Quantum structural-spin glass
in two-dimension at finite temperature

C’ Chisa Hotta

University of Tokyo, Komaba

Hotta, Ueda, Imada, arXiv:2207.07293

Collaborators: Kazumasa Ueda (2017 grad. student)
Masatoshi Imada (Toyota inst. & Waseda Univ.)



Take home message

We found a finite T glass transition in 2D for the first time
in the triangular lattice transverse (quantum) AF Ising model

What is glass ?

—  Loss of ergodicity between numerous competing states
“Order parameter” is a replica overlap

It has something in common to other correlated disorders(QSL, MBL, ef

How to make a glass.
It is very difficult to form a glass in 2D and 3D lattice models.

- two coupled degrees of frustrated freedom
- classical 3D or quantum 2D



COrrEIHtEd disorder - Not a simple(free) paramagnet.

- No local order parameter.

- Hilbert space divided into groups

Quantum spin liquid(QSL) (topological order, QHE) topologial degeneracy
- Hilbert space divided into topological sectors
- degenerate entanglement spectrum /
Classical spin liquid(CSL) \\\ //
- Only few low energy sectors (order-N degeneracy) join f\‘;/ \

mismatch of local symmetry and the (higher) average symmetry / >~

Many-body localization (MBL) spin ice

- Hilbert space fragmentation
- Edwards-Anderson parameter

Glass
- Non-ergodicity (multi-valley energy landscape)

- Replica overlap



Glasses in crystalline solids
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Spins glass in 3D pyrochlore
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Charge glass in 2D triangular organics
X=TIZn(SCN)a
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Glassy spin liquid?
Rare-Earth material
YbMgGaOa4
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Glasses or not ?

uniform field
H="Hy—Nmh TTTTTT 2\ /EJOTth spatially uniform magnetization

tlf hi’ \ 44 t site dependent random field
VAN X’T site-dependent random freezing of spins

(m;)

H=H, _Z ni Wi 209 °@200 Site dependent random potential
i

W\/VV\/V\A/\ site-dependent random charge occupation

the field conjugate to order parameters These are not glasses

Energy landscapes

T It is ergodic.
Energy barrier is O(1) Glasses are nonergodic.

» phase space (configurations)




Glasses or not ?

Lattice models for spin glass = Edwards Anderson (EA) model

toy model, no other interactions than random interactions.
- ™

H = —ZJi\jan;? P(Jij)

— A\ F &AF
1<)

N 0 i

The randomness of J;; is NOT coupled to <0;;z>: NO apparent reason
to freeze (o7 randomly.

. | Time reversal symmetry is preserved
flip ~ N _ .
the whole ' \Y, T in the presence of fluctuation.
spins

Fluctuation (stronger in 1D and 2D) are
™y T the enemy.
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Glass transition in theory

- No local order parameter.
(but have non-local order parameter)

- Breaking of ergodicity.

glass 1

AE —co
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Emergent exponential # of energy minima, O(N) energy barrier, breaking ergodicity.
relaxation being sensitive to heating/cooling process.



Replica theory

Giorgio Parisi
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Replica theory

replica 1 N
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How difficult to find glass transition?

- Replica theory, glass theory are for classical models.

- Replica theory is for D = oo

- Previously, lattice models (D=2,3) could rarely afford true glass transition.

- Even with Edwards-Anderson(EA) toy model, having only random interactions,
exhausting effort to establish D=3 SG transition.

Marinari, Parisi and Ruiz-Lorenzo,
Phys. Rev. B 58 14852 (1998)

P(q)

Lattice models (mostly classical)

disorder-free | quenched disorder 3D EA model
D=2 No =M=
D=3 o= Yes
co | |/ Yes Yes Present talk (quantum)
/ arXiv:2207.07293

Before our work in 2020 about pyrochlore spin glass.
Mitsumoto Hotta Yoshino PRL 124, 087201 (2020)



Route to find a quantum glass

A . How can we develop a potential barrier?
macroscopically

energy
:
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» phase space

frustration will generate a flat energy landscape

What we naively expect s ...

