-time and spin operation
in G combined with an SU(2) gauge transformation. These
new symmetry operations form a larger group, known as
the PSG, which is equivalent to a central extension
of G by the IGG (Sec. S2 of the SM [27]). The PSG of
the KSL is known exactly [37] and the corresponding
mean-field Hamiltonian must respect it. The PSG reduces
the number of independent parameters and, as detailed

in Sec. S3 of the SM [27], the coefficients UðmÞ
ji in Eq. (2)

are constrained to the forms Uð0Þ
ji ¼ iη0 þ iðρa þ ρcÞ,

Uð1Þ
ji ¼ iðρa − ρc þ ρdÞðτα þ τβÞ þ iη3ðτx þ τy þ τzÞ,

Uð2Þ
ji ¼ iðρa þ ρcÞτγ þ iη5ðτx þ τy þ τzÞ, and Uð3Þ

ji ¼
iðρc − ρa − ρdÞðτα − τβÞ.
In addition, we allow competing magnetically ordered

phases by including the termH0
mf ¼ 1

2

P
i Mi · C

†
i σCi in the

mean-field Hamiltonian [23]. The ordering pattern ofMi is
set from the classical solution within the single-Q approxi-
mation, leaving only the amplitudeM and the canting angle
ϕ to be determined variationally (Sec. S3 of the SM [27]).
The power of the VMC approach is that it allows the
particle-number constraint to be enforced locally, by
performing Gutzwiller projection of the mean-field ground
states to obtain the trial wave functions jΨðxÞi ¼
PGjΨmfðxÞi, where x denotes the variational parameters
ðρa; ρc; ρd; η0; η3; η5;M;ϕÞ. These are determined by min-
imizing the trial ground-state energy, EðxÞ ¼
hΨðxÞjHjΨðxÞi=hΨðxÞjΨðxÞi, in calculations performed
on tori of up to 14 × 14 unit cells, i.e., 392 lattice sites.
Because the final variational states depend crucially on the
mean-field Hamiltonian, a meaningful VMC procedure
requires a careful choice and comparison of decoupling
channels, and we have tested many spin-liquid and mag-
netic Ansätze (Sec. S3). Figure 1 shows the VMC phase
diagram of the K-J-Γ model at zero applied field. As a
benchmark, we note that our phase boundaries at Γ ¼ 0,
J > 0 agree quantitatively with those of Ref. [38].
Although the mean-field phase diagram contains a number
of candidate QSLs, VMC calculations reveal that only two
are robust. One is the GKSL, whose regime of stability is
bounded approximately by jJ=Kj ¼ 0.2 at Γ ¼ 0 and
Γ=jKj ¼ 0.15; this result provides a quantitative statement
of the region of relevance for the considerations of
Ref. [36]. The second we name the PKSL, one of our
central results being that there is only one QSL proximate
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FIG. 1. (a) Phase diagram of the quantum K-J-Γ model for
K < 0 in the limit of large system size. There are two QSL phases
of different types but with the same PSG, the GKSL and the
PKSL. The magnetically ordered phases are antiferromagnetic
(AFM), stripe, incommensurate spiral (IS), zigzag, and ferro-
magnetic (FM) order. (b) Detail of the limit jKj=Γ → 0, where all
phases are magnetically ordered; the transitions occur at
J=Γ ¼ 0.15, 0.05, and −0.75.
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FIG. 5. (a) Phase diagram at Γ� = 0 as functions of
Γ/|K| and h. NP1 and NP2 phases are larger than those
at Γ� = −0.03 since the zig-zag phase is less dominant.
Complexed magnetic phases appear when Γ/|K| � 0.3 and
h � 0.15. The blue solid line at h = 0 denotes a ferromag-
netic phase. (see text for details). Larger-Γ phase diagrams
at (b) (Γ�, h) = (0, 0.15) and (c) (Γ�, h) = (−0.03, 0.15). The
results are obtained with the D = 6 ansatze.

the model breaks the rotational symmetry explicitly, and
thus there is no remaining symmetry discriminating the
P and NP phases. Nevertheless, the second derivative
of the energy strongly suggests a continuous phase tran-
sition between the P and NP2 phases [see Fig. 4 (b)] at
Γ/|K| ≈ 0.05. Note that the tilted field with θ > 0 leads
to a transition from the P phase directly to the NP2
phase. On the other hand, tilting the field in the oppo-
site direction (θ < 0) favors the NP1 phase and therefore
gives rise to a transition from the P phase to the NP1
phase (see SM). The continuous nature of these tran-
sitions can be seen even more clearly in the entangle-
ment entropy (EE)[35, 44, 45]. The boundary theory of
TPS[46] has been employed to measure the EE on the
cylinder geometry with the circumference Ly, and the
result is presented in Fig. 4 (c) and (d). The NP1 state
is highly entangled and its EE increases with Γ, while
the P state has a low and constant EE. The first deriva-
tive of the EE exhibits a peak at the same point as that
of the second derivative of the energy, and it becomes
sharper with increasing Ly and D[36]. Therefore, we con-
clude that there is a continuous transition between the P
and NP2 phases at Γ/|K| ≈ 0.05. As mentioned above,
the P and NP phases cannot be distinguished by conven-
tional symmetries, thus the continuous transition implies
a topological phase transition from the trivial phase (P)
to a topological or non-trivial phase (NP2). It is worth
noting that, with the tilted field, most of initial states,
including FM[111], FM[100], FM[011] and random ones,
converge to identical states without hysteresis.

K-Γ model.- Finite Γ� is responsible in stabilizing the
ZZ order at low fields. When Γ� = 0, we may expect
a more significant competition between various phases
including the complex classical magnetic orders. We
find that the NP phases are already present in the K-

Γ model as shown in the phase diagram in Fig. 5. On
the other hand, the complex magnetic orders with large
magnetic unit cells appear for sufficiently large Γ (typi-
cally, Γ/|K| � 0.3). For example, the 6-site order phase
appears at lower field h � 0.15 while the 18-site order
phase appears at higher field h � 0.15 as presented in
Figs. 5 (a) and (b). These are the same magnetic orders
reported in the classical phase diagram[29]. Quantum
fluctuations seem to favor NP1 and NP2 phases at small
Γ, and push the classical orders to the parameter region
with larger Γ. As in the case of Γ� = −0.03, the FM
phase appears between the KSL and the 6-site order at
h = 0 when D = 6. However, the NP2 state is almost
degenerate with FM phase in this region, i.e., the energy
difference is only ΔE ∼ O(10−4) (see SM). Moreover,
even this tiny energy difference is decreasing as bond di-
mension further increases (see SM). With these results
and given that the FM quickly loses to NP2 with a very
small h, NP2 may become a stable ground state at h = 0
for sufficiently large bond dimension or degenerate with
the FM phase.

Conclusion.- We used iTPS optimization to investigate
the field induced quantum phases in the K-Γ-Γ� model.
We find the nematic paramagnet (NP) phases that break
lattice rotational symmetry spontaneously as well as the
(chiral) KSL in an intermediate window of magnetic field.
In contrast to the previous 24-site ED and 2-leg ladder
DMRG study[28], the KSL is found to survive only in
a small corner of the phase diagram. Instead, the NP
phases occupy a large portion of the phase diagram and
hence are more likely to be observed. We also find that
the NP phases are already present in the K-Γ model in
zero and finite magnetic field. The NP phases in the
K-Γ model give away to the complex magnetic orders
with large unit cells when Γ/|K| becomes large, making
contact with the classical phase diagram reported earlier.

In order to clarify the nature of the NP phases, we
examine the effect of tilting the magnetic field (θ = 5◦

from the [111] direction). Here the transition between
the polarized (P) and NP2 phases is continuous, judging
from the singular behaviors in the second derivative of
the energy and the first derivative of the entanglement
entropy. Since C3 is broken in both of the P and NP2
phases in the tilted field, the continuous transition would
imply that NP2 is not a trivial product state. This leaves
the interesting possibility that the NP phases are non-
trivial topological states. The precise nature and thermal
Hall response of these states would be interesting subjects
of future study.
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FIG. 5. Phase diagrams for (a) � > 0 and (b) � < 0. At (a) “3 FD
state,” this state is threefold degenerate (3 FD). At (b) “NPSSF,” we
find no prominent peak in the static spin structure factor (NPSSF).
Symbols for the phase boundaries are determines from ∂E/∂λ and
∂2E/∂λ2 calculated with 24-site ED. Open circle means a jump
or a cusp in ∂E/∂θ , which indicates a first-order phase transition.
Open triangle means a clear minimum in ∂2E/∂θ2, which leads to
a second-order phase transition or a weak first-order phase transition
in the thermodynamic limit. Blue cross indicates the first-order phase
transition point, while the red cross indicates the second-order or
weak first-order phase transition. Open square means a crossover
point where ∂2E/∂λ2 shows a small minimum. Error bars are smaller
than the symbol sizes. Lines are guide for the eye. KSL phases,
which are expected to appear in the gray hatched area, are difficult to
determine because of the numerical resolution.

us to propose alternative scenarios. (i) The |tx�-dimer state
survives up to λ = 1. (ii) The |tx�-dimer state becomes un-
stable at λ ≈ 0.55, and another state obeys a phase transition
at λ = 1.

The second derivatives for θ = 270◦ and 353.7◦ qualita-
tively show similar behavior. Specifically, ∂2E/∂λ2 obtained
with dimer series expansions decrease towards λ = 1 and
their decrease becomes pronounced with an increase in the
included order. However, ∂2E/∂λ2 obtained with ED does

not show a decrease close to λ = 1 but shows a minimum at
λ ≈ 0.55. The results suggest that the |ty�-dimer state becomes
unstable at λ � 0.55.

Finally, we discuss a small minimum in ∂2E/∂λ2 for
� > 0 and K < 0, which is expressed by the open square
in Fig. 5(a). When the small minimum is caused by a
crossover, QSL in Refs. [23,24] adiabatically connects to
the |tx�-dimer state. If the small minimum would be caused
by a phase transition, QSL does not connect with the |tx�-
dimer state. A future study is needed to obtain a definite
conclusion.

IV. STABILITY OF THE KEKULÉ DIMERIZED STATE

Our calculations have shown that in some regions, a phase
transition takes place at λ = 1 where C3v symmetry is recov-
ered. This stimulates us to investigate a stable ordered state
that has discrete symmetry at λ = 1. For this purpose, we
adopt the T6 transformation [31] to Hamiltonian (1). The T6

transformation transforms Hamiltonian (1) into an extended
XX Z Hamiltonian with a Kekulé structure shown in Fig. 1(d).
Note that the transformed Hamiltonian still keeps C3v symme-
try. As shown in Fig. 1(d), we make the initial dimers form a
Kekulé structure. We then apply dimer series expansions to
the transformed Hamiltonian by treating the interactions on
the mapped X and Y bonds as perturbation.

Figures 7(a)–7(e) show the typical λ dependences of E ,
∂E/∂λ, and ∂2E/∂λ2. We calculate these quantities with 24-
site ED. Because the initial dimer placement differs from
that performed in Sec. III, the λ dependences of E , ∂E/∂λ,
and ∂2E/∂λ2 differ from those shown in Sec. III. For
θ = 23.2◦ (K/� = −2.33 at � < 0) [(a)] and 66.8◦ (K/� =
−0.43 at � < 0) [(b)], the ground-state energies up to sixth,
seventh, and eighth orders converge at 0 � λ � 1. They agree
with the ground-state energy obtained with ED. For θ =
23.2◦, ∂E/∂λ obtained with ED shows discontinuity at λ ≈
0.86, while ∂E/∂λ up to sixth, seventh, and eighth orders
begin to deviate at λ ≈ 0.6 with an increase in λ. These
results mean that the Kekulé dimerized state undergoes a
first-order phase transition at λ ≈ 0.86 and becomes unsta-
ble at the λ = 1 isotropic point. For θ = 66.8◦, ∂2E/∂λ2

shows a minimum at λ ≈ 0.96, which indicates that the
Kekulé dimerized state becomes unstable at λ � 0.96. For
θ = 123.7◦ (K/� = 0.67 at � > 0) [(c)] and 246.8◦ (K/� =
−0.43 at � > 0) [(d)], the ground-state energies up to sixth,
seventh, and eighth orders deviate at λ ≈ 0.4 and ≈ 0.6,
respectively, and show divergencelike behavior with an in-
crease in λ. The results indicate that the Kekulé dimerized
state becomes unstable before the system approaches the
isotropic point. For θ = 315◦ (K/� = 1 at � < 0) [(e)], the
ground-state energies up to sixth, seventh, and eighth orders
converge and agree with that obtained with ED at 0 � λ �
1. On the other hand, ∂2E/∂λ2 obtained with ED shows
a small minimum at λ ≈ 0.55, and ∂2E/∂λ2 obtained with
the present dimer-series expansions begin to deviate there
with an increase in λ. The results suggest that the Kekulé
dimerized state becomes unstable at λ � 0.55. Dimer series
expansions and ED performed in this section argue that the
Kekulé dimerized state is unstable at λ = 1 isotropic points.
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FIG. 1. Phase diagram of the Kitaev-Γ model on the honeycomb
lattice as a function of the angle α, which parametrizes the ratio of
Kitaev coupling K = − cos(α) and Γ interaction Γ = sin(α). The
black curve indicates the characteristic RG scale �Λc which is an in-
dicator for the onset energy scale of the magnetic order, see text for
details. The shaded regions indicate ordered phases with finite �Λc.
Observed ordered phases are ferromagnetic order (FM), incommen-
surate phase 1 (IC1), vortex phase 1 (V1), antiferromagnetic order
(AFM), incommensurate phase 2 (IC2), and vortex phase 2 (V2).
White regions indicate spin liquid phases and the absence of spon-
taneous symmetry breaking, mainly the FM and AFM Kitaev spin
liquids around α/π = 0 and α/π = 1, respectively.

surate spin correlations at finite temperature; in the context of
the pf-FRG approach, these phases manifest as the first insta-
bility of the RG flow when the energy scale of the RG cut-
off is lowered. For the incommensurate phases, we demon-
strate that the dominant intensity peaks in the structure factor,
which characterize the incommensurate order, shift continu-
ously upon variation of the coupling constant ratio. More-
over, we identify magnetic vortex phases which are overshad-
owed by a sub-dominant incommensurability effect. The re-
sulting phase diagram is summarized in Fig. 1. In view of
potential future studies, we point out that the pervasiveness
of incommensurate correlations poses a challenge to many es-
tablished methods which may rely on finite lattice represen-
tations; to substantiate this observation, we perform pf-FRG
calculations on a finite cylinder geometry, assessing the extent
to which an anisotropy is imposed by geometrical constraints.
We find that this unphysical anisotropy can become sizable in
phases with incommensurate magnetic correlations, whereas
it remains negligible in the Kitaev spin liquid phases where
correlations are short ranged.

The structure of the paper is as follows. In Sec. II, we de-
fine the Kitaev-Γ model, set the notation, and review previous
studies of the quantum model at zero temperature. We then
briefly introduce the pf-FRG formalism in Sec. III, before we
discuss our findings for the phase diagram in Sec. IV. We fur-
ther focus on the incommensurate phases in Sec. V and study
the constraints of a finite cylinder geometry. Our conclusions
are summarized in Sec. VI.

II. MODEL

We study the quantum-mechanical spin-1/2 Kitaev-Γ
model on the honeycomb lattice, which is described by the
microscopic Hamiltonian

H =
�

�i,j�γ
KSγ

i S
γ
j + Γ

�
Sα
i S

β
j + Sβ

i S
α
j

�
, (1)

where the sum runs over pairs of nearest neighbor lattice
sites i and j which are connected by a lattice bond of type
γ ∈ x, y, z (with α,β denoting the remaining two orthogonal
components). The exchange constant K quantifies the diag-
onal, bond-directional couplings of Kitaev type, whereas Γ
captures symmetric off-diagonal interactions. We parametrize
the ratio of Kitaev and Γ interactions by an angle α ∈ [0, 2π)
which is connected to the exchange constants via

K = − cos(α) and Γ = sin(α) . (2)

Throughout the remainder of this paper, all energy scales are
reported in units of

√
K2 + Γ2.

In terms of the parametrization described above, the regime
0 < α < π/2, i.e. ferromagnetic (FM) Kitaev interactions
K < 0 in conjunction with antiferromagnetic (AFM) Γ inter-
actions Γ > 0, is believed to be most relevant for the Kitaev
material α-RuCl3 [31]. Earlier zero-temperature model cal-
culations have established, however, that this combination of
exchange constants is not only particularly relevant for experi-
ments, but it is also a challenging and controversial part of the
phase diagram; various studies employing different methods
have predicted different results. (i) Variational Monte Carlo
simulations suggest the existence of a sequence of small win-
dows of ferromagnetic order, proximate Kitaev spin liquid,
and incommensurate spiral order in vicinity to the Kitaev spin
liquid around α = 0 [45, 46]. Zigzag order eventually man-
ifests when the Γ interaction becomes comparable in magni-
tude to the Kitaev contribution. (ii) Tensor network represen-
tations of the model predict a slim region of ferromagnetic
order and a nematic paramagnet near the Kitaev spin liquid,
as well as more intricate magnetic order with a 6-site unit
cell [47]. (iii) Exact diagonalization studies on 24-site clus-
ters point towards an extended spin liquid regime spanning
all the way from the pure Kitaev spin liquid to pure Γ in-
teractions [38, 48]. (iv) Recent density matrix renormaliza-
tion group calculations find an extended nematic paramagnet
regime in proximity to the Kitaev spin liquid [40].

