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proximity effects. The carrier density n is tuned by applying a voltage 
to a Pd/Au bottom gate electrode. In Fig. 1b we show the longitudi-
nal resistance Rxx as a function of temperature for two magic-angle 
devices, M1 and M2, with twist angles of 1.16° and 1.05°, respectively. 
At the lowest temperature studied of 70 mK, both devices show zero 
resistance, and therefore a superconducting state. The critical temper-
ature Tc as calculated using a resistance of 50% of the ‘normal’-state 
(non-superconducting) value is approximately 1.7 K and 0.5 K for the 
two devices that we studied in detail. In Fig. 1c, d we show a single- 
particle band structure and density of states (DOS) near the charge 
neutrality point calculated for θ = 1.05°. The superconductivity in both 
devices occurs when the Fermi energy EF is tuned away from charge 
neutrality (EF = 0) to be near half-filling of the lower flat band (EF < 0, 
as indicated in Fig. 1d). The DOS within the energy scale of the flat 
bands is more than three orders of magnitudes higher than that of 
two uncoupled graphene sheets, owing to the reduction of the Fermi 
velocity and the increase in localization that occurs near the magic 
angle. However, the energy at which the DOS peaks does not gener-
ally coincide with the density that is required to half-fill the bands. 
In addition, we did not observe any appreciable superconductivity 
when the Fermi energy was tuned into the flat conduction bands 
(EF > 0). In Fig. 1e we show the current–voltage (I–Vxx, where Vxx 
is the four-probe voltage, as defined in Fig. 1a) curves of device M2 
at different temperatures. We observe typical behaviour for a two- 
dimensional superconductor. The inset shows a tentative fit of the 
same data to a Vxx ∝ I3 power law, as is predicted in a Berezinskii–
Kosterlitz–Thouless transition in two-dimensional superconductors23. 
This analysis yields a Berezinskii–Kosterlitz–Thouless transition tem-
perature of TBKT ≈ 1.0 K at n = −1.44 × 1012 cm−2, where, as before, 

n is the carrier density induced by the gate and measured from the 
charge neutrality point (which is different from the actual carrier  
density involved in transport, as we show below).

In contrast to other known two-dimensional and layered super-
conductors, the superconductivity in magic-angle TBG requires the 
application of only a small gate voltage, corresponding to a minimal 
density of only 1.2 × 1012 cm−2 from charge neutrality, an order of mag-
nitude lower than the value of 1.5 × 1013 cm−2 in LaAlO3/SrTiO3 inter-
faces and of 7 × 1013 cm−2 in electrochemically doped MoS2, among 
others24. Therefore, gate-tunable superconductivity can be realized 
in a high-mobility system without the need for ionic-liquid gating or 
chemical doping. In Fig. 2a we show the two-probe conductance of 
device M1 versus n at zero magnetic field and at a 0.4-T perpendic-
ular magnetic field. Near the charge neutrality point (n = 0), a typical 
V-shaped conductance is observed, which originates from the renor-
malized Dirac cones of the TBG band structure. The insulating states 
centred at approximately ±3.2 × 1012 cm−2 (which corresponds to ns 
for θ = 1.16°) are due to single-particle bandgaps in the band structure 
that correspond to filling ±4 electrons in each superlattice unit cell. In 
between, there are conductance minima at ±2 and ±3 electrons per 
unit cell. These minima are associated with many-body gaps induced by 
the competition between the Coulomb energy and the reduced kinetic 
energy due to confinement of the electronic state in the superlattice 
near the magic angle; these gaps give rise to insulating behaviour near 
the integer fillings18. One possible mechanism for the gaps is similar 
to the gap mechanism in Mott insulators, but with an extra two-fold 
degeneracy (for the case of ±2 electrons) from the valleys in the origi-
nal graphene Brillouin zone17,18,25,26. In the vicinity of −2 electrons 
per unit cell (n ≈ −1.3 × 1012 cm−2 to n ≈ −1.9 × 1012 cm−2) and at a 
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Figure 2 | Gate-tunable superconductivity in magic-angle TBG. 
a, Two-probe conductance G2 = I/Vbias of device M1 (θ = 1.16°) measured 
in zero magnetic field (red) and at a perpendicular field of B⊥ = 0.4 T 
(blue). The curves exhibit the typical V-shaped conductance near charge 
neutrality (n = 0, vertical purple dotted line) and insulating states at the 
superlattice bandgaps n = ±ns, which correspond to filling ±4 electrons 
in each moiré unit cell (blue and red bars). They also exhibit reduced 
conductance at intermediate integer fillings of the superlattice owing to 
Coulomb interactions (other coloured bars). Near a filling of −2 electrons 
per unit cell, there is considerable conductance enhancement at zero field 
that is suppressed in B⊥ = 0.4 T. This enhancement signals the onset of 