- Need frustration to develop exp-N degeneracy.
- Quantum-2D is classsical-3D.

- Maybe we need at least small quenched disorder
(but it should not directly couple to spin moments, because otherwise
it is a trivial state and not the glass.)



Finding 2D quantum glass at finite temperature

Transverse AF Ising model on a triangular lattice
Quantum + frustration + quenched disorder
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Transverse AF Ising model

H =ZJ afaf—l“fzaf
(i7) i=1

No randomness

R=0
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“order-by-disorder” mechanism

Clock order

quantum

classical —

Emergent

Villain (1980)

Isakov, Moessner, PRB 68, 104409 (2003)

two degrees of freedom



Transverse AF Ising model + randomness

P(J55)
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<«<—> randomness

N
1 — y: Ji0f0f —T Z o + small disorder
(27) i=1

I C.f. Edwards Anderson model

0
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Infinitesimally small randomness generates a glass



Replica overlap
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Spin-glass susceptibility

0.3

No randomness small randomness
R=0
P(Qab)

clock order \ QSSG
0 : q
dapB ap

emerges at T<Tc

drop
2 =

Xsc (k=0)/L?[
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xsa(k=0) = Z(f ¢°P(q)dg — (f aP(q)dq) )
A 0 0
o 01 02 03 oz os os  Fouriertransform of 4eg-48 correlation

N —oco

- Small randomness R induces xsc(k = 0) = order(N) —o0

static SG long range order
- Xsc (k=0)/L? slightly drops at T<Tc . Why ?

because there is an emergent peak in P(qav=0) = algebraic SG



Domains : source of two component SG
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Vitrification mechanism

( Interplay of quantum + frustration ) (

| No randomness |

clock order (

Bond randomness transforms to site random field.

mA/ mp, mC

He = Z Jij mi=

I€EA,B

+ bond randomness
|

He #0
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| Quenched randomness |

!

= random field

Imry-Ma (1975)

discrete symmetry , uniform | +random field hi

long range order can be unstable in the presence of arbitrary weak random fields

at dimensions < d]

E(§) ~ ]

proof :

system breaks up into domains.

- EP<0 — di =
Imbrie(1984) Aizenmann-Wehr (1989)



Vitrification mechanism

guenched
disorder

guantum
fluctuation
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single component
(spin) system

guantum liquid component
classical solid component bond-disorder induces random fields

frustration

: magnetic order suppressed order-by-disorder /\ |
honeycomb lattice  center spins

guantum fluctuation \_/

Two-types of emergent degrees of freedom coorperatively form
long range ordered spin glass + algebraic structural glass



Some analogies

Mitsumoto Hotta Yoshino,  PRL 124, 087201 (2020)

PRR 4, 033157 (2022)

3D Spin glass transition without quenched randomness
: 20 years of difficult problem

—— No randomness ——

thermodynamic glass transition
N
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Theory on slow dynamics

Rau ,Gingras (2016)
Udagawa, Jaubert, Castelnovo,
Moessner (2016)

With quenched disorder

Saunders- Chalker(2007)
Shinaoka-Tomita-Motome (2011)

Motivated by Thygesen, et.al. PRL118, 167201 (2017)
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Random interations dynamica

Jahn-Teller Ice of
lattice displacements

“good glass-former”

lattice spin

disorderd ice-lattice displacements

Jahn-Teller
lattice ice

frustrated spins

i e il

génerated by

glass transition



Summary

. . unfrozen
Frozen underlying physics -
may have something in common. quantum spin liquids
glass - g classical spin liquid, MBL, etc.

- Materials show phenomenological glass behavior, but the true glasses are
not easy to find in theory.

- Glass is a ergodicity breaking: order parameter=a non-local replica overlap.
- We found a route to form a quantum 2D(=classical 3D) glass.
X Fluctuations enhanced in low dimensions.

(O Frustration to generate massively competing states.
(O At least very small quenched randomness.

© When two degrees of freedom which are both frustrated, couple, ...

- What is new for our QSSG as a phenomenon?
Two existing “orders”: static uniform long range glass order
algebraically decaying glass