Extensions of the pure Kitaev-Γ model by additional de-
tuning parameters have revealed additional insight into the
structure of the phase diagram and the stability of competing
phases; many of the aforementioned candidate ground states
appear to have a phase boundary close the the pure Kitaev-Γ
model in this extended parameter space. Detuning parame-
ters which have been studied in the past include competing
Heisenberg interactions [45], a spatial anisotropy in the inter-
action constants [46, 48], a type of symmetric, off-diagonal
exchange known as Γ�-interactions [40, 47], or simply a mag-
netic field [40, 47, 49, 50]. Further related efforts to grow our
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Because of the spin-orbit coupling, the symmetry group of
the model, G ¼ D3d × ZT

2 where ZT
2 ¼ fE; Tg is time

reversal, is finite, meaning its elements are discrete oper-
ations combining the space-time and spin degrees of
freedom.
We find the ground state of the S ¼ 1=2 K-J-Γmodel by

VMC calculations, which is a powerful method for the study
of spin-liquid phases. We first introduce the fermionic
slave-particle representation Smi ¼ 1

2
C†
i σ

mCi, where C†
i ¼

ðc†i↑; c†i↓Þ, m≡ x; y; z, and σm are Pauli matrices. The

particle-number constraint, N̂i ¼ c†i↑ci↑ þ c†i↓ci↓ ¼ 1,
should be imposed at every site to ensure that the size of
the fermion Hilbert space is the same as that of the physical
spin. This complex fermion representation is equivalent to
the Majorana representation introduced by Kitaev [1]. It
has a local SU(2) symmetry that is independent of the
SU(2) spin-rotation operations and can be considered as a
gauge structure [26], as discussed in Sec. S1A of the
Supplemental Material (SM) [27]. The spin interactions
in Eq. (1) are rewritten in terms of interacting fermionic
operators and decoupled into a noninteracting mean-field
Hamiltonian (Sec. S1B of the SM [27]), which for the most
general spin-orbit-coupled spin liquid has the form

Hmf ¼
X

hi;ji∈γ
Tr½Uð0Þ

ji ψ
†
iψ j�þ Tr½Uð1Þ

ji ψ
†
i ðiRγ

αβÞψ j�

þ Tr½Uð2Þ
ji ψ

†
i σ

γψ j�þ Tr½Uð3Þ
ji ψ

†
i σ

γRγ
αβψ j�; ð2Þ

where ψ i¼ðCiC̄iÞ, C̄i¼ðc†i↓;−c†i↑ÞT ,R
γ
αβ¼−iðσαþσβÞ=

ffiffiffi
2

p

is a rotation matrix, and the quantitiesUðmÞ
ji , with γ specified

by hi; ji, are mean-field parameters.
In the states described by Eq. (2), the SU(2) gauge

symmetry is usually reduced to U(1) or Z2, which is known
as the invariant gauge group (IGG) [35]. The Majorana
mean-field solution of the Kitaev model has IGG Z2.
Because the KSL is a special (exactly soluble) point in
the model of Eq. (1), one expects a finite regime of QSL
states connected adiabatically to it; following Ref. [36] we
call this the generic KSL (GKSL). A QSL ground state
preserves the full symmetry groupG and so does the mean-
field Hamiltonian. However, a general symmetry operation
of this Hamiltonian is a space-time and spin operation
in G combined with an SU(2) gauge transformation. These
new symmetry operations form a larger group, known as
the PSG, which is equivalent to a central extension
of G by the IGG (Sec. S2 of the SM [27]). The PSG of
the KSL is known exactly [37] and the corresponding
mean-field Hamiltonian must respect it. The PSG reduces
the number of independent parameters and, as detailed

in Sec. S3 of the SM [27], the coefficients UðmÞ
ji in Eq. (2)

are constrained to the forms Uð0Þ
ji ¼ iη0 þ iðρa þ ρcÞ,

Uð1Þ
ji ¼ iðρa − ρc þ ρdÞðτα þ τβÞ þ iη3ðτx þ τy þ τzÞ,

Uð2Þ
ji ¼ iðρa þ ρcÞτγ þ iη5ðτx þ τy þ τzÞ, and Uð3Þ

ji ¼
iðρc − ρa − ρdÞðτα − τβÞ.
In addition, we allow competing magnetically ordered

phases by including the termH0
mf ¼ 1

2

P
i Mi · C

†
i σCi in the

mean-field Hamiltonian [23]. The ordering pattern ofMi is
set from the classical solution within the single-Q approxi-
mation, leaving only the amplitudeM and the canting angle
ϕ to be determined variationally (Sec. S3 of the SM [27]).
The power of the VMC approach is that it allows the
particle-number constraint to be enforced locally, by
performing Gutzwiller projection of the mean-field ground
states to obtain the trial wave functions jΨðxÞi ¼
PGjΨmfðxÞi, where x denotes the variational parameters
ðρa; ρc; ρd; η0; η3; η5;M;ϕÞ. These are determined by min-
imizing the trial ground-state energy, EðxÞ ¼
hΨðxÞjHjΨðxÞi=hΨðxÞjΨðxÞi, in calculations performed
on tori of up to 14 × 14 unit cells, i.e., 392 lattice sites.
Because the final variational states depend crucially on the
mean-field Hamiltonian, a meaningful VMC procedure
requires a careful choice and comparison of decoupling
channels, and we have tested many spin-liquid and mag-
netic Ansätze (Sec. S3). Figure 1 shows the VMC phase
diagram of the K-J-Γ model at zero applied field. As a
benchmark, we note that our phase boundaries at Γ ¼ 0,
J > 0 agree quantitatively with those of Ref. [38].
Although the mean-field phase diagram contains a number
of candidate QSLs, VMC calculations reveal that only two
are robust. One is the GKSL, whose regime of stability is
bounded approximately by jJ=Kj ¼ 0.2 at Γ ¼ 0 and
Γ=jKj ¼ 0.15; this result provides a quantitative statement
of the region of relevance for the considerations of
Ref. [36]. The second we name the PKSL, one of our
central results being that there is only one QSL proximate
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FIG. 1. (a) Phase diagram of the quantum K-J-Γ model for
K < 0 in the limit of large system size. There are two QSL phases
of different types but with the same PSG, the GKSL and the
PKSL. The magnetically ordered phases are antiferromagnetic
(AFM), stripe, incommensurate spiral (IS), zigzag, and ferro-
magnetic (FM) order. (b) Detail of the limit jKj=Γ → 0, where all
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FIG. 5. (a) Phase diagram at Γ� = 0 as functions of
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at Γ� = −0.03 since the zig-zag phase is less dominant.
Complexed magnetic phases appear when Γ/|K| � 0.3 and
h � 0.15. The blue solid line at h = 0 denotes a ferromag-
netic phase. (see text for details). Larger-Γ phase diagrams
at (b) (Γ�, h) = (0, 0.15) and (c) (Γ�, h) = (−0.03, 0.15). The
results are obtained with the D = 6 ansatze.

the model breaks the rotational symmetry explicitly, and
thus there is no remaining symmetry discriminating the
P and NP phases. Nevertheless, the second derivative
of the energy strongly suggests a continuous phase tran-
sition between the P and NP2 phases [see Fig. 4 (b)] at
Γ/|K| ≈ 0.05. Note that the tilted field with θ > 0 leads
to a transition from the P phase directly to the NP2
phase. On the other hand, tilting the field in the oppo-
site direction (θ < 0) favors the NP1 phase and therefore
gives rise to a transition from the P phase to the NP1
phase (see SM). The continuous nature of these tran-
sitions can be seen even more clearly in the entangle-
ment entropy (EE)[35, 44, 45]. The boundary theory of
TPS[46] has been employed to measure the EE on the
cylinder geometry with the circumference Ly, and the
result is presented in Fig. 4 (c) and (d). The NP1 state
is highly entangled and its EE increases with Γ, while
the P state has a low and constant EE. The first deriva-
tive of the EE exhibits a peak at the same point as that
of the second derivative of the energy, and it becomes
sharper with increasing Ly and D[36]. Therefore, we con-
clude that there is a continuous transition between the P
and NP2 phases at Γ/|K| ≈ 0.05. As mentioned above,
the P and NP phases cannot be distinguished by conven-
tional symmetries, thus the continuous transition implies
a topological phase transition from the trivial phase (P)
to a topological or non-trivial phase (NP2). It is worth
noting that, with the tilted field, most of initial states,
including FM[111], FM[100], FM[011] and random ones,
converge to identical states without hysteresis.

K-Γ model.- Finite Γ� is responsible in stabilizing the
ZZ order at low fields. When Γ� = 0, we may expect
a more significant competition between various phases
including the complex classical magnetic orders. We
find that the NP phases are already present in the K-

Γ model as shown in the phase diagram in Fig. 5. On
the other hand, the complex magnetic orders with large
magnetic unit cells appear for sufficiently large Γ (typi-
cally, Γ/|K| � 0.3). For example, the 6-site order phase
appears at lower field h � 0.15 while the 18-site order
phase appears at higher field h � 0.15 as presented in
Figs. 5 (a) and (b). These are the same magnetic orders
reported in the classical phase diagram[29]. Quantum
fluctuations seem to favor NP1 and NP2 phases at small
Γ, and push the classical orders to the parameter region
with larger Γ. As in the case of Γ� = −0.03, the FM
phase appears between the KSL and the 6-site order at
h = 0 when D = 6. However, the NP2 state is almost
degenerate with FM phase in this region, i.e., the energy
difference is only ΔE ∼ O(10−4) (see SM). Moreover,
even this tiny energy difference is decreasing as bond di-
mension further increases (see SM). With these results
and given that the FM quickly loses to NP2 with a very
small h, NP2 may become a stable ground state at h = 0
for sufficiently large bond dimension or degenerate with
the FM phase.

Conclusion.- We used iTPS optimization to investigate
the field induced quantum phases in the K-Γ-Γ� model.
We find the nematic paramagnet (NP) phases that break
lattice rotational symmetry spontaneously as well as the
(chiral) KSL in an intermediate window of magnetic field.
In contrast to the previous 24-site ED and 2-leg ladder
DMRG study[28], the KSL is found to survive only in
a small corner of the phase diagram. Instead, the NP
phases occupy a large portion of the phase diagram and
hence are more likely to be observed. We also find that
the NP phases are already present in the K-Γ model in
zero and finite magnetic field. The NP phases in the
K-Γ model give away to the complex magnetic orders
with large unit cells when Γ/|K| becomes large, making
contact with the classical phase diagram reported earlier.

In order to clarify the nature of the NP phases, we
examine the effect of tilting the magnetic field (θ = 5◦

from the [111] direction). Here the transition between
the polarized (P) and NP2 phases is continuous, judging
from the singular behaviors in the second derivative of
the energy and the first derivative of the entanglement
entropy. Since C3 is broken in both of the P and NP2
phases in the tilted field, the continuous transition would
imply that NP2 is not a trivial product state. This leaves
the interesting possibility that the NP phases are non-
trivial topological states. The precise nature and thermal
Hall response of these states would be interesting subjects
of future study.
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FIG. 5. Phase diagrams for (a) � > 0 and (b) � < 0. At (a) “3 FD
state,” this state is threefold degenerate (3 FD). At (b) “NPSSF,” we
find no prominent peak in the static spin structure factor (NPSSF).
Symbols for the phase boundaries are determines from ∂E/∂λ and
∂2E/∂λ2 calculated with 24-site ED. Open circle means a jump
or a cusp in ∂E/∂θ , which indicates a first-order phase transition.
Open triangle means a clear minimum in ∂2E/∂θ2, which leads to
a second-order phase transition or a weak first-order phase transition
in the thermodynamic limit. Blue cross indicates the first-order phase
transition point, while the red cross indicates the second-order or
weak first-order phase transition. Open square means a crossover
point where ∂2E/∂λ2 shows a small minimum. Error bars are smaller
than the symbol sizes. Lines are guide for the eye. KSL phases,
which are expected to appear in the gray hatched area, are difficult to
determine because of the numerical resolution.

us to propose alternative scenarios. (i) The |tx�-dimer state
survives up to λ = 1. (ii) The |tx�-dimer state becomes un-
stable at λ ≈ 0.55, and another state obeys a phase transition
at λ = 1.

The second derivatives for θ = 270◦ and 353.7◦ qualita-
tively show similar behavior. Specifically, ∂2E/∂λ2 obtained
with dimer series expansions decrease towards λ = 1 and
their decrease becomes pronounced with an increase in the
included order. However, ∂2E/∂λ2 obtained with ED does

not show a decrease close to λ = 1 but shows a minimum at
λ ≈ 0.55. The results suggest that the |ty�-dimer state becomes
unstable at λ � 0.55.

Finally, we discuss a small minimum in ∂2E/∂λ2 for
� > 0 and K < 0, which is expressed by the open square
in Fig. 5(a). When the small minimum is caused by a
crossover, QSL in Refs. [23,24] adiabatically connects to
the |tx�-dimer state. If the small minimum would be caused
by a phase transition, QSL does not connect with the |tx�-
dimer state. A future study is needed to obtain a definite
conclusion.

IV. STABILITY OF THE KEKULÉ DIMERIZED STATE

Our calculations have shown that in some regions, a phase
transition takes place at λ = 1 where C3v symmetry is recov-
ered. This stimulates us to investigate a stable ordered state
that has discrete symmetry at λ = 1. For this purpose, we
adopt the T6 transformation [31] to Hamiltonian (1). The T6

transformation transforms Hamiltonian (1) into an extended
XX Z Hamiltonian with a Kekulé structure shown in Fig. 1(d).
Note that the transformed Hamiltonian still keeps C3v symme-
try. As shown in Fig. 1(d), we make the initial dimers form a
Kekulé structure. We then apply dimer series expansions to
the transformed Hamiltonian by treating the interactions on
the mapped X and Y bonds as perturbation.

Figures 7(a)–7(e) show the typical λ dependences of E ,
∂E/∂λ, and ∂2E/∂λ2. We calculate these quantities with 24-
site ED. Because the initial dimer placement differs from
that performed in Sec. III, the λ dependences of E , ∂E/∂λ,
and ∂2E/∂λ2 differ from those shown in Sec. III. For
θ = 23.2◦ (K/� = −2.33 at � < 0) [(a)] and 66.8◦ (K/� =
−0.43 at � < 0) [(b)], the ground-state energies up to sixth,
seventh, and eighth orders converge at 0 � λ � 1. They agree
with the ground-state energy obtained with ED. For θ =
23.2◦, ∂E/∂λ obtained with ED shows discontinuity at λ ≈
0.86, while ∂E/∂λ up to sixth, seventh, and eighth orders
begin to deviate at λ ≈ 0.6 with an increase in λ. These
results mean that the Kekulé dimerized state undergoes a
first-order phase transition at λ ≈ 0.86 and becomes unsta-
ble at the λ = 1 isotropic point. For θ = 66.8◦, ∂2E/∂λ2

shows a minimum at λ ≈ 0.96, which indicates that the
Kekulé dimerized state becomes unstable at λ � 0.96. For
θ = 123.7◦ (K/� = 0.67 at � > 0) [(c)] and 246.8◦ (K/� =
−0.43 at � > 0) [(d)], the ground-state energies up to sixth,
seventh, and eighth orders deviate at λ ≈ 0.4 and ≈ 0.6,
respectively, and show divergencelike behavior with an in-
crease in λ. The results indicate that the Kekulé dimerized
state becomes unstable before the system approaches the
isotropic point. For θ = 315◦ (K/� = 1 at � < 0) [(e)], the
ground-state energies up to sixth, seventh, and eighth orders
converge and agree with that obtained with ED at 0 � λ �
1. On the other hand, ∂2E/∂λ2 obtained with ED shows
a small minimum at λ ≈ 0.55, and ∂2E/∂λ2 obtained with
the present dimer-series expansions begin to deviate there
with an increase in λ. The results suggest that the Kekulé
dimerized state becomes unstable at λ � 0.55. Dimer series
expansions and ED performed in this section argue that the
Kekulé dimerized state is unstable at λ = 1 isotropic points.
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FIG. 1. Phase diagram of the Kitaev-Γ model on the honeycomb
lattice as a function of the angle α, which parametrizes the ratio of
Kitaev coupling K = − cos(α) and Γ interaction Γ = sin(α). The
black curve indicates the characteristic RG scale �Λc which is an in-
dicator for the onset energy scale of the magnetic order, see text for
details. The shaded regions indicate ordered phases with finite �Λc.
Observed ordered phases are ferromagnetic order (FM), incommen-
surate phase 1 (IC1), vortex phase 1 (V1), antiferromagnetic order
(AFM), incommensurate phase 2 (IC2), and vortex phase 2 (V2).
White regions indicate spin liquid phases and the absence of spon-
taneous symmetry breaking, mainly the FM and AFM Kitaev spin
liquids around α/π = 0 and α/π = 1, respectively.

surate spin correlations at finite temperature; in the context of
the pf-FRG approach, these phases manifest as the first insta-
bility of the RG flow when the energy scale of the RG cut-
off is lowered. For the incommensurate phases, we demon-
strate that the dominant intensity peaks in the structure factor,
which characterize the incommensurate order, shift continu-
ously upon variation of the coupling constant ratio. More-
over, we identify magnetic vortex phases which are overshad-
owed by a sub-dominant incommensurability effect. The re-
sulting phase diagram is summarized in Fig. 1. In view of
potential future studies, we point out that the pervasiveness
of incommensurate correlations poses a challenge to many es-
tablished methods which may rely on finite lattice represen-
tations; to substantiate this observation, we perform pf-FRG
calculations on a finite cylinder geometry, assessing the extent
to which an anisotropy is imposed by geometrical constraints.
We find that this unphysical anisotropy can become sizable in
phases with incommensurate magnetic correlations, whereas
it remains negligible in the Kitaev spin liquid phases where
correlations are short ranged.

The structure of the paper is as follows. In Sec. II, we de-
fine the Kitaev-Γ model, set the notation, and review previous
studies of the quantum model at zero temperature. We then
briefly introduce the pf-FRG formalism in Sec. III, before we
discuss our findings for the phase diagram in Sec. IV. We fur-
ther focus on the incommensurate phases in Sec. V and study
the constraints of a finite cylinder geometry. Our conclusions
are summarized in Sec. VI.

II. MODEL

We study the quantum-mechanical spin-1/2 Kitaev-Γ
model on the honeycomb lattice, which is described by the
microscopic Hamiltonian

H =
�

�i,j�γ
KSγ

i S
γ
j + Γ

�
Sα
i S

β
j + Sβ

i S
α
j

�
, (1)

where the sum runs over pairs of nearest neighbor lattice
sites i and j which are connected by a lattice bond of type
γ ∈ x, y, z (with α,β denoting the remaining two orthogonal
components). The exchange constant K quantifies the diag-
onal, bond-directional couplings of Kitaev type, whereas Γ
captures symmetric off-diagonal interactions. We parametrize
the ratio of Kitaev and Γ interactions by an angle α ∈ [0, 2π)
which is connected to the exchange constants via

K = − cos(α) and Γ = sin(α) . (2)

Throughout the remainder of this paper, all energy scales are
reported in units of

√
K2 + Γ2.

In terms of the parametrization described above, the regime
0 < α < π/2, i.e. ferromagnetic (FM) Kitaev interactions
K < 0 in conjunction with antiferromagnetic (AFM) Γ inter-
actions Γ > 0, is believed to be most relevant for the Kitaev
material α-RuCl3 [31]. Earlier zero-temperature model cal-
culations have established, however, that this combination of
exchange constants is not only particularly relevant for experi-
ments, but it is also a challenging and controversial part of the
phase diagram; various studies employing different methods
have predicted different results. (i) Variational Monte Carlo
simulations suggest the existence of a sequence of small win-
dows of ferromagnetic order, proximate Kitaev spin liquid,
and incommensurate spiral order in vicinity to the Kitaev spin
liquid around α = 0 [45, 46]. Zigzag order eventually man-
ifests when the Γ interaction becomes comparable in magni-
tude to the Kitaev contribution. (ii) Tensor network represen-
tations of the model predict a slim region of ferromagnetic
order and a nematic paramagnet near the Kitaev spin liquid,
as well as more intricate magnetic order with a 6-site unit
cell [47]. (iii) Exact diagonalization studies on 24-site clus-
ters point towards an extended spin liquid regime spanning
all the way from the pure Kitaev spin liquid to pure Γ in-
teractions [38, 48]. (iv) Recent density matrix renormaliza-
tion group calculations find an extended nematic paramagnet
regime in proximity to the Kitaev spin liquid [40].