superconductivity. Measurements were conducted at 70 mK; Vbias = 10 µV. 
b, Four-probe resistance Rxx, measured at densities corresponding to 
the region bounded by pink dashed lines in a, versus temperature. Two 
superconducting domes are observed next to the half-filling state, which 
is labelled ‘Mott’ and centred around −ns/2 = −1.58 × 1012 cm−2. The 
remaining regions in the diagram are labelled as ‘metal’ owing to the 
metallic temperature dependence. The highest critical temperature 
observed in device M1 is Tc = 0.5 K (at 50% of the normal-state resistance). 
c, As in b, but for device M2, showing two asymmetric and overlapping 
domes. The highest critical temperature in this device is Tc = 1.7 K.
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Dirac cones, GK = 4π/(3α) is the magnitude of the wavevector Γ–K  
of graphene, α = 0.246 nm is the lattice constant of graphene and  
ħ =  h/(2π ) is the reduced Planck constant, the lower of the hybri-
dized states is pushed to and crosses zero energy. A mathe matical  
derivation of the magic-angle condition6 gives the first magic angle, 
θ = / ≈ . °w ħv G3 ( ) 1 1magic

(1)
0 K . In Fig. 1c we show an ab initio tight- 

binding calculation16 of the band structure for θ =  1.08°. The flat bands 
(coloured blue) have a bandwidth of 12 meV for the E >   0 branch and 
2 meV for the E <   0 branch (where E is the band energy). From a 
band-theory point of view, the flat bands should have localized wave-
function profiles in real space. In Fig. 1h we show the local density of 
states calculated for the flat bands. The wavefunctions are indeed highly 
concentrated in the regions with AA stacking, whereas small but non-
zero amplitudes on the AB and BA regions connect the AA regions and 
endow the bands with weak dispersion6,15,18. A brief discussion about 
the topological structure of the bands near the first magic angle is given 
in Methods and Extended Data Fig. 1.

For the experiment, we fabricated high-quality encapsulated TBG 
devices with the twist angle controlled to an accuracy of about 0.1°–0.2° 
using a previously developed ‘tear and stack’ technique13,17,22. We meas-
ured four devices with twist angles near the first magic angle 
θ ≈ . °.1 1magic

(1)  In Fig. 2a we show the low-temperature two-probe  
conductance of device D1 as a function of carrier density n. For  
n ≈   ±  ns =  ±  2.7 ×   1012 cm− 2 (four electrons per moiré unit cell for 
θ =  1.08°), the conductance is zero over a wide range of densities. Here, 
ns refers to the density that is required to fill the mini Brillouin zone, 
accounting for spin and valley degeneracies (see Methods). These 
insulating states have been explained previously as hybridization- 
induced bandgaps above and below the lowest-energy superlattice 
bands, and are hereafter referred to as ‘superlattice gaps’13. The thermal 
activation gaps are measured to be about 40 meV (see Methods)13,17. 
The twist angle can be estimated from the density that is required to 
reach the superlattice gaps, which we find to be θ =  1.1° ±   0.1° for all 
of the devices reported here.

Another pair of insulating states occurs for a narrower density range, 
near half the superlattice density: n ≈   ±  ns/2 =  ±  1.4 ×   1012 cm− 2 (two 
electrons per moiré unit cell). These insulating states have a much 
smaller energy scale. This behaviour is markedly different from all 
other zero-field insulating behaviours reported previously, which 
occur at integer multiples of ±  ns (refs 13, 17). We refer to the states that 
occur near ±  ns/2 as ‘half-filling insulating states’. They are observed 
at roughly the same density for all four devices (Fig. 2a, inset). In  
Fig. 2b–d we show the conductance of the half-filling states in device 
D1 at different  temperatures. Above 4 K, the system behaves as a metal, 
exhibiting decreasing conductance with increasing temperature.  
A metal– insulator transition occurs at around 4 K. The conductance 
drops substantially from 4 K to 0.3 K, with the minimum value decreasing  
by 1.5 orders of magnitude. An Arrhenius fit yields a thermal acti-
vation gap of about 0.3 meV for the half-filling states, two orders of 
magnitude smaller than those of the superlattice gaps. At the lowest 
temperatures, the system can be limited by conduction through charge 
puddles, resulting in deviation from the Arrhenius fit.

To confirm the existence of the half-filling states, we performed 
capacitance measurements on device D2 using an a.c. low- temperature 
capacitance bridge (Extended Data Fig. 2)23. The real and imaginary 
components of the a.c. measurement provide information about the 
change in capacitance and the loss tangent of the device, respectively. 
The latter signal is tied to the dissipation in the device due to its 
 resistance23. Device D2 exhibits a reduction in capacitance and strong 
enhancement of dissipation at ±  ns/2 (Fig. 3a), in agreement with an 
insulating phase that results from the suppression of the density of 
states. The insulating state at −  ns/2 is weaker and visible only in the 
dissipation data. The observation of capacitance reduction (that is, 
suppression of density of states) for only the n-side half-filling state in 
this device may be due to an asymmetric band structure or the quality 
of the device. The reduction (enhancement) in capacitance (dissipa-
tion) vanishes when the device is warmed up from 0.3 K to about 2 K, 
consistent with the behaviour observed in transport measurements.
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Figure 1 | Electronic band structure of twisted bilayer graphene (TBG). 
a, Schematic of the TBG devices. The TBG is encapsulated in hexagonal 
boron nitride flakes with thicknesses of about 10–30 nm. The devices are 
fabricated on SiO2/Si substrates. The conductance is measured with a 
voltage bias of 100 µ V while varying the local bottom gate voltage Vg.  
‘S’ and ‘D’ are the source and drain contacts, respectively. b, The moiré 
pattern as seen in TBG. The moiré wavelength is λ =  a/[2sin(θ/2)], where 
a =  0.246 nm is the lattice constant of graphene and θ is the twist angle.  
c, The band energy E of magic-angle (θ =  1.08°) TBG calculated using an 
ab initio tight-binding method. The bands shown in blue are the flat bands 
that we study. d, The mini Brillouin zone is constructed from the 
difference between the two K (or K′ ) wavevectors for the two layers. 

Hybridization occurs between Dirac cones within each valley, whereas 
intervalley processes are strongly suppressed. Ks, ′K s, Ms and Γ s denote 
points in the mini Brillouin zone. e–g, Illustration of the effect of interlayer 
hybridization for w =  0 (e), θ≪w ħv k2 0  (f) and 2w ≈   ħv0kθ (g); 
v0 =  106 m s− 1 is the Fermi velocity of graphene. h, Normalized local 
density of states (LDOS) calculated for the flat bands with E >   0 at 
θ =  1.08°. The electron density is strongly concentrated at the regions with 
AA stacking order, whereas it is mostly depleted at AB- and BA-stacked 
regions. See Extended Data Fig. 6 for the density of states versus energy at 
the same twist angle. i, Top view of a simplified model of the stacking 
order.
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exhibiting decreasing conductance with increasing temperature.  
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magnitude smaller than those of the superlattice gaps. At the lowest 
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puddles, resulting in deviation from the Arrhenius fit.