Extensions of the pure Kitaev-Γ model by additional de-
tuning parameters have revealed additional insight into the
structure of the phase diagram and the stability of competing
phases; many of the aforementioned candidate ground states
appear to have a phase boundary close the the pure Kitaev-Γ
model in this extended parameter space. Detuning parame-
ters which have been studied in the past include competing
Heisenberg interactions [45], a spatial anisotropy in the inter-
action constants [46, 48], a type of symmetric, off-diagonal
exchange known as Γ�-interactions [40, 47], or simply a mag-
netic field [40, 47, 49, 50]. Further related efforts to grow our
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Kitaev-Gamma model, isotropic limit dz = 1, numerous results ...

Because of the spin-orbit coupling, the symmetry group of
the model, G ¼ D3d × ZT

2 where ZT
2 ¼ fE; Tg is time

reversal, is finite, meaning its elements are discrete oper-
ations combining the space-time and spin degrees of
freedom.
We find the ground state of the S ¼ 1=2 K-J-Γmodel by

VMC calculations, which is a powerful method for the study
of spin-liquid phases. We first introduce the fermionic
slave-particle representation Smi ¼ 1

2
C†
i σ

mCi, where C†
i ¼

ðc†i↑; c†i↓Þ, m≡ x; y; z, and σm are Pauli matrices. The

particle-number constraint, N̂i ¼ c†i↑ci↑ þ c†i↓ci↓ ¼ 1,
should be imposed at every site to ensure that the size of
the fermion Hilbert space is the same as that of the physical
spin. This complex fermion representation is equivalent to
the Majorana representation introduced by Kitaev [1]. It
has a local SU(2) symmetry that is independent of the
SU(2) spin-rotation operations and can be considered as a
gauge structure [26], as discussed in Sec. S1A of the
Supplemental Material (SM) [27]. The spin interactions
in Eq. (1) are rewritten in terms of interacting fermionic
operators and decoupled into a noninteracting mean-field
Hamiltonian (Sec. S1B of the SM [27]), which for the most
general spin-orbit-coupled spin liquid has the form

Hmf ¼
X

hi;ji∈γ
Tr½Uð0Þ

ji ψ
†
iψ j�þ Tr½Uð1Þ

ji ψ
†
i ðiRγ

αβÞψ j�

þ Tr½Uð2Þ
ji ψ

†
i σ

γψ j�þ Tr½Uð3Þ
ji ψ

†
i σ

γRγ
αβψ j�; ð2Þ

where ψ i¼ðCiC̄iÞ, C̄i¼ðc†i↓;−c†i↑ÞT ,R
γ
αβ¼−iðσαþσβÞ=

ffiffiffi
2

p

is a rotation matrix, and the quantitiesUðmÞ
ji , with γ specified

by hi; ji, are mean-field parameters.
In the states described by Eq. (2), the SU(2) gauge

symmetry is usually reduced to U(1) or Z2, which is known
as the invariant gauge group (IGG) [35]. The Majorana
mean-field solution of the Kitaev model has IGG Z2.
Because the KSL is a special (exactly soluble) point in
the model of Eq. (1), one expects a finite regime of QSL
states connected adiabatically to it; following Ref. [36] we
call this the generic KSL (GKSL). A QSL ground state
preserves the full symmetry groupG and so does the mean-
field Hamiltonian. However, a general symmetry operation
of this Hamiltonian is a space-time and spin operation
in G combined with an SU(2) gauge transformation. These
new symmetry operations form a larger group, known as
the PSG, which is equivalent to a central extension
of G by the IGG (Sec. S2 of the SM [27]). The PSG of
the KSL is known exactly [37] and the corresponding
mean-field Hamiltonian must respect it. The PSG reduces
the number of independent parameters and, as detailed

in Sec. S3 of the SM [27], the coefficients UðmÞ
ji in Eq. (2)

are constrained to the forms Uð0Þ
ji ¼ iη0 þ iðρa þ ρcÞ,

Uð1Þ
ji ¼ iðρa − ρc þ ρdÞðτα þ τβÞ þ iη3ðτx þ τy þ τzÞ,

Uð2Þ
ji ¼ iðρa þ ρcÞτγ þ iη5ðτx þ τy þ τzÞ, and Uð3Þ

ji ¼
iðρc − ρa − ρdÞðτα − τβÞ.
In addition, we allow competing magnetically ordered

phases by including the termH0
mf ¼ 1

2

P
i Mi · C

†
i σCi in the

mean-field Hamiltonian [23]. The ordering pattern ofMi is
set from the classical solution within the single-Q approxi-
mation, leaving only the amplitudeM and the canting angle
ϕ to be determined variationally (Sec. S3 of the SM [27]).
The power of the VMC approach is that it allows the
particle-number constraint to be enforced locally, by
performing Gutzwiller projection of the mean-field ground
states to obtain the trial wave functions jΨðxÞi ¼
PGjΨmfðxÞi, where x denotes the variational parameters
ðρa; ρc; ρd; η0; η3; η5;M;ϕÞ. These are determined by min-
imizing the trial ground-state energy, EðxÞ ¼
hΨðxÞjHjΨðxÞi=hΨðxÞjΨðxÞi, in calculations performed
on tori of up to 14 × 14 unit cells, i.e., 392 lattice sites.
Because the final variational states depend crucially on the
mean-field Hamiltonian, a meaningful VMC procedure
requires a careful choice and comparison of decoupling
channels, and we have tested many spin-liquid and mag-
netic Ansätze (Sec. S3). Figure 1 shows the VMC phase
diagram of the K-J-Γ model at zero applied field. As a
benchmark, we note that our phase boundaries at Γ ¼ 0,
J > 0 agree quantitatively with those of Ref. [38].
Although the mean-field phase diagram contains a number
of candidate QSLs, VMC calculations reveal that only two
are robust. One is the GKSL, whose regime of stability is
bounded approximately by jJ=Kj ¼ 0.2 at Γ ¼ 0 and
Γ=jKj ¼ 0.15; this result provides a quantitative statement
of the region of relevance for the considerations of
Ref. [36]. The second we name the PKSL, one of our
central results being that there is only one QSL proximate
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FIG. 1. (a) Phase diagram of the quantum K-J-Γ model for
K < 0 in the limit of large system size. There are two QSL phases
of different types but with the same PSG, the GKSL and the
PKSL. The magnetically ordered phases are antiferromagnetic
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FIG. 5. (a) Phase diagram at Γ� = 0 as functions of
Γ/|K| and h. NP1 and NP2 phases are larger than those
at Γ� = −0.03 since the zig-zag phase is less dominant.
Complexed magnetic phases appear when Γ/|K| � 0.3 and
h � 0.15. The blue solid line at h = 0 denotes a ferromag-
netic phase. (see text for details). Larger-Γ phase diagrams
at (b) (Γ�, h) = (0, 0.15) and (c) (Γ�, h) = (−0.03, 0.15). The
results are obtained with the D = 6 ansatze.

the model breaks the rotational symmetry explicitly, and
thus there is no remaining symmetry discriminating the
P and NP phases. Nevertheless, the second derivative
of the energy strongly suggests a continuous phase tran-
sition between the P and NP2 phases [see Fig. 4 (b)] at
Γ/|K| ≈ 0.05. Note that the tilted field with θ > 0 leads
to a transition from the P phase directly to the NP2
phase. On the other hand, tilting the field in the oppo-
site direction (θ < 0) favors the NP1 phase and therefore
gives rise to a transition from the P phase to the NP1
phase (see SM). The continuous nature of these tran-
sitions can be seen even more clearly in the entangle-
ment entropy (EE)[35, 44, 45]. The boundary theory of
TPS[46] has been employed to measure the EE on the
cylinder geometry with the circumference Ly, and the
result is presented in Fig. 4 (c) and (d). The NP1 state
is highly entangled and its EE increases with Γ, while
the P state has a low and constant EE. The first deriva-
tive of the EE exhibits a peak at the same point as that
of the second derivative of the energy, and it becomes
sharper with increasing Ly and D[36]. Therefore, we con-
clude that there is a continuous transition between the P
and NP2 phases at Γ/|K| ≈ 0.05. As mentioned above,
the P and NP phases cannot be distinguished by conven-
tional symmetries, thus the continuous transition implies
a topological phase transition from the trivial phase (P)
to a topological or non-trivial phase (NP2). It is worth
noting that, with the tilted field, most of initial states,
including FM[111], FM[100], FM[011] and random ones,
converge to identical states without hysteresis.

K-Γ model.- Finite Γ� is responsible in stabilizing the
ZZ order at low fields. When Γ� = 0, we may expect
a more significant competition between various phases
including the complex classical magnetic orders. We
find that the NP phases are already present in the K-

Γ model as shown in the phase diagram in Fig. 5. On
the other hand, the complex magnetic orders with large
magnetic unit cells appear for sufficiently large Γ (typi-
cally, Γ/|K| � 0.3). For example, the 6-site order phase
appears at lower field h � 0.15 while the 18-site order
phase appears at higher field h � 0.15 as presented in
Figs. 5 (a) and (b). These are the same magnetic orders
reported in the classical phase diagram[29]. Quantum
fluctuations seem to favor NP1 and NP2 phases at small
Γ, and push the classical orders to the parameter region
with larger Γ. As in the case of Γ� = −0.03, the FM
phase appears between the KSL and the 6-site order at
h = 0 when D = 6. However, the NP2 state is almost
degenerate with FM phase in this region, i.e., the energy
difference is only ΔE ∼ O(10−4) (see SM). Moreover,
even this tiny energy difference is decreasing as bond di-
mension further increases (see SM). With these results
and given that the FM quickly loses to NP2 with a very
small h, NP2 may become a stable ground state at h = 0
for sufficiently large bond dimension or degenerate with
the FM phase.

Conclusion.- We used iTPS optimization to investigate
the field induced quantum phases in the K-Γ-Γ� model.
We find the nematic paramagnet (NP) phases that break
lattice rotational symmetry spontaneously as well as the
(chiral) KSL in an intermediate window of magnetic field.
In contrast to the previous 24-site ED and 2-leg ladder
DMRG study[28], the KSL is found to survive only in
a small corner of the phase diagram. Instead, the NP
phases occupy a large portion of the phase diagram and
hence are more likely to be observed. We also find that
the NP phases are already present in the K-Γ model in
zero and finite magnetic field. The NP phases in the
K-Γ model give away to the complex magnetic orders
with large unit cells when Γ/|K| becomes large, making
contact with the classical phase diagram reported earlier.

In order to clarify the nature of the NP phases, we
examine the effect of tilting the magnetic field (θ = 5◦

from the [111] direction). Here the transition between
the polarized (P) and NP2 phases is continuous, judging
from the singular behaviors in the second derivative of
the energy and the first derivative of the entanglement
entropy. Since C3 is broken in both of the P and NP2
phases in the tilted field, the continuous transition would
imply that NP2 is not a trivial product state. This leaves
the interesting possibility that the NP phases are non-
trivial topological states. The precise nature and thermal
Hall response of these states would be interesting subjects
of future study.
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FIG. 5. Phase diagrams for (a) � > 0 and (b) � < 0. At (a) “3 FD
state,” this state is threefold degenerate (3 FD). At (b) “NPSSF,” we
find no prominent peak in the static spin structure factor (NPSSF).
Symbols for the phase boundaries are determines from ∂E/∂λ and
∂2E/∂λ2 calculated with 24-site ED. Open circle means a jump
or a cusp in ∂E/∂θ , which indicates a first-order phase transition.
Open triangle means a clear minimum in ∂2E/∂θ2, which leads to
a second-order phase transition or a weak first-order phase transition
in the thermodynamic limit. Blue cross indicates the first-order phase
transition point, while the red cross indicates the second-order or
weak first-order phase transition. Open square means a crossover
point where ∂2E/∂λ2 shows a small minimum. Error bars are smaller
than the symbol sizes. Lines are guide for the eye. KSL phases,
which are expected to appear in the gray hatched area, are difficult to
determine because of the numerical resolution.

us to propose alternative scenarios. (i) The |tx�-dimer state
survives up to λ = 1. (ii) The |tx�-dimer state becomes un-
stable at λ ≈ 0.55, and another state obeys a phase transition
at λ = 1.

The second derivatives for θ = 270◦ and 353.7◦ qualita-
tively show similar behavior. Specifically, ∂2E/∂λ2 obtained
with dimer series expansions decrease towards λ = 1 and
their decrease becomes pronounced with an increase in the
included order. However, ∂2E/∂λ2 obtained with ED does

not show a decrease close to λ = 1 but shows a minimum at
λ ≈ 0.55. The results suggest that the |ty�-dimer state becomes
unstable at λ � 0.55.

Finally, we discuss a small minimum in ∂2E/∂λ2 for
� > 0 and K < 0, which is expressed by the open square
in Fig. 5(a). When the small minimum is caused by a
crossover, QSL in Refs. [23,24] adiabatically connects to
the |tx�-dimer state. If the small minimum would be caused
by a phase transition, QSL does not connect with the |tx�-
dimer state. A future study is needed to obtain a definite
conclusion.

IV. STABILITY OF THE KEKULÉ DIMERIZED STATE

Our calculations have shown that in some regions, a phase
transition takes place at λ = 1 where C3v symmetry is recov-
ered. This stimulates us to investigate a stable ordered state
that has discrete symmetry at λ = 1. For this purpose, we
adopt the T6 transformation [31] to Hamiltonian (1). The T6

transformation transforms Hamiltonian (1) into an extended
XX Z Hamiltonian with a Kekulé structure shown in Fig. 1(d).
Note that the transformed Hamiltonian still keeps C3v symme-
try. As shown in Fig. 1(d), we make the initial dimers form a
Kekulé structure. We then apply dimer series expansions to
the transformed Hamiltonian by treating the interactions on
the mapped X and Y bonds as perturbation.

Figures 7(a)–7(e) show the typical λ dependences of E ,
∂E/∂λ, and ∂2E/∂λ2. We calculate these quantities with 24-
site ED. Because the initial dimer placement differs from
that performed in Sec. III, the λ dependences of E , ∂E/∂λ,
and ∂2E/∂λ2 differ from those shown in Sec. III. For
θ = 23.2◦ (K/� = −2.33 at � < 0) [(a)] and 66.8◦ (K/� =
−0.43 at � < 0) [(b)], the ground-state energies up to sixth,
seventh, and eighth orders converge at 0 � λ � 1. They agree
with the ground-state energy obtained with ED. For θ =
23.2◦, ∂E/∂λ obtained with ED shows discontinuity at λ ≈
0.86, while ∂E/∂λ up to sixth, seventh, and eighth orders
begin to deviate at λ ≈ 0.6 with an increase in λ. These
results mean that the Kekulé dimerized state undergoes a
first-order phase transition at λ ≈ 0.86 and becomes unsta-
ble at the λ = 1 isotropic point. For θ = 66.8◦, ∂2E/∂λ2

shows a minimum at λ ≈ 0.96, which indicates that the
Kekulé dimerized state becomes unstable at λ � 0.96. For
θ = 123.7◦ (K/� = 0.67 at � > 0) [(c)] and 246.8◦ (K/� =
−0.43 at � > 0) [(d)], the ground-state energies up to sixth,
seventh, and eighth orders deviate at λ ≈ 0.4 and ≈ 0.6,
respectively, and show divergencelike behavior with an in-
crease in λ. The results indicate that the Kekulé dimerized
state becomes unstable before the system approaches the
isotropic point. For θ = 315◦ (K/� = 1 at � < 0) [(e)], the
ground-state energies up to sixth, seventh, and eighth orders
converge and agree with that obtained with ED at 0 � λ �
1. On the other hand, ∂2E/∂λ2 obtained with ED shows
a small minimum at λ ≈ 0.55, and ∂2E/∂λ2 obtained with
the present dimer-series expansions begin to deviate there
with an increase in λ. The results suggest that the Kekulé
dimerized state becomes unstable at λ � 0.55. Dimer series
expansions and ED performed in this section argue that the
Kekulé dimerized state is unstable at λ = 1 isotropic points.
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FIG. 1. Phase diagram of the Kitaev-Γ model on the honeycomb
lattice as a function of the angle α, which parametrizes the ratio of
Kitaev coupling K = − cos(α) and Γ interaction Γ = sin(α). The
black curve indicates the characteristic RG scale �Λc which is an in-
dicator for the onset energy scale of the magnetic order, see text for
details. The shaded regions indicate ordered phases with finite �Λc.
Observed ordered phases are ferromagnetic order (FM), incommen-
surate phase 1 (IC1), vortex phase 1 (V1), antiferromagnetic order
(AFM), incommensurate phase 2 (IC2), and vortex phase 2 (V2).
White regions indicate spin liquid phases and the absence of spon-
taneous symmetry breaking, mainly the FM and AFM Kitaev spin
liquids around α/π = 0 and α/π = 1, respectively.

surate spin correlations at finite temperature; in the context of
the pf-FRG approach, these phases manifest as the first insta-
bility of the RG flow when the energy scale of the RG cut-
off is lowered. For the incommensurate phases, we demon-
strate that the dominant intensity peaks in the structure factor,
which characterize the incommensurate order, shift continu-
ously upon variation of the coupling constant ratio. More-
over, we identify magnetic vortex phases which are overshad-
owed by a sub-dominant incommensurability effect. The re-
sulting phase diagram is summarized in Fig. 1. In view of
potential future studies, we point out that the pervasiveness
of incommensurate correlations poses a challenge to many es-
tablished methods which may rely on finite lattice represen-
tations; to substantiate this observation, we perform pf-FRG
calculations on a finite cylinder geometry, assessing the extent
to which an anisotropy is imposed by geometrical constraints.
We find that this unphysical anisotropy can become sizable in
phases with incommensurate magnetic correlations, whereas
it remains negligible in the Kitaev spin liquid phases where
correlations are short ranged.

The structure of the paper is as follows. In Sec. II, we de-
fine the Kitaev-Γ model, set the notation, and review previous
studies of the quantum model at zero temperature. We then
briefly introduce the pf-FRG formalism in Sec. III, before we
discuss our findings for the phase diagram in Sec. IV. We fur-
ther focus on the incommensurate phases in Sec. V and study
the constraints of a finite cylinder geometry. Our conclusions
are summarized in Sec. VI.