To confirm the existence of the half-filling states, we performed 
capacitance measurements on device D2 using an a.c. low- temperature 
capacitance bridge (Extended Data Fig. 2)23. The real and imaginary 
components of the a.c. measurement provide information about the 
change in capacitance and the loss tangent of the device, respectively. 
The latter signal is tied to the dissipation in the device due to its 
 resistance23. Device D2 exhibits a reduction in capacitance and strong 
enhancement of dissipation at ±  ns/2 (Fig. 3a), in agreement with an 
insulating phase that results from the suppression of the density of 
states. The insulating state at −  ns/2 is weaker and visible only in the 
dissipation data. The observation of capacitance reduction (that is, 
suppression of density of states) for only the n-side half-filling state in 
this device may be due to an asymmetric band structure or the quality 
of the device. The reduction (enhancement) in capacitance (dissipa-
tion) vanishes when the device is warmed up from 0.3 K to about 2 K, 
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Figure 1 | Electronic band structure of twisted bilayer graphene (TBG). 
a, Schematic of the TBG devices. The TBG is encapsulated in hexagonal 
boron nitride flakes with thicknesses of about 10–30 nm. The devices are 
fabricated on SiO2/Si substrates. The conductance is measured with a 
voltage bias of 100 µ V while varying the local bottom gate voltage Vg.  
‘S’ and ‘D’ are the source and drain contacts, respectively. b, The moiré 
pattern as seen in TBG. The moiré wavelength is λ =  a/[2sin(θ/2)], where 
a =  0.246 nm is the lattice constant of graphene and θ is the twist angle.  
c, The band energy E of magic-angle (θ =  1.08°) TBG calculated using an 
ab initio tight-binding method. The bands shown in blue are the flat bands 
that we study. d, The mini Brillouin zone is constructed from the 
difference between the two K (or K′ ) wavevectors for the two layers. 

Hybridization occurs between Dirac cones within each valley, whereas 
intervalley processes are strongly suppressed. Ks, ′K s, Ms and Γ s denote 
points in the mini Brillouin zone. e–g, Illustration of the effect of interlayer 
hybridization for w =  0 (e), θ≪w ħv k2 0  (f) and 2w ≈   ħv0kθ (g); 
v0 =  106 m s− 1 is the Fermi velocity of graphene. h, Normalized local 
density of states (LDOS) calculated for the flat bands with E >   0 at 
θ =  1.08°. The electron density is strongly concentrated at the regions with 
AA stacking order, whereas it is mostly depleted at AB- and BA-stacked 
regions. See Extended Data Fig. 6 for the density of states versus energy at 
the same twist angle. i, Top view of a simplified model of the stacking 
order.
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Quick Review of Moiré Bilayers
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Quick Review of Moiré Bilayers

H =
�

H+0 (−~∇) V(~r)
V†(~r) H−0 (−~∇)

�

Basis transformation

H′ =
�

H̃(−~∇) + |V(~r)| 0
0 H̃(−~∇) − |V(~r)|

�

+ O(H+0 − H−0 )

H̃(−~∇) = H+0 (−~∇) + H−0 (−~∇ + ~∇φ(~r)), V(~r) = eφ(~r)|V(~r)|

|V(~r)| works as effective potential!
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Quick Review of Moiré Bilayers
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Quick Review of Moiré Bilayers

large θ small θ

V(~r)|θ=θ1 ∼ V(α~r)|θ=θ2 , α =
L(θ2)

L(θ1)
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Moiré Bilayer: Theoretical Minimum