II. MODEL

We study the quantum-mechanical spin-1/2 Kitaev-Γ
model on the honeycomb lattice, which is described by the
microscopic Hamiltonian

H =
�

�i,j�γ
KSγ

i S
γ
j + Γ

�
Sα
i S

β
j + Sβ

i S
α
j

�
, (1)

where the sum runs over pairs of nearest neighbor lattice
sites i and j which are connected by a lattice bond of type
γ ∈ x, y, z (with α,β denoting the remaining two orthogonal
components). The exchange constant K quantifies the diag-
onal, bond-directional couplings of Kitaev type, whereas Γ
captures symmetric off-diagonal interactions. We parametrize
the ratio of Kitaev and Γ interactions by an angle α ∈ [0, 2π)
which is connected to the exchange constants via

K = − cos(α) and Γ = sin(α) . (2)

Throughout the remainder of this paper, all energy scales are
reported in units of

√
K2 + Γ2.

In terms of the parametrization described above, the regime
0 < α < π/2, i.e. ferromagnetic (FM) Kitaev interactions
K < 0 in conjunction with antiferromagnetic (AFM) Γ inter-
actions Γ > 0, is believed to be most relevant for the Kitaev
material α-RuCl3 [31]. Earlier zero-temperature model cal-
culations have established, however, that this combination of
exchange constants is not only particularly relevant for experi-
ments, but it is also a challenging and controversial part of the
phase diagram; various studies employing different methods
have predicted different results. (i) Variational Monte Carlo
simulations suggest the existence of a sequence of small win-
dows of ferromagnetic order, proximate Kitaev spin liquid,
and incommensurate spiral order in vicinity to the Kitaev spin
liquid around α = 0 [45, 46]. Zigzag order eventually man-
ifests when the Γ interaction becomes comparable in magni-
tude to the Kitaev contribution. (ii) Tensor network represen-
tations of the model predict a slim region of ferromagnetic
order and a nematic paramagnet near the Kitaev spin liquid,
as well as more intricate magnetic order with a 6-site unit
cell [47]. (iii) Exact diagonalization studies on 24-site clus-
ters point towards an extended spin liquid regime spanning
all the way from the pure Kitaev spin liquid to pure Γ in-
teractions [38, 48]. (iv) Recent density matrix renormaliza-
tion group calculations find an extended nematic paramagnet
regime in proximity to the Kitaev spin liquid [40].

Extensions of the pure Kitaev-Γ model by additional de-
tuning parameters have revealed additional insight into the
structure of the phase diagram and the stability of competing
phases; many of the aforementioned candidate ground states
appear to have a phase boundary close the the pure Kitaev-Γ
model in this extended parameter space. Detuning parame-
ters which have been studied in the past include competing
Heisenberg interactions [45], a spatial anisotropy in the inter-
action constants [46, 48], a type of symmetric, off-diagonal
exchange known as Γ�-interactions [40, 47], or simply a mag-
netic field [40, 47, 49, 50]. Further related efforts to grow our
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Because of the spin-orbit coupling, the symmetry group of
the model, G ¼ D3d × ZT

2 where ZT
2 ¼ fE; Tg is time

reversal, is finite, meaning its elements are discrete oper-
ations combining the space-time and spin degrees of
freedom.
We find the ground state of the S ¼ 1=2 K-J-Γmodel by

VMC calculations, which is a powerful method for the study
of spin-liquid phases. We first introduce the fermionic
slave-particle representation Smi ¼ 1

2
C†
i σ

mCi, where C†
i ¼

ðc†i↑; c†i↓Þ, m≡ x; y; z, and σm are Pauli matrices. The

particle-number constraint, N̂i ¼ c†i↑ci↑ þ c†i↓ci↓ ¼ 1,
should be imposed at every site to ensure that the size of
the fermion Hilbert space is the same as that of the physical
spin. This complex fermion representation is equivalent to
the Majorana representation introduced by Kitaev [1]. It
has a local SU(2) symmetry that is independent of the
SU(2) spin-rotation operations and can be considered as a
gauge structure [26], as discussed in Sec. S1A of the
Supplemental Material (SM) [27]. The spin interactions
in Eq. (1) are rewritten in terms of interacting fermionic
operators and decoupled into a noninteracting mean-field
Hamiltonian (Sec. S1B of the SM [27]), which for the most
general spin-orbit-coupled spin liquid has the form

Hmf ¼
X

hi;ji∈γ
Tr½Uð0Þ

ji ψ
†
iψ j�þ Tr½Uð1Þ

ji ψ
†
i ðiRγ

αβÞψ j�

þ Tr½Uð2Þ
ji ψ

†
i σ

γψ j�þ Tr½Uð3Þ
ji ψ

†
i σ

γRγ
αβψ j�; ð2Þ

where ψ i¼ðCiC̄iÞ, C̄i¼ðc†i↓;−c†i↑ÞT ,R
γ
αβ¼−iðσαþσβÞ=

ffiffiffi
2

p

is a rotation matrix, and the quantitiesUðmÞ
ji , with γ specified

by hi; ji, are mean-field parameters.
In the states described by Eq. (2), the SU(2) gauge

symmetry is usually reduced to U(1) or Z2, which is known
as the invariant gauge group (IGG) [35]. The Majorana
mean-field solution of the Kitaev model has IGG Z2.
Because the KSL is a special (exactly soluble) point in
the model of Eq. (1), one expects a finite regime of QSL
states connected adiabatically to it; following Ref. [36] we
call this the generic KSL (GKSL). A QSL ground state
preserves the full symmetry groupG and so does the mean-
field Hamiltonian. However, a general symmetry operation
of this Hamiltonian is a space-time and spin operation
in G combined with an SU(2) gauge transformation. These
new symmetry operations form a larger group, known as
the PSG, which is equivalent to a central extension
of G by the IGG (Sec. S2 of the SM [27]). The PSG of
the KSL is known exactly [37] and the corresponding
mean-field Hamiltonian must respect it. The PSG reduces
the number of independent parameters and, as detailed

in Sec. S3 of the SM [27], the coefficients UðmÞ
ji in Eq. (2)

are constrained to the forms Uð0Þ
ji ¼ iη0 þ iðρa þ ρcÞ,

Uð1Þ
ji ¼ iðρa − ρc þ ρdÞðτα þ τβÞ þ iη3ðτx þ τy þ τzÞ,

Uð2Þ
ji ¼ iðρa þ ρcÞτγ þ iη5ðτx þ τy þ τzÞ, and Uð3Þ

ji ¼
iðρc − ρa − ρdÞðτα − τβÞ.
In addition, we allow competing magnetically ordered

phases by including the termH0
mf ¼ 1

2

P
i Mi · C

†
i σCi in the

mean-field Hamiltonian [23]. The ordering pattern ofMi is
set from the classical solution within the single-Q approxi-
mation, leaving only the amplitudeM and the canting angle
ϕ to be determined variationally (Sec. S3 of the SM [27]).
The power of the VMC approach is that it allows the
particle-number constraint to be enforced locally, by
performing Gutzwiller projection of the mean-field ground
states to obtain the trial wave functions jΨðxÞi ¼
PGjΨmfðxÞi, where x denotes the variational parameters
ðρa; ρc; ρd; η0; η3; η5;M;ϕÞ. These are determined by min-
imizing the trial ground-state energy, EðxÞ ¼
hΨðxÞjHjΨðxÞi=hΨðxÞjΨðxÞi, in calculations performed
on tori of up to 14 × 14 unit cells, i.e., 392 lattice sites.
Because the final variational states depend crucially on the
mean-field Hamiltonian, a meaningful VMC procedure
requires a careful choice and comparison of decoupling
channels, and we have tested many spin-liquid and mag-
netic Ansätze (Sec. S3). Figure 1 shows the VMC phase
diagram of the K-J-Γ model at zero applied field. As a
benchmark, we note that our phase boundaries at Γ ¼ 0,
J > 0 agree quantitatively with those of Ref. [38].
Although the mean-field phase diagram contains a number
of candidate QSLs, VMC calculations reveal that only two
are robust. One is the GKSL, whose regime of stability is
bounded approximately by jJ=Kj ¼ 0.2 at Γ ¼ 0 and
Γ=jKj ¼ 0.15; this result provides a quantitative statement
of the region of relevance for the considerations of
Ref. [36]. The second we name the PKSL, one of our
central results being that there is only one QSL proximate
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FIG. 1. (a) Phase diagram of the quantum K-J-Γ model for
K < 0 in the limit of large system size. There are two QSL phases
of different types but with the same PSG, the GKSL and the
PKSL. The magnetically ordered phases are antiferromagnetic
(AFM), stripe, incommensurate spiral (IS), zigzag, and ferro-
magnetic (FM) order. (b) Detail of the limit jKj=Γ → 0, where all
phases are magnetically ordered; the transitions occur at
J=Γ ¼ 0.15, 0.05, and −0.75.
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FIG. 5. (a) Phase diagram at Γ� = 0 as functions of
Γ/|K| and h. NP1 and NP2 phases are larger than those
at Γ� = −0.03 since the zig-zag phase is less dominant.
Complexed magnetic phases appear when Γ/|K| � 0.3 and
h � 0.15. The blue solid line at h = 0 denotes a ferromag-
netic phase. (see text for details). Larger-Γ phase diagrams
at (b) (Γ�, h) = (0, 0.15) and (c) (Γ�, h) = (−0.03, 0.15). The
results are obtained with the D = 6 ansatze.

the model breaks the rotational symmetry explicitly, and
thus there is no remaining symmetry discriminating the
P and NP phases. Nevertheless, the second derivative
of the energy strongly suggests a continuous phase tran-
sition between the P and NP2 phases [see Fig. 4 (b)] at
Γ/|K| ≈ 0.05. Note that the tilted field with θ > 0 leads
to a transition from the P phase directly to the NP2
phase. On the other hand, tilting the field in the oppo-
site direction (θ < 0) favors the NP1 phase and therefore
gives rise to a transition from the P phase to the NP1
phase (see SM). The continuous nature of these tran-
sitions can be seen even more clearly in the entangle-
ment entropy (EE)[35, 44, 45]. The boundary theory of
TPS[46] has been employed to measure the EE on the
cylinder geometry with the circumference Ly, and the
result is presented in Fig. 4 (c) and (d). The NP1 state
is highly entangled and its EE increases with Γ, while
the P state has a low and constant EE. The first deriva-
tive of the EE exhibits a peak at the same point as that
of the second derivative of the energy, and it becomes
sharper with increasing Ly and D[36]. Therefore, we con-
clude that there is a continuous transition between the P
and NP2 phases at Γ/|K| ≈ 0.05. As mentioned above,
the P and NP phases cannot be distinguished by conven-
tional symmetries, thus the continuous transition implies
a topological phase transition from the trivial phase (P)
to a topological or non-trivial phase (NP2). It is worth
noting that, with the tilted field, most of initial states,
including FM[111], FM[100], FM[011] and random ones,
converge to identical states without hysteresis.

K-Γ model.- Finite Γ� is responsible in stabilizing the
ZZ order at low fields. When Γ� = 0, we may expect
a more significant competition between various phases
including the complex classical magnetic orders. We
find that the NP phases are already present in the K-

Γ model as shown in the phase diagram in Fig. 5. On
the other hand, the complex magnetic orders with large
magnetic unit cells appear for sufficiently large Γ (typi-
cally, Γ/|K| � 0.3). For example, the 6-site order phase
appears at lower field h � 0.15 while the 18-site order
phase appears at higher field h � 0.15 as presented in
Figs. 5 (a) and (b). These are the same magnetic orders
reported in the classical phase diagram[29]. Quantum
fluctuations seem to favor NP1 and NP2 phases at small
Γ, and push the classical orders to the parameter region
with larger Γ. As in the case of Γ� = −0.03, the FM
phase appears between the KSL and the 6-site order at
h = 0 when D = 6. However, the NP2 state is almost
degenerate with FM phase in this region, i.e., the energy
difference is only ΔE ∼ O(10−4) (see SM). Moreover,
even this tiny energy difference is decreasing as bond di-
mension further increases (see SM). With these results
and given that the FM quickly loses to NP2 with a very
small h, NP2 may become a stable ground state at h = 0
for sufficiently large bond dimension or degenerate with
the FM phase.

Conclusion.- We used iTPS optimization to investigate
the field induced quantum phases in the K-Γ-Γ� model.
We find the nematic paramagnet (NP) phases that break
lattice rotational symmetry spontaneously as well as the
(chiral) KSL in an intermediate window of magnetic field.
In contrast to the previous 24-site ED and 2-leg ladder
DMRG study[28], the KSL is found to survive only in
a small corner of the phase diagram. Instead, the NP
phases occupy a large portion of the phase diagram and
hence are more likely to be observed. We also find that
the NP phases are already present in the K-Γ model in
zero and finite magnetic field. The NP phases in the
K-Γ model give away to the complex magnetic orders
with large unit cells when Γ/|K| becomes large, making
contact with the classical phase diagram reported earlier.

In order to clarify the nature of the NP phases, we
examine the effect of tilting the magnetic field (θ = 5◦

from the [111] direction). Here the transition between
the polarized (P) and NP2 phases is continuous, judging
from the singular behaviors in the second derivative of
the energy and the first derivative of the entanglement
entropy. Since C3 is broken in both of the P and NP2
phases in the tilted field, the continuous transition would
imply that NP2 is not a trivial product state. This leaves
the interesting possibility that the NP phases are non-
trivial topological states. The precise nature and thermal
Hall response of these states would be interesting subjects
of future study.
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FIG. 5. Phase diagrams for (a) � > 0 and (b) � < 0. At (a) “3 FD
state,” this state is threefold degenerate (3 FD). At (b) “NPSSF,” we
find no prominent peak in the static spin structure factor (NPSSF).
Symbols for the phase boundaries are determines from ∂E/∂λ and
∂2E/∂λ2 calculated with 24-site ED. Open circle means a jump
or a cusp in ∂E/∂θ , which indicates a first-order phase transition.
Open triangle means a clear minimum in ∂2E/∂θ2, which leads to
a second-order phase transition or a weak first-order phase transition
in the thermodynamic limit. Blue cross indicates the first-order phase
transition point, while the red cross indicates the second-order or
weak first-order phase transition. Open square means a crossover
point where ∂2E/∂λ2 shows a small minimum. Error bars are smaller
than the symbol sizes. Lines are guide for the eye. KSL phases,
which are expected to appear in the gray hatched area, are difficult to
determine because of the numerical resolution.

us to propose alternative scenarios. (i) The |tx�-dimer state
survives up to λ = 1. (ii) The |tx�-dimer state becomes un-
stable at λ ≈ 0.55, and another state obeys a phase transition
at λ = 1.

The second derivatives for θ = 270◦ and 353.7◦ qualita-
tively show similar behavior. Specifically, ∂2E/∂λ2 obtained
with dimer series expansions decrease towards λ = 1 and
their decrease becomes pronounced with an increase in the
included order. However, ∂2E/∂λ2 obtained with ED does

not show a decrease close to λ = 1 but shows a minimum at
λ ≈ 0.55. The results suggest that the |ty�-dimer state becomes
unstable at λ � 0.55.

Finally, we discuss a small minimum in ∂2E/∂λ2 for
� > 0 and K < 0, which is expressed by the open square
in Fig. 5(a). When the small minimum is caused by a
crossover, QSL in Refs. [23,24] adiabatically connects to
the |tx�-dimer state. If the small minimum would be caused
by a phase transition, QSL does not connect with the |tx�-
dimer state. A future study is needed to obtain a definite
conclusion.

IV. STABILITY OF THE KEKULÉ DIMERIZED STATE

Our calculations have shown that in some regions, a phase
transition takes place at λ = 1 where C3v symmetry is recov-
ered. This stimulates us to investigate a stable ordered state
that has discrete symmetry at λ = 1. For this purpose, we
adopt the T6 transformation [31] to Hamiltonian (1). The T6

transformation transforms Hamiltonian (1) into an extended
XXZ Hamiltonian with a Kekulé structure shown in Fig. 1(d).
Note that the transformed Hamiltonian still keeps C3v symme-
try. As shown in Fig. 1(d), we make the initial dimers form a
Kekulé structure. We then apply dimer series expansions to
the transformed Hamiltonian by treating the interactions on
the mapped X and Y bonds as perturbation.

Figures 7(a)–7(e) show the typical λ dependences of E ,
∂E/∂λ, and ∂2E/∂λ2. We calculate these quantities with 24-
site ED. Because the initial dimer placement differs from
that performed in Sec. III, the λ dependences of E , ∂E/∂λ,
and ∂2E/∂λ2 differ from those shown in Sec. III. For
θ = 23.2◦ (K/� = −2.33 at � < 0) [(a)] and 66.8◦ (K/� =
−0.43 at � < 0) [(b)], the ground-state energies up to sixth,
seventh, and eighth orders converge at 0 � λ � 1. They agree
with the ground-state energy obtained with ED. For θ =
23.2◦, ∂E/∂λ obtained with ED shows discontinuity at λ ≈
0.86, while ∂E/∂λ up to sixth, seventh, and eighth orders
begin to deviate at λ ≈ 0.6 with an increase in λ. These
results mean that the Kekulé dimerized state undergoes a
first-order phase transition at λ ≈ 0.86 and becomes unsta-
ble at the λ = 1 isotropic point. For θ = 66.8◦, ∂2E/∂λ2

shows a minimum at λ ≈ 0.96, which indicates that the
Kekulé dimerized state becomes unstable at λ � 0.96. For
θ = 123.7◦ (K/� = 0.67 at � > 0) [(c)] and 246.8◦ (K/� =
−0.43 at � > 0) [(d)], the ground-state energies up to sixth,
seventh, and eighth orders deviate at λ ≈ 0.4 and ≈ 0.6,
respectively, and show divergencelike behavior with an in-
crease in λ. The results indicate that the Kekulé dimerized
state becomes unstable before the system approaches the
isotropic point. For θ = 315◦ (K/� = 1 at � < 0) [(e)], the
ground-state energies up to sixth, seventh, and eighth orders
converge and agree with that obtained with ED at 0 � λ �
1. On the other hand, ∂2E/∂λ2 obtained with ED shows
a small minimum at λ ≈ 0.55, and ∂2E/∂λ2 obtained with
the present dimer-series expansions begin to deviate there
with an increase in λ. The results suggest that the Kekulé
dimerized state becomes unstable at λ � 0.55. Dimer series
expansions and ED performed in this section argue that the
Kekulé dimerized state is unstable at λ = 1 isotropic points.
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FIG. 1. Phase diagram of the Kitaev-Γ model on the honeycomb
lattice as a function of the angle α, which parametrizes the ratio of
Kitaev coupling K = − cos(α) and Γ interaction Γ = sin(α). The
black curve indicates the characteristic RG scale �Λc which is an in-
dicator for the onset energy scale of the magnetic order, see text for
details. The shaded regions indicate ordered phases with finite �Λc.
Observed ordered phases are ferromagnetic order (FM), incommen-
surate phase 1 (IC1), vortex phase 1 (V1), antiferromagnetic order
(AFM), incommensurate phase 2 (IC2), and vortex phase 2 (V2).
White regions indicate spin liquid phases and the absence of spon-
taneous symmetry breaking, mainly the FM and AFM Kitaev spin
liquids around α/π = 0 and α/π = 1, respectively.

surate spin correlations at finite temperature; in the context of
the pf-FRG approach, these phases manifest as the first insta-
bility of the RG flow when the energy scale of the RG cut-
off is lowered. For the incommensurate phases, we demon-
strate that the dominant intensity peaks in the structure factor,
which characterize the incommensurate order, shift continu-
ously upon variation of the coupling constant ratio. More-
over, we identify magnetic vortex phases which are overshad-
owed by a sub-dominant incommensurability effect. The re-
sulting phase diagram is summarized in Fig. 1. In view of
potential future studies, we point out that the pervasiveness
of incommensurate correlations poses a challenge to many es-
tablished methods which may rely on finite lattice represen-
tations; to substantiate this observation, we perform pf-FRG
calculations on a finite cylinder geometry, assessing the extent
to which an anisotropy is imposed by geometrical constraints.
We find that this unphysical anisotropy can become sizable in
phases with incommensurate magnetic correlations, whereas
it remains negligible in the Kitaev spin liquid phases where
correlations are short ranged.