Scale transformation ~r → α~r
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moiré length ←→ balance between kinetic & potential energy
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Quantum Interference and Effective Tunneling
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Interference of Bloch wave functions has a

striking effect on the interlayer tunneling!
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Valley Physics
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Monolayer BC3
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Effective Tunneling
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0 = 0.30eV, r0 = 2.0Å
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Twisted Bilayer BC3
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Twisted Bilayer BC3
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“Big” Wannier functions

bilayer ~k · ~p model → one Wannier orbital per a “big” moire cell
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color: |upper(~r)|2+ |lower(~r)|2

lines: contour of |V ~k(~τ(~r))|
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Three Valleys
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Effective Tight-Binding Model
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Effective Tight-Binding Model
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t‖1 only model

t‖1 t⊥1

nested network of three decoupled triangular lattices
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t‖1 only model

nested network of three decoupled triangular lattices
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t‖1 only model

nested network of three decoupled triangular lattices
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Three Orbital (Three Valley) Hubbard Model

H = t‖1
∑

~rσ

3
∑

μ=1

c†~r+ ~eμ,μσc~r,μσ + h.c.

+ U
∑

~r

3
∑

μ=1

n~r,μ↑n~r,μ↓ + U′
∑

~r,σσ′

∑

μ<μ′
n~r,μσn~r,μ′σ′

U, U′: intra- and inter-orbital onsite repulsion

Hund and pair hopping terms: neglected

orbital

M1

M2

M3

hopping

~e1

~e2

~e3 U

U′
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Strongly Correlated Limit – BC3

allowed forbidden

Orbital (valley) dependent superexchange!

Kugel & Khomskii, Soviet Physics Uspekhi 25, 231 (1982).

FIG. 10. Scheme for superexchange in the nondegenerate case.
Shown here Is the energy increase due to virtual transitions of
an electron to a neighboring center. An antiparallel orienta-
tion of the spins is seen to be preferred from the energy stand-
point.

FIG. 11. Various possible types of overlay of eg orbitals at
neighboring centers, a—the overlap of single filled orbitals,
which leads to a strong antiferromagnetic exchange interaction;
b—the overlap of filled orbitals is zero. A filled orbital and
an empty orbital (dashed line) overlap, and the exchange is
accordingly ferromagnetic.

effect is that the overlap is an overlap not of the atomic
d wave functions but of their superposition with the s
and p wave functions of the ligands. Figure 10 shows
the essential features of superexchange for the case of
a single electron in a nondegenerate level. The two
most important factors are (1) the energy increase
which results from virtual transitions of electrons from
center to center and which is determined by the effec-
tive transition integral t, and (2) the Coulomb repulsion
of electrons at a common center, U. The usual relation
between these parameters in magnetic insulators is t
«U. We see that in case a) hops of electrons are for-
bidden by the Pauli principle, while in case b) they are
allowed, and there is an energy increase of -2t2/U,
which corresponds to a preferred antiferromagnetic
state. The effective exchange Hamiltonian is of the
Heisenberg form,

H H«i, = (12)

where {i, j) indicates a summation over nearest neigh-
bors. In oxides, we find t~ 0.1-0.3 eV in practice, and
U is of the order of the ionization energy, reduced for
screening effects (i.e., ~5 eV). We thus have a well-
defined perturbation theory in the parameter t/U^ 0.1.

The approach to the superexchange problem which
we have just outlined was proposed by Anderson, and it
is analogous to that used in constructing the Hubbard
model.24 The Hubbard model is used to describe the be-
havior of materials having narrow band gaps and is
based on the existence of a strong intraatomic interac-
tion of electrons. In the original formulation of Ref. 24,
the crystal was assumed to have a fixed lattice, and the
d electrons were approximated by strongly coupled non-
degenerate s states.