The structure of the paper is as follows. In Sec. II, we de-
fine the Kitaev-Γ model, set the notation, and review previous
studies of the quantum model at zero temperature. We then
briefly introduce the pf-FRG formalism in Sec. III, before we
discuss our findings for the phase diagram in Sec. IV. We fur-
ther focus on the incommensurate phases in Sec. V and study
the constraints of a finite cylinder geometry. Our conclusions
are summarized in Sec. VI.

II. MODEL

We study the quantum-mechanical spin-1/2 Kitaev-Γ
model on the honeycomb lattice, which is described by the
microscopic Hamiltonian

H =
�

�i,j�γ
KSγ

i S
γ
j + Γ

�
Sα
i S

β
j + Sβ

i S
α
j

�
, (1)

where the sum runs over pairs of nearest neighbor lattice
sites i and j which are connected by a lattice bond of type
γ ∈ x, y, z (with α,β denoting the remaining two orthogonal
components). The exchange constant K quantifies the diag-
onal, bond-directional couplings of Kitaev type, whereas Γ
captures symmetric off-diagonal interactions. We parametrize
the ratio of Kitaev and Γ interactions by an angle α ∈ [0, 2π)
which is connected to the exchange constants via

K = − cos(α) and Γ = sin(α) . (2)

Throughout the remainder of this paper, all energy scales are
reported in units of

√
K2 + Γ2.

In terms of the parametrization described above, the regime
0 < α < π/2, i.e. ferromagnetic (FM) Kitaev interactions
K < 0 in conjunction with antiferromagnetic (AFM) Γ inter-
actions Γ > 0, is believed to be most relevant for the Kitaev
material α-RuCl3 [31]. Earlier zero-temperature model cal-
culations have established, however, that this combination of
exchange constants is not only particularly relevant for experi-
ments, but it is also a challenging and controversial part of the
phase diagram; various studies employing different methods
have predicted different results. (i) Variational Monte Carlo
simulations suggest the existence of a sequence of small win-
dows of ferromagnetic order, proximate Kitaev spin liquid,
and incommensurate spiral order in vicinity to the Kitaev spin
liquid around α = 0 [45, 46]. Zigzag order eventually man-
ifests when the Γ interaction becomes comparable in magni-
tude to the Kitaev contribution. (ii) Tensor network represen-
tations of the model predict a slim region of ferromagnetic
order and a nematic paramagnet near the Kitaev spin liquid,
as well as more intricate magnetic order with a 6-site unit
cell [47]. (iii) Exact diagonalization studies on 24-site clus-
ters point towards an extended spin liquid regime spanning
all the way from the pure Kitaev spin liquid to pure Γ in-
teractions [38, 48]. (iv) Recent density matrix renormaliza-
tion group calculations find an extended nematic paramagnet
regime in proximity to the Kitaev spin liquid [40].

Extensions of the pure Kitaev-Γ model by additional de-
tuning parameters have revealed additional insight into the
structure of the phase diagram and the stability of competing
phases; many of the aforementioned candidate ground states
appear to have a phase boundary close the the pure Kitaev-Γ
model in this extended parameter space. Detuning parame-
ters which have been studied in the past include competing
Heisenberg interactions [45], a spatial anisotropy in the inter-
action constants [46, 48], a type of symmetric, off-diagonal
exchange known as Γ�-interactions [40, 47], or simply a mag-
netic field [40, 47, 49, 50]. Further related efforts to grow our
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Because of the spin-orbit coupling, the symmetry group of
the model, G ¼ D3d × ZT

2 where ZT
2 ¼ fE; Tg is time

reversal, is finite, meaning its elements are discrete oper-
ations combining the space-time and spin degrees of
freedom.
We find the ground state of the S ¼ 1=2 K-J-Γmodel by

VMC calculations, which is a powerful method for the study
of spin-liquid phases. We first introduce the fermionic
slave-particle representation Smi ¼ 1

2
C†
i σ

mCi, where C†
i ¼

ðc†i↑; c†i↓Þ, m≡ x; y; z, and σm are Pauli matrices. The

particle-number constraint, N̂i ¼ c†i↑ci↑ þ c†i↓ci↓ ¼ 1,
should be imposed at every site to ensure that the size of
the fermion Hilbert space is the same as that of the physical
spin. This complex fermion representation is equivalent to
the Majorana representation introduced by Kitaev [1]. It
has a local SU(2) symmetry that is independent of the
SU(2) spin-rotation operations and can be considered as a
gauge structure [26], as discussed in Sec. S1A of the
Supplemental Material (SM) [27]. The spin interactions
in Eq. (1) are rewritten in terms of interacting fermionic
operators and decoupled into a noninteracting mean-field
Hamiltonian (Sec. S1B of the SM [27]), which for the most
general spin-orbit-coupled spin liquid has the form

Hmf ¼
X

hi;ji∈γ
Tr½Uð0Þ

ji ψ
†
iψ j�þ Tr½Uð1Þ

ji ψ
†
i ðiRγ

αβÞψ j�

þ Tr½Uð2Þ
ji ψ

†
i σ

γψ j�þ Tr½Uð3Þ
ji ψ

†
i σ

γRγ
αβψ j�; ð2Þ

where ψ i¼ðCiC̄iÞ, C̄i¼ðc†i↓;−c†i↑ÞT ,R
γ
αβ¼−iðσαþσβÞ=

ffiffiffi
2

p

is a rotation matrix, and the quantitiesUðmÞ
ji , with γ specified

by hi; ji, are mean-field parameters.
In the states described by Eq. (2), the SU(2) gauge

symmetry is usually reduced to U(1) or Z2, which is known
as the invariant gauge group (IGG) [35]. The Majorana
mean-field solution of the Kitaev model has IGG Z2.
Because the KSL is a special (exactly soluble) point in
the model of Eq. (1), one expects a finite regime of QSL
states connected adiabatically to it; following Ref. [36] we
call this the generic KSL (GKSL). A QSL ground state
preserves the full symmetry groupG and so does the mean-
field Hamiltonian. However, a general symmetry operation
of this Hamiltonian is a space-time and spin operation
in G combined with an SU(2) gauge transformation. These
new symmetry operations form a larger group, known as
the PSG, which is equivalent to a central extension
of G by the IGG (Sec. S2 of the SM [27]). The PSG of
the KSL is known exactly [37] and the corresponding
mean-field Hamiltonian must respect it. The PSG reduces
the number of independent parameters and, as detailed

in Sec. S3 of the SM [27], the coefficients UðmÞ
ji in Eq. (2)

are constrained to the forms Uð0Þ
ji ¼ iη0 þ iðρa þ ρcÞ,

Uð1Þ
ji ¼ iðρa − ρc þ ρdÞðτα þ τβÞ þ iη3ðτx þ τy þ τzÞ,

Uð2Þ
ji ¼ iðρa þ ρcÞτγ þ iη5ðτx þ τy þ τzÞ, and Uð3Þ

ji ¼
iðρc − ρa − ρdÞðτα − τβÞ.
In addition, we allow competing magnetically ordered

phases by including the termH0
mf ¼ 1

2

P
i Mi · C

†
i σCi in the

mean-field Hamiltonian [23]. The ordering pattern ofMi is
set from the classical solution within the single-Q approxi-
mation, leaving only the amplitudeM and the canting angle
ϕ to be determined variationally (Sec. S3 of the SM [27]).
The power of the VMC approach is that it allows the
particle-number constraint to be enforced locally, by
performing Gutzwiller projection of the mean-field ground
states to obtain the trial wave functions jΨðxÞi ¼
PGjΨmfðxÞi, where x denotes the variational parameters
ðρa; ρc; ρd; η0; η3; η5;M;ϕÞ. These are determined by min-
imizing the trial ground-state energy, EðxÞ ¼
hΨðxÞjHjΨðxÞi=hΨðxÞjΨðxÞi, in calculations performed
on tori of up to 14 × 14 unit cells, i.e., 392 lattice sites.
Because the final variational states depend crucially on the
mean-field Hamiltonian, a meaningful VMC procedure
requires a careful choice and comparison of decoupling
channels, and we have tested many spin-liquid and mag-
netic Ansätze (Sec. S3). Figure 1 shows the VMC phase
diagram of the K-J-Γ model at zero applied field. As a
benchmark, we note that our phase boundaries at Γ ¼ 0,
J > 0 agree quantitatively with those of Ref. [38].
Although the mean-field phase diagram contains a number
of candidate QSLs, VMC calculations reveal that only two
are robust. One is the GKSL, whose regime of stability is
bounded approximately by jJ=Kj ¼ 0.2 at Γ ¼ 0 and
Γ=jKj ¼ 0.15; this result provides a quantitative statement
of the region of relevance for the considerations of
Ref. [36]. The second we name the PKSL, one of our
central results being that there is only one QSL proximate
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FIG. 1. (a) Phase diagram of the quantum K-J-Γ model for
K < 0 in the limit of large system size. There are two QSL phases
of different types but with the same PSG, the GKSL and the
PKSL. The magnetically ordered phases are antiferromagnetic
(AFM), stripe, incommensurate spiral (IS), zigzag, and ferro-
magnetic (FM) order. (b) Detail of the limit jKj=Γ → 0, where all
phases are magnetically ordered; the transitions occur at
J=Γ ¼ 0.15, 0.05, and −0.75.
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FIG. 5. (a) Phase diagram at Γ� = 0 as functions of
Γ/|K| and h. NP1 and NP2 phases are larger than those
at Γ� = −0.03 since the zig-zag phase is less dominant.
Complexed magnetic phases appear when Γ/|K| � 0.3 and
h � 0.15. The blue solid line at h = 0 denotes a ferromag-
netic phase. (see text for details). Larger-Γ phase diagrams
at (b) (Γ�, h) = (0, 0.15) and (c) (Γ�, h) = (−0.03, 0.15). The
results are obtained with the D = 6 ansatze.

the model breaks the rotational symmetry explicitly, and
thus there is no remaining symmetry discriminating the
P and NP phases. Nevertheless, the second derivative
of the energy strongly suggests a continuous phase tran-
sition between the P and NP2 phases [see Fig. 4 (b)] at
Γ/|K| ≈ 0.05. Note that the tilted field with θ > 0 leads
to a transition from the P phase directly to the NP2
phase. On the other hand, tilting the field in the oppo-
site direction (θ < 0) favors the NP1 phase and therefore
gives rise to a transition from the P phase to the NP1
phase (see SM). The continuous nature of these tran-
sitions can be seen even more clearly in the entangle-
ment entropy (EE)[35, 44, 45]. The boundary theory of
TPS[46] has been employed to measure the EE on the
cylinder geometry with the circumference Ly, and the
result is presented in Fig. 4 (c) and (d). The NP1 state
is highly entangled and its EE increases with Γ, while
the P state has a low and constant EE. The first deriva-
tive of the EE exhibits a peak at the same point as that
of the second derivative of the energy, and it becomes
sharper with increasing Ly and D[36]. Therefore, we con-
clude that there is a continuous transition between the P
and NP2 phases at Γ/|K| ≈ 0.05. As mentioned above,
the P and NP phases cannot be distinguished by conven-
tional symmetries, thus the continuous transition implies
a topological phase transition from the trivial phase (P)
to a topological or non-trivial phase (NP2). It is worth
noting that, with the tilted field, most of initial states,
including FM[111], FM[100], FM[011] and random ones,
converge to identical states without hysteresis.

K-Γ model.- Finite Γ� is responsible in stabilizing the
ZZ order at low fields. When Γ� = 0, we may expect
a more significant competition between various phases
including the complex classical magnetic orders. We
find that the NP phases are already present in the K-

Γ model as shown in the phase diagram in Fig. 5. On
the other hand, the complex magnetic orders with large
magnetic unit cells appear for sufficiently large Γ (typi-
cally, Γ/|K| � 0.3). For example, the 6-site order phase
appears at lower field h � 0.15 while the 18-site order
phase appears at higher field h � 0.15 as presented in
Figs. 5 (a) and (b). These are the same magnetic orders
reported in the classical phase diagram[29]. Quantum
fluctuations seem to favor NP1 and NP2 phases at small
Γ, and push the classical orders to the parameter region
with larger Γ. As in the case of Γ� = −0.03, the FM
phase appears between the KSL and the 6-site order at
h = 0 when D = 6. However, the NP2 state is almost
degenerate with FM phase in this region, i.e., the energy
difference is only ΔE ∼ O(10−4) (see SM). Moreover,
even this tiny energy difference is decreasing as bond di-
mension further increases (see SM). With these results
and given that the FM quickly loses to NP2 with a very
small h, NP2 may become a stable ground state at h = 0
for sufficiently large bond dimension or degenerate with
the FM phase.

Conclusion.- We used iTPS optimization to investigate
the field induced quantum phases in the K-Γ-Γ� model.
We find the nematic paramagnet (NP) phases that break
lattice rotational symmetry spontaneously as well as the
(chiral) KSL in an intermediate window of magnetic field.
In contrast to the previous 24-site ED and 2-leg ladder
DMRG study[28], the KSL is found to survive only in
a small corner of the phase diagram. Instead, the NP
phases occupy a large portion of the phase diagram and
hence are more likely to be observed. We also find that
the NP phases are already present in the K-Γ model in
zero and finite magnetic field. The NP phases in the
K-Γ model give away to the complex magnetic orders
with large unit cells when Γ/|K| becomes large, making
contact with the classical phase diagram reported earlier.

In order to clarify the nature of the NP phases, we
examine the effect of tilting the magnetic field (θ = 5◦

from the [111] direction). Here the transition between
the polarized (P) and NP2 phases is continuous, judging
from the singular behaviors in the second derivative of
the energy and the first derivative of the entanglement
entropy. Since C3 is broken in both of the P and NP2
phases in the tilted field, the continuous transition would
imply that NP2 is not a trivial product state. This leaves
the interesting possibility that the NP phases are non-
trivial topological states. The precise nature and thermal
Hall response of these states would be interesting subjects
of future study.
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FIG. 5. Phase diagrams for (a) � > 0 and (b) � < 0. At (a) “3 FD
state,” this state is threefold degenerate (3 FD). At (b) “NPSSF,” we
find no prominent peak in the static spin structure factor (NPSSF).
Symbols for the phase boundaries are determines from ∂E/∂λ and
∂2E/∂λ2 calculated with 24-site ED. Open circle means a jump
or a cusp in ∂E/∂θ , which indicates a first-order phase transition.
Open triangle means a clear minimum in ∂2E/∂θ2, which leads to
a second-order phase transition or a weak first-order phase transition
in the thermodynamic limit. Blue cross indicates the first-order phase
transition point, while the red cross indicates the second-order or
weak first-order phase transition. Open square means a crossover
point where ∂2E/∂λ2 shows a small minimum. Error bars are smaller
than the symbol sizes. Lines are guide for the eye. KSL phases,
which are expected to appear in the gray hatched area, are difficult to
determine because of the numerical resolution.

us to propose alternative scenarios. (i) The |tx�-dimer state
survives up to λ = 1. (ii) The |tx�-dimer state becomes un-
stable at λ ≈ 0.55, and another state obeys a phase transition
at λ = 1.

The second derivatives for θ = 270◦ and 353.7◦ qualita-
tively show similar behavior. Specifically, ∂2E/∂λ2 obtained
with dimer series expansions decrease towards λ = 1 and
their decrease becomes pronounced with an increase in the
included order. However, ∂2E/∂λ2 obtained with ED does

not show a decrease close to λ = 1 but shows a minimum at
λ ≈ 0.55. The results suggest that the |ty�-dimer state becomes
unstable at λ � 0.55.

Finally, we discuss a small minimum in ∂2E/∂λ2 for
� > 0 and K < 0, which is expressed by the open square
in Fig. 5(a). When the small minimum is caused by a
crossover, QSL in Refs. [23,24] adiabatically connects to
the |tx�-dimer state. If the small minimum would be caused
by a phase transition, QSL does not connect with the |tx�-
dimer state. A future study is needed to obtain a definite
conclusion.

IV. STABILITY OF THE KEKULÉ DIMERIZED STATE

Our calculations have shown that in some regions, a phase
transition takes place at λ = 1 where C3v symmetry is recov-
ered. This stimulates us to investigate a stable ordered state
that has discrete symmetry at λ = 1. For this purpose, we
adopt the T6 transformation [31] to Hamiltonian (1). The T6

transformation transforms Hamiltonian (1) into an extended
XXZ Hamiltonian with a Kekulé structure shown in Fig. 1(d).
Note that the transformed Hamiltonian still keeps C3v symme-
try. As shown in Fig. 1(d), we make the initial dimers form a
Kekulé structure. We then apply dimer series expansions to
the transformed Hamiltonian by treating the interactions on
the mapped X and Y bonds as perturbation.

Figures 7(a)–7(e) show the typical λ dependences of E ,
∂E/∂λ, and ∂2E/∂λ2. We calculate these quantities with 24-
site ED. Because the initial dimer placement differs from
that performed in Sec. III, the λ dependences of E , ∂E/∂λ,
and ∂2E/∂λ2 differ from those shown in Sec. III. For
θ = 23.2◦ (K/� = −2.33 at � < 0) [(a)] and 66.8◦ (K/� =
−0.43 at � < 0) [(b)], the ground-state energies up to sixth,
seventh, and eighth orders converge at 0 � λ � 1. They agree
with the ground-state energy obtained with ED. For θ =
23.2◦, ∂E/∂λ obtained with ED shows discontinuity at λ ≈
0.86, while ∂E/∂λ up to sixth, seventh, and eighth orders
begin to deviate at λ ≈ 0.6 with an increase in λ. These
results mean that the Kekulé dimerized state undergoes a
first-order phase transition at λ ≈ 0.86 and becomes unsta-
ble at the λ = 1 isotropic point. For θ = 66.8◦, ∂2E/∂λ2

shows a minimum at λ ≈ 0.96, which indicates that the
Kekulé dimerized state becomes unstable at λ � 0.96. For
θ = 123.7◦ (K/� = 0.67 at � > 0) [(c)] and 246.8◦ (K/� =
−0.43 at � > 0) [(d)], the ground-state energies up to sixth,
seventh, and eighth orders deviate at λ ≈ 0.4 and ≈ 0.6,
respectively, and show divergencelike behavior with an in-
crease in λ. The results indicate that the Kekulé dimerized
state becomes unstable before the system approaches the
isotropic point. For θ = 315◦ (K/� = 1 at � < 0) [(e)], the
ground-state energies up to sixth, seventh, and eighth orders
converge and agree with that obtained with ED at 0 � λ �
1. On the other hand, ∂2E/∂λ2 obtained with ED shows
a small minimum at λ ≈ 0.55, and ∂2E/∂λ2 obtained with
the present dimer-series expansions begin to deviate there
with an increase in λ. The results suggest that the Kekulé
dimerized state becomes unstable at λ � 0.55. Dimer series
expansions and ED performed in this section argue that the
Kekulé dimerized state is unstable at λ = 1 isotropic points.

024415-6

Dimer Series Expansion & ED 2

0 π/2 π 3π/2 2π
0.00

0.05

0.10

0.15

0.20

0.25

0.30

angle α

ch
ar
ac
te
ri
st
ic
sc
al
e
Λ
c FM

IC1 V1
AFM

IC2 V2

FIG. 1. Phase diagram of the Kitaev-Γ model on the honeycomb
lattice as a function of the angle α, which parametrizes the ratio of
Kitaev coupling K = − cos(α) and Γ interaction Γ = sin(α). The
black curve indicates the characteristic RG scale �Λc which is an in-
dicator for the onset energy scale of the magnetic order, see text for
details. The shaded regions indicate ordered phases with finite �Λc.
Observed ordered phases are ferromagnetic order (FM), incommen-
surate phase 1 (IC1), vortex phase 1 (V1), antiferromagnetic order
(AFM), incommensurate phase 2 (IC2), and vortex phase 2 (V2).
White regions indicate spin liquid phases and the absence of spon-
taneous symmetry breaking, mainly the FM and AFM Kitaev spin
liquids around α/π = 0 and α/π = 1, respectively.

surate spin correlations at finite temperature; in the context of
the pf-FRG approach, these phases manifest as the first insta-
bility of the RG flow when the energy scale of the RG cut-
off is lowered. For the incommensurate phases, we demon-
strate that the dominant intensity peaks in the structure factor,
which characterize the incommensurate order, shift continu-
ously upon variation of the coupling constant ratio. More-
over, we identify magnetic vortex phases which are overshad-
owed by a sub-dominant incommensurability effect. The re-
sulting phase diagram is summarized in Fig. 1. In view of
potential future studies, we point out that the pervasiveness
of incommensurate correlations poses a challenge to many es-
tablished methods which may rely on finite lattice represen-
tations; to substantiate this observation, we perform pf-FRG
calculations on a finite cylinder geometry, assessing the extent
to which an anisotropy is imposed by geometrical constraints.
We find that this unphysical anisotropy can become sizable in
phases with incommensurate magnetic correlations, whereas
it remains negligible in the Kitaev spin liquid phases where
correlations are short ranged.

The structure of the paper is as follows. In Sec. II, we de-
fine the Kitaev-Γ model, set the notation, and review previous
studies of the quantum model at zero temperature. We then
briefly introduce the pf-FRG formalism in Sec. III, before we
discuss our findings for the phase diagram in Sec. IV. We fur-
ther focus on the incommensurate phases in Sec. V and study
the constraints of a finite cylinder geometry. Our conclusions
are summarized in Sec. VI.

II. MODEL

We study the quantum-mechanical spin-1/2 Kitaev-Γ
model on the honeycomb lattice, which is described by the
microscopic Hamiltonian

H =
�

�i,j�γ
KSγ

i S
γ
j + Γ

�
Sα
i S

β
j + Sβ

i S
α
j

�
, (1)

where the sum runs over pairs of nearest neighbor lattice
sites i and j which are connected by a lattice bond of type
γ ∈ x, y, z (with α,β denoting the remaining two orthogonal
components). The exchange constant K quantifies the diag-
onal, bond-directional couplings of Kitaev type, whereas Γ
captures symmetric off-diagonal interactions. We parametrize
the ratio of Kitaev and Γ interactions by an angle α ∈ [0, 2π)
which is connected to the exchange constants via

K = − cos(α) and Γ = sin(α) . (2)

Throughout the remainder of this paper, all energy scales are
reported in units of

√
K2 + Γ2.

In terms of the parametrization described above, the regime
0 < α < π/2, i.e. ferromagnetic (FM) Kitaev interactions
K < 0 in conjunction with antiferromagnetic (AFM) Γ inter-
actions Γ > 0, is believed to be most relevant for the Kitaev
material α-RuCl3 [31]. Earlier zero-temperature model cal-
culations have established, however, that this combination of
exchange constants is not only particularly relevant for experi-
ments, but it is also a challenging and controversial part of the
phase diagram; various studies employing different methods
have predicted different results. (i) Variational Monte Carlo
simulations suggest the existence of a sequence of small win-
dows of ferromagnetic order, proximate Kitaev spin liquid,
and incommensurate spiral order in vicinity to the Kitaev spin
liquid around α = 0 [45, 46]. Zigzag order eventually man-
ifests when the Γ interaction becomes comparable in magni-
tude to the Kitaev contribution. (ii) Tensor network represen-
tations of the model predict a slim region of ferromagnetic
order and a nematic paramagnet near the Kitaev spin liquid,
as well as more intricate magnetic order with a 6-site unit
cell [47]. (iii) Exact diagonalization studies on 24-site clus-
ters point towards an extended spin liquid regime spanning
all the way from the pure Kitaev spin liquid to pure Γ in-
teractions [38, 48]. (iv) Recent density matrix renormaliza-
tion group calculations find an extended nematic paramagnet
regime in proximity to the Kitaev spin liquid [40].

Extensions of the pure Kitaev-Γ model by additional de-
tuning parameters have revealed additional insight into the
structure of the phase diagram and the stability of competing
phases; many of the aforementioned candidate ground states
appear to have a phase boundary close the the pure Kitaev-Γ
model in this extended parameter space. Detuning parame-
ters which have been studied in the past include competing
Heisenberg interactions [45], a spatial anisotropy in the inter-
action constants [46, 48], a type of symmetric, off-diagonal
exchange known as Γ�-interactions [40, 47], or simply a mag-
netic field [40, 47, 49, 50]. Further related efforts to grow our
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Because of the spin-orbit coupling, the symmetry group of
the model, G ¼ D3d × ZT

2 where ZT
2 ¼ fE; Tg is time

reversal, is finite, meaning its elements are discrete oper-
ations combining the space-time and spin degrees of
freedom.
We find the ground state of the S ¼ 1=2 K-J-Γmodel by

VMC calculations, which is a powerful method for the study
of spin-liquid phases. We first introduce the fermionic
slave-particle representation Smi ¼ 1

2
C†
i σ

mCi, where C†
i ¼

ðc†i↑; c†i↓Þ, m≡ x; y; z, and σm are Pauli matrices. The

particle-number constraint, N̂i ¼ c†i↑ci↑ þ c†i↓ci↓ ¼ 1,
should be imposed at every site to ensure that the size of
the fermion Hilbert space is the same as that of the physical
spin. This complex fermion representation is equivalent to
the Majorana representation introduced by Kitaev [1]. It
has a local SU(2) symmetry that is independent of the
SU(2) spin-rotation operations and can be considered as a
gauge structure [26], as discussed in Sec. S1A of the
Supplemental Material (SM) [27]. The spin interactions
in Eq. (1) are rewritten in terms of interacting fermionic
operators and decoupled into a noninteracting mean-field
Hamiltonian (Sec. S1B of the SM [27]), which for the most
general spin-orbit-coupled spin liquid has the form

Hmf ¼
X

hi;ji∈γ
Tr½Uð0Þ

ji ψ
†
iψ j�þ Tr½Uð1Þ

ji ψ
†
i ðiRγ

αβÞψ j�

þ Tr½Uð2Þ
ji ψ

†
i σ

γψ j�þ Tr½Uð3Þ
ji ψ

†
i σ

γRγ
αβψ j�; ð2Þ

where ψ i¼ðCiC̄iÞ, C̄i¼ðc†i↓;−c†i↑ÞT ,R
γ
αβ¼−iðσαþσβÞ=

ffiffiffi
2

p

is a rotation matrix, and the quantitiesUðmÞ
ji , with γ specified

by hi; ji, are mean-field parameters.
In the states described by Eq. (2), the SU(2) gauge

symmetry is usually reduced to U(1) or Z2, which is known
as the invariant gauge group (IGG) [35]. The Majorana
mean-field solution of the Kitaev model has IGG Z2.
Because the KSL is a special (exactly soluble) point in
the model of Eq. (1), one expects a finite regime of QSL
states connected adiabatically to it; following Ref. [36] we
call this the generic KSL (GKSL). A QSL ground state
preserves the full symmetry groupG and so does the mean-
field Hamiltonian. However, a general symmetry operation
of this Hamiltonian is a space-time and spin operation
in G combined with an SU(2) gauge transformation. These
new symmetry operations form a larger group, known as
the PSG, which is equivalent to a central extension
of G by the IGG (Sec. S2 of the SM [27]). The PSG of
the KSL is known exactly [37] and the corresponding
mean-field Hamiltonian must respect it. The PSG reduces
the number of independent parameters and, as detailed

in Sec. S3 of the SM [27], the coefficients UðmÞ
ji in Eq. (2)

are constrained to the forms Uð0Þ
ji ¼ iη0 þ iðρa þ ρcÞ,

Uð1Þ
ji ¼ iðρa − ρc þ ρdÞðτα þ τβÞ þ iη3ðτx þ τy þ τzÞ,

Uð2Þ
ji ¼ iðρa þ ρcÞτγ þ iη5ðτx þ τy þ τzÞ, and Uð3Þ

ji ¼
iðρc − ρa − ρdÞðτα − τβÞ.
In addition, we allow competing magnetically ordered

phases by including the termH0
mf ¼ 1

2

P
i Mi · C

†
i σCi in the

mean-field Hamiltonian [23]. The ordering pattern ofMi is
set from the classical solution within the single-Q approxi-
mation, leaving only the amplitudeM and the canting angle
ϕ to be determined variationally (Sec. S3 of the SM [27]).
The power of the VMC approach is that it allows the
particle-number constraint to be enforced locally, by
performing Gutzwiller projection of the mean-field ground
states to obtain the trial wave functions jΨðxÞi ¼
PGjΨmfðxÞi, where x denotes the variational parameters
ðρa; ρc; ρd; η0; η3; η5;M;ϕÞ. These are determined by min-
imizing the trial ground-state energy, EðxÞ ¼
hΨðxÞjHjΨðxÞi=hΨðxÞjΨðxÞi, in calculations performed
on tori of up to 14 × 14 unit cells, i.e., 392 lattice sites.
Because the final variational states depend crucially on the
mean-field Hamiltonian, a meaningful VMC procedure
requires a careful choice and comparison of decoupling
channels, and we have tested many spin-liquid and mag-
netic Ansätze (Sec. S3). Figure 1 shows the VMC phase
diagram of the K-J-Γ model at zero applied field. As a
benchmark, we note that our phase boundaries at Γ ¼ 0,
J > 0 agree quantitatively with those of Ref. [38].
Although the mean-field phase diagram contains a number
of candidate QSLs, VMC calculations reveal that only two
are robust. One is the GKSL, whose regime of stability is
bounded approximately by jJ=Kj ¼ 0.2 at Γ ¼ 0 and
Γ=jKj ¼ 0.15; this result provides a quantitative statement
of the region of relevance for the considerations of
Ref. [36]. The second we name the PKSL, one of our
central results being that there is only one QSL proximate
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FIG. 1. (a) Phase diagram of the quantum K-J-Γ model for
K < 0 in the limit of large system size. There are two QSL phases
of different types but with the same PSG, the GKSL and the
PKSL. The magnetically ordered phases are antiferromagnetic
(AFM), stripe, incommensurate spiral (IS), zigzag, and ferro-
magnetic (FM) order. (b) Detail of the limit jKj=Γ → 0, where all
phases are magnetically ordered; the transitions occur at
J=Γ ¼ 0.15, 0.05, and −0.75.
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FIG. 2. Phase diagram of the anisotropic K-� model (1) where
the strong interacting bonds form dimers and the anisotropy is
parametrized by δd . The diagram contains three ordered phases (the
FM, the IS, and the zigzag phase) and several QSLs (the KSL, the
PKSL, the Z2 QSL, and the gSL-I–VI). The dashed-dotted lines
represent second-order phase transitions, and the black thin lines
represent first-order phase transitions. The inset is a cartoon picture
of the uniformly strained honeycomb lattice. σm symbols the mirror
reflection, C2 represents a twofold rotation along vertical bonds, and
T1, T2 are the generators of the translation group.

A. Dimer-type anisotropy

The phase diagram of the first case (with δd anisotropy) is
shown in Fig. 2. The line at � = 0 is exactly solvable, where
the gapless Kitaev QSL ceases at δd = 0.5 with a second-
order phase transition to the gapped Z2 QSL. As a benchmark,
our phase diagram at � = 0 is completely consistent with the
above result. Since the gap of the Z2 gauge-flux excitations
(i.e., the vison gap) in the Z2 QSL phase is much smaller than
that in the KSL [51], it is no surprise that the gapped Z2 QSL
is very fragile and small � interaction can cause a transition
to another phase.

In the line δd = 0 the model has a higher symmetry and
has been studied previously [46–48], where three ordered
phases [namely, the ferromagnetic (FM) phase, the incom-
mensurate spiral (IS) phase, and the zigzag phase] plus two
QSL phases [namely, the KSL and the proximate Kitaev spin
liquid (PKSL)] were found [48]. Interestingly, the ordered
phases are completely suppressed at anisotropy δd ∼ 0.15,
and several new gapless QSL phases, labeled as gSL-I–VI,
are generated. When the anisotropy is very large (with δd

greater than 0.5), the system enters a gapped disordered phase:
the dimer phase. Different from the gapped Z2 QSL phase
at very small � whose ground states on a torus are fourfold
degenerate, the dimer phase is trivial since it shows no such
topological degeneracy (see Appendix F 4). In other words,
the Z2 gauge field is confined in the trivial dimer phase while
deconfined in the gapped Z2 QSL phase.

The observation of the series of gapless spin-liquid phases
with different numbers of cones is the central result of this
work. The phase showing up at 0.04 < δd < 0.1 above the
PKSL is labeled as gSL-I, whose spinon dispersion contains
10 Majorana cones. With the increasing of δd (with � <

FIG. 3. Phase diagram of the anisotropic K-� model (1) where
the strong interacting bonds form zigzag chains and the anisotropy
is parametrized by δzz. In contrast to the diagram in Fig. 2, the FM
phase and the zigzag ordered phase are much more robust against
the δzz anisotropy, while the IS phase becomes smaller. Two new
gapless QSLs appear in the diagram, i.e., the gSL-VII, and the
gSL-VIII. There are gapless chains marked by a thick red line in the
one-dimensional limit (δzz = 1). All the phase transitions are of first
order. The inset shows a cartoon picture of the uniformly strained
honeycomb lattice where the strong bonds form zigzag chains.

0.6), the system undergoes successive continuous transitions
to other gapless QSLs, namely, the gSL-II and the gSL-III,
which contain six Majorana cones and two Majorana cones,
respectively. At larger � (with � > 0.6), three more gapless
QSLs, namely, the gSL-IV, the gSL-V, and the gSL-VI are
found in sequence with the increasing of δd between the
zigzag phase (at δd < 0.15) and the dimer phase (at δd >

0.5). These three QSLs contain 14, 10, 2 Majorana cones,
respectively. Later we will discuss the significance of the
number of Majorana cones.

The phase transitions from the magnetically ordered states
to the QSLs are all of first order. The transition from the
gSL-VI to the dimer phase is also first order. Interestingly,
the transition from gSL-III to the dimer phase is continuous
at � < 0.16 but becomes first order at 0.16 < � < 0.6. The
phase transitions between different QSLs are either first order
or continuous. The first-order phase transitions are character-
ized by discontinuous jumps of some variational parameters,
and sudden changes in the number of Majorana cones. For
example, the transition from the PKSL to the gSL-I and the
transition from the KSL to the gSL-III are both accompanied
by a sudden growth of φz

7, the transition from the gSL-III to the
gSL-V or to the gSL-VI is accompanied by a sudden growth
of ρx

a . The continuous transitions between QSLs, marked as
red dashed-dotted lines in Fig. 2, are characterized by smooth
changes of the variational parameters and the merging and
pairwise disappearance of the Majorana cones. A typical
example is the transition from the KSL to the gapped Z2

QSL, where the two cones merge and a gap opens. In the
following continuous transitions, four of the cones merge in
pairs and disappear simultaneously: the one from the gSL-I to
the gSL-II, the one from the gSL-II to the gSL-III, and the one
from the gSL-IV to the gSL-V. The transition from the gSL-V
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FIG. 5. (a) Phase diagram at Γ� = 0 as functions of
Γ/|K| and h. NP1 and NP2 phases are larger than those
at Γ� = −0.03 since the zig-zag phase is less dominant.
Complexed magnetic phases appear when Γ/|K| � 0.3 and
h � 0.15. The blue solid line at h = 0 denotes a ferromag-
netic phase. (see text for details). Larger-Γ phase diagrams
at (b) (Γ�, h) = (0, 0.15) and (c) (Γ�, h) = (−0.03, 0.15). The
results are obtained with the D = 6 ansatze.

the model breaks the rotational symmetry explicitly, and
thus there is no remaining symmetry discriminating the
P and NP phases. Nevertheless, the second derivative
of the energy strongly suggests a continuous phase tran-
sition between the P and NP2 phases [see Fig. 4 (b)] at
Γ/|K| ≈ 0.05. Note that the tilted field with θ > 0 leads
to a transition from the P phase directly to the NP2
phase. On the other hand, tilting the field in the oppo-
site direction (θ < 0) favors the NP1 phase and therefore
gives rise to a transition from the P phase to the NP1
phase (see SM). The continuous nature of these tran-
sitions can be seen even more clearly in the entangle-
ment entropy (EE)[35, 44, 45]. The boundary theory of
TPS[46] has been employed to measure the EE on the
cylinder geometry with the circumference Ly, and the
result is presented in Fig. 4 (c) and (d). The NP1 state
is highly entangled and its EE increases with Γ, while
the P state has a low and constant EE. The first deriva-
tive of the EE exhibits a peak at the same point as that
of the second derivative of the energy, and it becomes
sharper with increasing Ly and D[36]. Therefore, we con-
clude that there is a continuous transition between the P
and NP2 phases at Γ/|K| ≈ 0.05. As mentioned above,
the P and NP phases cannot be distinguished by conven-
tional symmetries, thus the continuous transition implies
a topological phase transition from the trivial phase (P)
to a topological or non-trivial phase (NP2). It is worth
noting that, with the tilted field, most of initial states,
including FM[111], FM[100], FM[011] and random ones,
converge to identical states without hysteresis.

K-Γ model.- Finite Γ� is responsible in stabilizing the
ZZ order at low fields. When Γ� = 0, we may expect
a more significant competition between various phases
including the complex classical magnetic orders. We
find that the NP phases are already present in the K-

Γ model as shown in the phase diagram in Fig. 5. On
the other hand, the complex magnetic orders with large
magnetic unit cells appear for sufficiently large Γ (typi-
cally, Γ/|K| � 0.3). For example, the 6-site order phase
appears at lower field h � 0.15 while the 18-site order
phase appears at higher field h � 0.15 as presented in
Figs. 5 (a) and (b). These are the same magnetic orders
reported in the classical phase diagram[29]. Quantum
fluctuations seem to favor NP1 and NP2 phases at small
Γ, and push the classical orders to the parameter region
with larger Γ. As in the case of Γ� = −0.03, the FM
phase appears between the KSL and the 6-site order at
h = 0 when D = 6. However, the NP2 state is almost
degenerate with FM phase in this region, i.e., the energy
difference is only ΔE ∼ O(10−4) (see SM). Moreover,
even this tiny energy difference is decreasing as bond di-
mension further increases (see SM). With these results
and given that the FM quickly loses to NP2 with a very
small h, NP2 may become a stable ground state at h = 0
for sufficiently large bond dimension or degenerate with
the FM phase.

Conclusion.- We used iTPS optimization to investigate
the field induced quantum phases in the K-Γ-Γ� model.
We find the nematic paramagnet (NP) phases that break
lattice rotational symmetry spontaneously as well as the
(chiral) KSL in an intermediate window of magnetic field.
In contrast to the previous 24-site ED and 2-leg ladder
DMRG study[28], the KSL is found to survive only in
a small corner of the phase diagram. Instead, the NP
phases occupy a large portion of the phase diagram and
hence are more likely to be observed. We also find that
the NP phases are already present in the K-Γ model in
zero and finite magnetic field. The NP phases in the
K-Γ model give away to the complex magnetic orders
with large unit cells when Γ/|K| becomes large, making
contact with the classical phase diagram reported earlier.

In order to clarify the nature of the NP phases, we
examine the effect of tilting the magnetic field (θ = 5◦

from the [111] direction). Here the transition between
the polarized (P) and NP2 phases is continuous, judging
from the singular behaviors in the second derivative of
the energy and the first derivative of the entanglement
entropy. Since C3 is broken in both of the P and NP2
phases in the tilted field, the continuous transition would
imply that NP2 is not a trivial product state. This leaves
the interesting possibility that the NP phases are non-
trivial topological states. The precise nature and thermal
Hall response of these states would be interesting subjects
of future study.
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FIG. 5. Phase diagrams for (a) � > 0 and (b) � < 0. At (a) “3 FD
state,” this state is threefold degenerate (3 FD). At (b) “NPSSF,” we
find no prominent peak in the static spin structure factor (NPSSF).
Symbols for the phase boundaries are determines from ∂E/∂λ and
∂2E/∂λ2 calculated with 24-site ED. Open circle means a jump
or a cusp in ∂E/∂θ , which indicates a first-order phase transition.
Open triangle means a clear minimum in ∂2E/∂θ2, which leads to
a second-order phase transition or a weak first-order phase transition
in the thermodynamic limit. Blue cross indicates the first-order phase
transition point, while the red cross indicates the second-order or
weak first-order phase transition. Open square means a crossover
point where ∂2E/∂λ2 shows a small minimum. Error bars are smaller
than the symbol sizes. Lines are guide for the eye. KSL phases,
which are expected to appear in the gray hatched area, are difficult to
determine because of the numerical resolution.

us to propose alternative scenarios. (i) The |tx�-dimer state
survives up to λ = 1. (ii) The |tx�-dimer state becomes un-
stable at λ ≈ 0.55, and another state obeys a phase transition
at λ = 1.

The second derivatives for θ = 270◦ and 353.7◦ qualita-
tively show similar behavior. Specifically, ∂2E/∂λ2 obtained
with dimer series expansions decrease towards λ = 1 and
their decrease becomes pronounced with an increase in the
included order. However, ∂2E/∂λ2 obtained with ED does

not show a decrease close to λ = 1 but shows a minimum at
λ ≈ 0.55. The results suggest that the |ty�-dimer state becomes
unstable at λ � 0.55.

Finally, we discuss a small minimum in ∂2E/∂λ2 for
� > 0 and K < 0, which is expressed by the open square
in Fig. 5(a). When the small minimum is caused by a
crossover, QSL in Refs. [23,24] adiabatically connects to
the |tx�-dimer state. If the small minimum would be caused
by a phase transition, QSL does not connect with the |tx�-
dimer state. A future study is needed to obtain a definite
conclusion.

IV. STABILITY OF THE KEKULÉ DIMERIZED STATE

Our calculations have shown that in some regions, a phase
transition takes place at λ = 1 where C3v symmetry is recov-
ered. This stimulates us to investigate a stable ordered state
that has discrete symmetry at λ = 1. For this purpose, we
adopt the T6 transformation [31] to Hamiltonian (1). The T6

transformation transforms Hamiltonian (1) into an extended
XXZ Hamiltonian with a Kekulé structure shown in Fig. 1(d).
Note that the transformed Hamiltonian still keeps C3v symme-
try. As shown in Fig. 1(d), we make the initial dimers form a
Kekulé structure. We then apply dimer series expansions to
the transformed Hamiltonian by treating the interactions on
the mapped X and Y bonds as perturbation.

Figures 7(a)–7(e) show the typical λ dependences of E ,
∂E/∂λ, and ∂2E/∂λ2. We calculate these quantities with 24-
site ED. Because the initial dimer placement differs from
that performed in Sec. III, the λ dependences of E , ∂E/∂λ,
and ∂2E/∂λ2 differ from those shown in Sec. III. For
θ = 23.2◦ (K/� = −2.33 at � < 0) [(a)] and 66.8◦ (K/� =
−0.43 at � < 0) [(b)], the ground-state energies up to sixth,
seventh, and eighth orders converge at 0 � λ � 1. They agree
with the ground-state energy obtained with ED. For θ =
23.2◦, ∂E/∂λ obtained with ED shows discontinuity at λ ≈
0.86, while ∂E/∂λ up to sixth, seventh, and eighth orders
begin to deviate at λ ≈ 0.6 with an increase in λ. These
results mean that the Kekulé dimerized state undergoes a
first-order phase transition at λ ≈ 0.86 and becomes unsta-
ble at the λ = 1 isotropic point. For θ = 66.8◦, ∂2E/∂λ2

shows a minimum at λ ≈ 0.96, which indicates that the
Kekulé dimerized state becomes unstable at λ � 0.96. For
θ = 123.7◦ (K/� = 0.67 at � > 0) [(c)] and 246.8◦ (K/� =
−0.43 at � > 0) [(d)], the ground-state energies up to sixth,
seventh, and eighth orders deviate at λ ≈ 0.4 and ≈ 0.6,
respectively, and show divergencelike behavior with an in-
crease in λ. The results indicate that the Kekulé dimerized
state becomes unstable before the system approaches the
isotropic point. For θ = 315◦ (K/� = 1 at � < 0) [(e)], the
ground-state energies up to sixth, seventh, and eighth orders
converge and agree with that obtained with ED at 0 � λ �
1. On the other hand, ∂2E/∂λ2 obtained with ED shows
a small minimum at λ ≈ 0.55, and ∂2E/∂λ2 obtained with
the present dimer-series expansions begin to deviate there
with an increase in λ. The results suggest that the Kekulé
dimerized state becomes unstable at λ � 0.55. Dimer series
expansions and ED performed in this section argue that the
Kekulé dimerized state is unstable at λ = 1 isotropic points.
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FIG. 1. Phase diagram of the Kitaev-Γ model on the honeycomb
lattice as a function of the angle α, which parametrizes the ratio of
Kitaev coupling K = − cos(α) and Γ interaction Γ = sin(α). The
black curve indicates the characteristic RG scale �Λc which is an in-
dicator for the onset energy scale of the magnetic order, see text for
details. The shaded regions indicate ordered phases with finite �Λc.
Observed ordered phases are ferromagnetic order (FM), incommen-
surate phase 1 (IC1), vortex phase 1 (V1), antiferromagnetic order
(AFM), incommensurate phase 2 (IC2), and vortex phase 2 (V2).
White regions indicate spin liquid phases and the absence of spon-
taneous symmetry breaking, mainly the FM and AFM Kitaev spin
liquids around α/π = 0 and α/π = 1, respectively.

surate spin correlations at finite temperature; in the context of
the pf-FRG approach, these phases manifest as the first insta-
bility of the RG flow when the energy scale of the RG cut-
off is lowered. For the incommensurate phases, we demon-
strate that the dominant intensity peaks in the structure factor,
which characterize the incommensurate order, shift continu-
ously upon variation of the coupling constant ratio. More-
over, we identify magnetic vortex phases which are overshad-
owed by a sub-dominant incommensurability effect. The re-
sulting phase diagram is summarized in Fig. 1. In view of
potential future studies, we point out that the pervasiveness
of incommensurate correlations poses a challenge to many es-
tablished methods which may rely on finite lattice represen-
tations; to substantiate this observation, we perform pf-FRG
calculations on a finite cylinder geometry, assessing the extent
to which an anisotropy is imposed by geometrical constraints.
We find that this unphysical anisotropy can become sizable in
phases with incommensurate magnetic correlations, whereas
it remains negligible in the Kitaev spin liquid phases where
correlations are short ranged.

The structure of the paper is as follows. In Sec. II, we de-
fine the Kitaev-Γ model, set the notation, and review previous
studies of the quantum model at zero temperature. We then
briefly introduce the pf-FRG formalism in Sec. III, before we
discuss our findings for the phase diagram in Sec. IV. We fur-
ther focus on the incommensurate phases in Sec. V and study
the constraints of a finite cylinder geometry. Our conclusions
are summarized in Sec. VI.

II. MODEL

We study the quantum-mechanical spin-1/2 Kitaev-Γ
model on the honeycomb lattice, which is described by the
microscopic Hamiltonian

H =
�

�i,j�γ
KSγ

i S
γ
j + Γ

�
Sα
i S

β
j + Sβ

i S
α
j

�
, (1)

where the sum runs over pairs of nearest neighbor lattice
sites i and j which are connected by a lattice bond of type
γ ∈ x, y, z (with α,β denoting the remaining two orthogonal
components). The exchange constant K quantifies the diag-
onal, bond-directional couplings of Kitaev type, whereas Γ
captures symmetric off-diagonal interactions. We parametrize
the ratio of Kitaev and Γ interactions by an angle α ∈ [0, 2π)
which is connected to the exchange constants via

K = − cos(α) and Γ = sin(α) . (2)

Throughout the remainder of this paper, all energy scales are
reported in units of

√
K2 + Γ2.

In terms of the parametrization described above, the regime
0 < α < π/2, i.e. ferromagnetic (FM) Kitaev interactions
K < 0 in conjunction with antiferromagnetic (AFM) Γ inter-
actions Γ > 0, is believed to be most relevant for the Kitaev
material α-RuCl3 [31]. Earlier zero-temperature model cal-
culations have established, however, that this combination of
exchange constants is not only particularly relevant for experi-
ments, but it is also a challenging and controversial part of the
phase diagram; various studies employing different methods
have predicted different results. (i) Variational Monte Carlo
simulations suggest the existence of a sequence of small win-
dows of ferromagnetic order, proximate Kitaev spin liquid,
and incommensurate spiral order in vicinity to the Kitaev spin
liquid around α = 0 [45, 46]. Zigzag order eventually man-
ifests when the Γ interaction becomes comparable in magni-
tude to the Kitaev contribution. (ii) Tensor network represen-
tations of the model predict a slim region of ferromagnetic
order and a nematic paramagnet near the Kitaev spin liquid,
as well as more intricate magnetic order with a 6-site unit
cell [47]. (iii) Exact diagonalization studies on 24-site clus-
ters point towards an extended spin liquid regime spanning
all the way from the pure Kitaev spin liquid to pure Γ in-
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numerical evidence of magnetic orderings nor Luttinger liquid
behaviors. Whether more exotic orderings like the topological
string order [36] exist in the “Kitaev” phase is worth further
studies.

The rest of the paper is organized as follows. In Section II,
the model Hamiltonian is presented and the symmetries of
the model are analyzed. Section III summarizes the magnetic
orders discussed in this paper. In Section IV, the spin-nematic
order at short and intermediate length scales is discussed.
Section V is devoted to a thorough discussion of the classical
Oh → D3 order emerging at long distances with plenty of
numerical evidence. Section VII proposes an argument for
the possible origin of the classical order in the region with
presumably strong quantum fluctuations. In Section VIII, the
peculiar Kitaev phase is discussed. Finally in Sec. IX, the
main results and open questions of the paper are briefly sum-
marized.

II. MODEL HAMILTONIAN AND SYMMETRIES

In this section, we first present the model Hamiltonian,
and then briefly review the six-sublattice rotation and the
symmetries of the system.

A. Model Hamiltonian

The Hamiltonian of the spin-1/2 Kitaev-Gamma chain is
defined as [29]

H =
�

<i j>∈γ bond

�
KSγ

i Sγ

j + �(Sα
i Sβ

j + Sβ
i Sα

j )
�
, (1)

in which i, j are two sites of nearest neighbors; γ = x, y is the
spin direction associated with the γ bond shown in Fig. 2(a);

FIG. 2. Bond structures in (a) the unrotated and (b) the six-
sublattice rotated frames.

α �= β are the two remaining spin directions other than γ ; K
and � are the Kitaev and Gamma couplings, respectively. In
what follows, the two couplings will be parametrized as

K = cos(φ), � = sin(φ), (2)

where φ ∈ [0, 2π ]. Under a global spin rotation around the
z-axis by π , i.e., R(ẑ,π ) : (Sx

i , Sy
i , Sz

i ) → (Sy
i ,−Sx

i , Sz
i ), the

Kitaev term remains the same whereas � changes to −�.
Therefore, there is the equivalence

(K,−�) ∼= (K,�), (3)

or φ ∼= 2π − φ. Due to this equivalence, the phase diagram
can be restricted to the parameter range φ ∈ (0,π ), and in
subsequent discussions, we will drop the numbering “I” in the
names of the phases for simplicity.

B. The six-sublattice rotation

A useful transformation U6 with a periodicity of six sites is
defined as [29,40]

Sublattice 1 : (x, y, z) → (x�, y�, z�),

Sublattice 2 : (x, y, z) → (−x�,−z�,−y�),

Sublattice 3 : (x, y, z) → (y�, z�, x�),

Sublattice 4 : (x, y, z) → (−y�,−x�,−z�),

Sublattice 5 : (x, y, z) → (z�, x�, y�),

Sublattice 6 : (x, y, z) → (−z�,−y�,−x�), (4)

in which ”Sublattice i” (1 � i � 6) denotes the sites i + 6n
(n ∈ Z), and Sα (S�α) is abbreviated as α (α�) for short (α =
x, y, z). After the six-sublattice rotation, the Hamiltonian H � =
U6HU −1

6 acquires the form

H � = �
<i j>∈γ bond

�
− KSγ

i Sγ

j − �(Sα
i Sα

j + Sβ
i Sβ

j )
�
, (5)

in which the bond γ = x, z, y is periodic in three sites as
shown in Fig. 2(b), and the prime has been dropped in �S�

i for
simplicity. The explicit expression of H � in Eq. (5) is given in
Appendix A.

We will stick to the six-sublattice rotated frame from here
on in the remaining parts of this work unless otherwise stated.
The Hamiltonian is simplified in the six-sublattice rotated
frame in the sense that there is no cross term Sα

i Sβ

i+1 where
α �= β. In particular, H � becomes SU(2) symmetric when
K = �. Due to the equivalence established in Eq. (3), the
system also has hidden SU(2) symmetry at K = −�. In the
range φ ∈ [0,π ], the points φ = π/4 and 3π/4 corresponds
to an ferromagnetic (FM) and AFM Heisenberg model, re-
spectively.

C. The symmetry group

In this section, the symmetry group of H � will be briefly
reviewed which has been discussed in detail in Ref. [29,38].

The Hamiltonian H � in Eq. (5) is invariant under the time
reversal operation T , the screw operation RaTa, the coupled
operation RI I , and the global spin rotations R(α̂,π ) (α =
x, y, z), in which: Ta and I represent the spatial translation
by one site and the inversion around the point C in Fig. 2(b),
respectively; Ra and RI are given by Ra = R(n̂a,−2π/3) and
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and � are the Kitaev and Gamma couplings, respectively. In
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where φ ∈ [0, 2π ]. Under a global spin rotation around the
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Kitaev term remains the same whereas � changes to −�.
Therefore, there is the equivalence
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or φ ∼= 2π − φ. Due to this equivalence, the phase diagram
can be restricted to the parameter range φ ∈ (0,π ), and in
subsequent discussions, we will drop the numbering “I” in the
names of the phases for simplicity.
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defined as [29,40]
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(n ∈ Z), and Sα (S�α) is abbreviated as α (α�) for short (α =
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in which the bond γ = x, z, y is periodic in three sites as
shown in Fig. 2(b), and the prime has been dropped in �S�

i for
simplicity. The explicit expression of H � in Eq. (5) is given in
Appendix A.

We will stick to the six-sublattice rotated frame from here
on in the remaining parts of this work unless otherwise stated.
The Hamiltonian is simplified in the six-sublattice rotated
frame in the sense that there is no cross term Sα
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i+1 where
α �= β. In particular, H � becomes SU(2) symmetric when
K = �. Due to the equivalence established in Eq. (3), the
system also has hidden SU(2) symmetry at K = −�. In the
range φ ∈ [0,π ], the points φ = π/4 and 3π/4 corresponds
to an ferromagnetic (FM) and AFM Heisenberg model, re-
spectively.

C. The symmetry group

In this section, the symmetry group of H � will be briefly
reviewed which has been discussed in detail in Ref. [29,38].

The Hamiltonian H � in Eq. (5) is invariant under the time
reversal operation T , the screw operation RaTa, the coupled
operation RI I , and the global spin rotations R(α̂,π ) (α =
x, y, z), in which: Ta and I represent the spatial translation
by one site and the inversion around the point C in Fig. 2(b),
respectively; Ra and RI are given by Ra = R(n̂a,−2π/3) and
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names of the phases for simplicity.
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in which the bond γ = x, z, y is periodic in three sites as
shown in Fig. 2(b), and the prime has been dropped in �S�

i for
simplicity. The explicit expression of H � in Eq. (5) is given in
Appendix A.

We will stick to the six-sublattice rotated frame from here
on in the remaining parts of this work unless otherwise stated.
The Hamiltonian is simplified in the six-sublattice rotated
frame in the sense that there is no cross term Sα
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i+1 where
α �= β. In particular, H � becomes SU(2) symmetric when
K = �. Due to the equivalence established in Eq. (3), the
system also has hidden SU(2) symmetry at K = −�. In the
range φ ∈ [0,π ], the points φ = π/4 and 3π/4 corresponds
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The Hamiltonian H � in Eq. (5) is invariant under the time
reversal operation T , the screw operation RaTa, the coupled
operation RI I , and the global spin rotations R(α̂,π ) (α =
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Sublattice 4 : (x, y, z) → (−y�,−x�,−z�),

Sublattice 5 : (x, y, z) → (z�, x�, y�),

Sublattice 6 : (x, y, z) → (−z�,−y�,−x�), (4)

in which ”Sublattice i” (1 � i � 6) denotes the sites i + 6n
(n ∈ Z), and Sα (S�α) is abbreviated as α (α�) for short (α =
x, y, z). After the six-sublattice rotation, the Hamiltonian H � =
U6HU −1

6 acquires the form

H � = �
<i j>∈γ bond

�
− KSγ

i Sγ

j − �(Sα
i Sα

j + Sβ
i Sβ

j )
�
, (5)

in which the bond γ = x, z, y is periodic in three sites as
shown in Fig. 2(b), and the prime has been dropped in �S�

i for
simplicity. The explicit expression of H � in Eq. (5) is given in
Appendix A.

We will stick to the six-sublattice rotated frame from here
on in the remaining parts of this work unless otherwise stated.
The Hamiltonian is simplified in the six-sublattice rotated
frame in the sense that there is no cross term Sα

i Sβ

i+1 where
α �= β. In particular, H � becomes SU(2) symmetric when
K = �. Due to the equivalence established in Eq. (3), the
system also has hidden SU(2) symmetry at K = −�. In the
range φ ∈ [0,π ], the points φ = π/4 and 3π/4 corresponds
to an ferromagnetic (FM) and AFM Heisenberg model, re-
spectively.

C. The symmetry group

In this section, the symmetry group of H � will be briefly
reviewed which has been discussed in detail in Ref. [29,38].

The Hamiltonian H � in Eq. (5) is invariant under the time
reversal operation T , the screw operation RaTa, the coupled
operation RI I , and the global spin rotations R(α̂,π ) (α =
x, y, z), in which: Ta and I represent the spatial translation
by one site and the inversion around the point C in Fig. 2(b),
respectively; Ra and RI are given by Ra = R(n̂a,−2π/3) and
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K = �. Due to the equivalence established in Eq. (3), the
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Phase diagram, known limits

K = − cosφ
Γ = sinφ
0 ≤ φ ≤ π
0 ≤ d . 1
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Single cut at φ/π = 1/4

: reduced eff. inter-chain coupling
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Reduced eff. inter-chain coupling due to frustration
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Dual model with HAF-like chains
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Reduced eff. inter-chain doupling due to frustration

Dual model with HAF-like chains
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iDMRG: scaling with bond dimension χ, transfer matrix and spectral gap

Consider transfer matrix of iMPS:

a)
T : Λi = λi Λi

b)
T T : T Λ̃i = λ̃i Λ̃i

c)
Λ̃0 = δi,je

iqi

qi

qj

I λ0 = 1, ∀i > 0 : λi < 1

I quasi-energies:
εi = − lnλi

I δ =
∑

i ciεi

with choice ci such that∑
ci = 0

I plot ε1(χ) ∝ ∆(χ) vs. δ(χ)

Example: TM spectrum of Kitaev model

.

.
Zauner, Draxler, Vanderstraeten, et al., New J. Phys. 17 053002 (2015) MG, Wachtel, Yamaji, et al., PRB 97 075126 (2018)

Rams, Czarnik, Cincio, PRX 8, 041033 (2018)
Vanhecke, Haegeman, Van Acoleyen, Vanderstraeten, Verstraete, PRL 123 250604 (2019)
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iDMRG: scaling with bond dimension χ, chain

Consider transfer matrix of iMPS:

a)
T : Λi = λi Λi

b)
T T : T Λ̃i = λ̃i Λ̃i

c)
Λ̃0 = δi,je
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I λ0 = 1, ∀i > 0 : λi < 1

I quasi-energies:
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I δ =
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iDMRG: scaling with bond dimension χ, 4-coupled chains, d = 0.5

Consider transfer matrix of iMPS:

a)
T : Λi = λi Λi

b)
T T : T Λ̃i = λ̃i Λ̃i

c)
Λ̃0 = δi,je

iqi
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I λ0 = 1, ∀i > 0 : λi < 1

I quasi-energies:
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I δ =
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i ciεi
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I plot ε1(χ) ∝ ∆(χ) vs. δ(χ)
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iDMRG: scaling with bond dimension χ, 4-coupled chains, d = 0.5
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iDMRG: scaling with bond dimension χ, 4-coupled chains, at various K/Γ and d
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iDMRG: scaling with bond dimension χ, 4-coupled chains, at various K/Γ and d
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Dynamics: S(q, ω) in chain limit, d = 0, TLL phase

→ Spatio-temporal Fourier transform of spin-spin correlations:

Sγγ(k, ω) =
1

2π

∑

r

∫ ∞

−∞
ei(ωt−k·r)Cγγ(r, t) dt ,

where Cγγ
i,j (r, t) = 〈ψ0|Sγj U(t)Sγi |ψ0〉 computed using tMPO

.
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→ three copies of HAF-chain spinon continuum.

Zaletel et al. PRB 91, 165112 (2015)
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Dynamics: S(q, ω) for 3-coupled chains, d = 0.5, pTLL phase
.
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Summary

1. Extended QSL phase next to TLL:
I gapless
I ’survives’ up to isotropic limit

due to frustration suppressing
eff. inter-chain coupling

I Spinons of HAF-chain survive
significant inter-chain coupling
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Coupled wire approach ... recent arXiv 2207.02188

Counter-rotating spiral, zigzag, and 120◦ orders from coupled-chain analysis of
Kitaev-Gamma-Heisenberg model, and relations to honeycomb iridates

Wang Yang,1 Alberto Nocera,1 Chao Xu,2 Hae-Young Kee,3, 4 and Ian Affleck1

1Department of Physics and Astronomy and Stewart Blusson Quantum Matter Institute,
University of British Columbia, Vancouver, B.C., Canada, V6T 1Z1

2Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
3Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada

4Canadian Institute for Advanced Research, CIFAR Program in Quantum Materials, Toronto, Ontario M5G 1M1, Canada

We study the nearest neighboring spin-1/2 Kitaev-Heisenberg-Gamma (KJΓ) model on the hon-
eycomb lattice in the parameter region of ferromagnetic (FM) Kitaev and antiferromagnetic (AFM)
Heisenberg couplings relevant for honeycomb iridates, using a coupled-chain analysis. Starting from
the gapless Luttinger liquid phase of a decoupled KJΓ chain, the inter-chain interactions in the two-
dimensional model is treated within a self-consistent mean field approach based on the Luttinger
liquid theory. In the FM Gamma region, our analysis recovers the reported 120◦ magnetic order,
previously obtained by classical analysis and exact diagonalization method. On the other hand, new
physics is revealed in the AFM Gamma region, where three magnetic orders are found, including
120◦, commensurate counter-rotating spiral, and zigzag orders. Interestingly, the two first order
phase transition lines separating these three magnetic orders merge at a single point at K = −2Γ
and J = 0, which is predicted to be a quantum critical point. The current theory captures the ex-
perimentally observed counter-rotating spiral order in α-Li22IrO3 and the zigzag order in Na2IrO3,
thereby indicating that the spin-1/2 KJΓ model may serve as a minimal model for honeycomb
iridates. Limitations of the mean field theory presented in this work and the J → 0 regime are also
discussed.

I. INTRODUCTION

The Kitaev spin-1/2 model on the honeycomb lattice
is an exactly solvable spin model with bond-dependent
Ising interactions [1]. The braiding statistics of the
fractionalized excitations emerging from this model can
be used for realizing topological quantum computations
[1, 2]. For this reason, material realizations of the Ki-
taev model have attracted intense research attentions in
the past decade [3–6] on both theoretical and experimen-
tal sides [7–53]. Honeycomb iridates are a class of Ki-
taev materials, including Na2IrO3 [9] and α-Li2IrO3 [54]
among others. So far, the proposed candidate materials
are experimentally observed to be magnetically ordered
at sufficiently low temperatures. For example, zigzag
magnetic order has been found in Na2IrO3 [10, 14, 15],
whereas α-Li2IrO3 has a counter-rotating spiral order
[35]. Hence, one of the central questions in the field of
Kitaev materials is to understand why different magnetic
orders appear in these materials [11, 13, 18, 26, 27, 32].

On the theory side, a variety of generalized Kitaev spin
models have been used to model and analyze Kitaev ma-
terials, which contain interactions beyond the pure Ki-
taev coupling [7, 8, 21, 25, 44]. These additional interac-
tions arise from exchange processes among the spin-orbit
coupled orbitals in the underlying lattices, and are nat-
ural from a symmetry point of view, since in principle,
any interaction compatible with the lattice symmetries
is inevitable in real materials. The simplest generalized
Kitaev spin models are those which only contain interac-
tions up to the nearest neighboring level. The minimal
model compatible with the lattice symmetries and hav-
ing only nearest neighboring interactions is the Kitaev-

Heisenberg-Gamma (KJΓ) model [21], which in addi-
tion to the Kitaev and Heisenberg couplings, contains
an off-diagonal symmetric Gamma term. In the Kitaev
candidate materials, theories and experiments have es-
tablished the facts that the Kitaev interaction is ferro-
magnetic (FM). In a recent work of Ref. [53], it has
been proposed that while Gamma is antiferromagnetic
(AFM), the Heisenberg coupling in the α-Li2IrO3 mate-
rial is AFM in nature, different from another candidate
α-RuCl3 with FM Heisenberg interaction.

The determination of models and parameters for real
Kitaev materials has been a challenge in the community,
and one approach was taken from investigating the cor-
responding quasi-one-dimensional (1D) models [55–71],
which may give insights into the two-dimensional (2D)
limit. Unlike the typical theoretical difficulties in 2D, 1D
has the advantage that there are many powerful analyt-
ical and numerical methods [72–81]. Besides providing
hints for 2D, 1D generalized Kitaev models are interest-
ing on their own, since they contain rich strongly cor-
related physics, including emergent conformal symmetry
[61, 71], nonlocal string orders [59, 67], and magnetic or-
ders which break exotic nonsymmorphic symmetries [61–
64].

In this work, we focus on the experimentally relevant
parameter region of FM Kitaev, AFM Gamma and AFM
Heisenberg couplings of the spin-1/2 KJΓ model on the
honeycomb lattice, and study both signs of the Gamma
interaction. While our interest is in the AFM Gamma
region, we will also present FM Gamma to make proper
comparisons. The strategy is to take the Luttinger liq-
uid phase in a decoupled spin-1/2 KJΓ chain [62] as
the starting point, and consider a system of weakly cou-
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by the two red lines in Fig. 1 (b)) merge into a single
point at J = 0, K = −2Γ. According to Eq. (50) and
Eq. (71), the order parameters �N y� and �N z� vanish at
(K = −2Γ, J = 0,Γ), represented by the red solid circle
in Fig. 1 (b). Therefore, the point at J = 0, K = −2Γ
is a quantum critical point, corresponding to a second
order phase transition where the two first order phase
transition lines terminate.

We note that the zigzag, 120◦, and counter-rotating
spiral orders in the AFM Gamma region all have dis-
tinct symmetry breaking patterns. First, it is clear that
the zigzag order is different from the 120◦ and counter-
rotating spiral orders, since the zigzag order does not
break the translation symmetry of translating by a vec-
tor �a, whereas the latter two orders break this symmetry,
where �a is defined in Fig. 3. Next, we show that the 120◦

and counter-rotating spiral orders also have distinct sym-
metry breaking patterns. Notice that both time reversal

T and the translation operation Tab = 3
2�a−�b are symme-

tries of the 2D KJΓ model, in which �a and�b are defined in
Fig. 3. It can be verified from Fig. 2 (a,b) that the 120◦

II order breaks the symmetry TTab whereas the counter-
rotating spiral order breaks Tab, indicating that the two
orders break different symmetries. Hence the quantum
critical point at J = 0, K = −2Γ is a multi-critical point
where several different ordered phases meet.

On the other hand, it is known that certain contin-
uous phase transitions between two ordered phases with
distinct symmetry breaking patterns can be described by
the deconfined quantum critical theory [87–96], which is
beyond the conventional Landau paradigm of second or-
der phase transitions where the system transits from a
disordered phase to an ordered phase when the critical
point is traversed. Hence it may be worth to further in-
vestigate possible connections between the quantum crit-
ical point in the AFM Gamma region and the deconfined
quantum critical theory beyond Landau paradigm from
both analytical and numerical sides. More numerical and
analytical studies on the nature of this quantum critical
point are valuable and desirable.

We make a comment on the relation between our re-
sults and the numerical studies in Ref. [21]. The phase
diagram of the isotropic spin-1/2 KJΓ model on the hon-
eycomb lattice has been studied in Ref. [21] using a com-
bination of exact diagonalization and classical analysis.
Both methods revealed a 120◦ magnetic order in the re-
gion of FM Gamma, FM Kitaev, and AFM Heisenberg
interactions, which is consistent with the coupled-chain
analysis. On the other hand, in the AFM Gamma region
(still with FM Kitaev and AFM Heisenberg couplings),
no magnetic order commensurate with the lattice is found
in Ref. [21]. Exact diagonalization on a cluster of 24 sites
in Ref. [21] revealed a phase with an incommensurate
spiral order in the AFM Gamma region, and the incom-
mensurate wavevector of the spiral order varies continu-
ously in the phase. We note that the correlation length
in this parameter region can be very large, particularly
when the system is close to the quantum critical point

located at J = 0, K = −2Γ. The large correlation length
makes it difficult to determine the magnetic orders in
numerical calculations, which might be the reason why
incommensurate behaviors are observed in the numerics
in Ref. [21].

F. Limitation of the theory and the J → 0 regime

Finally we briefly discuss the limitation of our mean
field theory, particularly in the J → 0 regime. The
coupled-chain analysis presented in this work crucially
depends on the division of the instabilities in the un-
derlying Luttinger liquid theory into dominant and sub-
dominant channels. However, these channels become
degenerate in the J = 0 case, which corresponds to
a Kitaev-Gamma model. The degenerate and near-
degenerate cases for small J probably require an inde-
pendent study, different from the current analysis.

On the other hand, as discussed in Ref. [61], the 1D
Kitaev-Gamma model has an intricate symmetry group
G0, which is nonsymmorphic and satisfies G0/Z ∼= Oh,
where Oh is the full octahedral group, or the largest 3D
crystalline point group. Therefore, within a coupled-
chain approach, there are many more possibilities of
magnetic orders and symmetry breaking patterns in 2D
Kitaev-Gamma model because of the much larger sym-
metry group, which is worth for future studies. Indeed,
classical analysis and machine-learning-based method
have revealed the great complexity of the phase diagram
of the 2D Kitaev-Gamma model [51, 52], where magnetic
orders having a unit cell of 18, 24, or even 48 sites are
found. In addition, it cannot be ruled out the possibil-
ity that the Kitaev-Gamma model hosts some disordered
phases such as nematic paramagnets [42, 46, 47, 50, 51].

VI. RELATIONS TO Na2IrO3 AND α-Li2IrO3

A2IrO3 (A=Na, Li) is a family of intensively studied
Kitaev candidate materials. A collinear zigzag order has
been established for Na2IrO3 experimentally [10, 14, 15].
However, the magnetic order is drastically different when
Na is replaced by Li [17, 24]. A counter-rotating spi-
ral order has been experimentally observed in materials
including α-Li2IrO3 [35], β-Li2IrO3 [22], and γ-Li2IrO3

[23]. Since β-Li2IrO3 and γ-Li2IrO3 have a 3D hyper-
honeycomb and stripy-honeycomb lattice structure, re-
spectively, they are not directly relevant to the geometry
of our consideration. On the other hand, α-Li2IrO3 has
a layered honeycomb structure, which is relevant to our
study. In this section, we compare our analytical pre-
dictions with the experimentally observed zigzag order
in Na2IrO3 and the counter-rotating spiral order in α-
Li2IrO3.

In a recent work of Ref. [53], the exchange inter-
actions in d5 Kitaev materials have been analyzed in
details, which reveals that on the nearest neighboring
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Summary

1. Extended QSL phase next to TLL:
I gapless
I ’survives’ up to isotropic limit

due to frustration suppressing
eff. inter-chain coupling

I Spinons of HAF-chain survive
significant inter-chain coupling

2. Questions/issues:
I Extended QSL related to

Lattice-nematic paramagnetic
phase in [111] field?

I Previous studies: proximity to phase
transition reason for (many) different
results?
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Phase diagram is very rich beyond the QSL phase ...
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I d → 0, φ/π ≈ 0.66: region with
strong incommensurate
correlations, survives small d
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dipolar LRO

I d ≈ 0 to 0.4, φ/π ≈ 0.95: dipolar
LRO: canted Vortex (120◦) and
doubled unit cell

I d ≈ 0 to 0.2, φ/π → 0: dimerized
phase (also for single chain)
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