In the Hubbard model, the most important of the vari-
ous types of electron-electron interactions is taken into
account: the Coulomb repulsion of electrons at a com-
mon center. The corresponding Hamiltonian is

Ht+ -j- 2j ntoni-o.
i. o

(13)

where ajcr is the operator which creates an electron with
a spin a in a state with a Wannier function centered at
the i-th atom, H± describes the ordinary band energy,
and H0 describes the Coulomb repulsion of the elec-
trons.

Let us examine the properties of the Hubbard model
in the case in which there is a single electron at the
center, and we have U»t. The H0 ground state is a
state with localized electrons (there is one electron at

each of the N centers) which is 2"-fold degenerate in the
spins. The degeneracy is lifted in second-order pertur-
bation theory, and the corresponding energy increase is
determined by the effective Hamiltonian

*<«*.. (14)

Qualitatively, the picture is the same as that in Fig. 10,
and the ground state is antiferromagnetic. If the elec-
tron operators are expressed in terms of the spin op-
erators by the standard expressions,

ai<m = =*

OH «it = Si =S'—
(15)

the effective Hamiltonian in (14) can be put in the Heis-
enberg form in (12). The Anderson picture of superex-
change is thus described completely by the Hubbard
model in the limit t«U.

For real materials it is necessary to consider the
presence of other levels and the particular symmetry
of the corresponding wave functions [this symmetry de-
termines the magnitude of the overlap integral t in Eqs.
(13) and (14)]. There may be a situation in which orbi-
tals containing single electrons overlap strongly for ad-
jacent ions [Fig. 11 (a)]; in this case the exchange is anti-
ferromagnetic and is described accurately by (12).
However, there may also be cases of a zero overlap of
filled orbitals (Fig. lib) but a large overlap of a filled
orbital at one center with a vacant orbital at an adjacent
center. In order to lift the spin degeneracy in this case
it is necessary to consider the intraatomic exchange in-
teraction <VS

1S2 (here the subscripts 1 and 2 designate
the orbital at one ion, and JH>0), which leads to
Hund's rule (configurations with parallel spins are pre-
ferred). In this case the spin degeneracy is lifted in the
next order of perturbation theory, and it is of a ferro-
magnetic nature [Figs. 12(c) and 12(d)], with an exchange
integral J~(t2/U)JH/U (in practice, J^~0.5-l eV<U).

These arguments explain the empirical Goodenough-

T + + + -1- ± - +
V U-JH

FIG. 12. Superexchange in the case of twofold-degenerate
orbitals. Shown here Is the energy increase if only diagonal
transitions are possible (fu =<22 +*> *i2 = 0). Intraatomic (Hund)
exchange is also taken into account.

238 Sov. Phys. Usp. 25(4), April 1982 K. I. Kugel' and D. I. Khomskii 238
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Spin-Orbital Model

t� U,U′ at one electron per moire unit (1/6 filling)

local basis: |σ〉 ⊗ |τ〉 (σ =↑, ↓, τ =M1,M2,M3)

Heff = J
∑

~r

3
∑

μ=1

�

~S(~r + ~eμ) · ~S(~r) −
1

4

�

τ̃μ(~r + ~eμ)τ̃μ(~r)

− V
∑

~r

∑

μ 6=μ′

�

τ̃μ′(~r + ~eμ)τ̃μ(~r) + τ̃μ′(~r − ~eμ)τ̃μ(~r)
�

J =
4t2

U
, V =

t2

U′
, (τ̃)j = δδj

variant of Kugel-Khomskii model

orbital degrees of freedom: classical and frozen
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Eigenstate (1)

Ferro-orbital order - FOO

decoupled spin-1/2 chains

Eper site = (−0.4431 − 0.25)J

∼ −2.8
t2

U
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Eigenstate (2)

Fully antiferro-orbital order - FAOO

(−V) × 2 per site

Eper site = −2V = −
2t2

U′
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Eigenstate (2)

Fully antiferro-orbital order - FAOO

(−V) × 2 per site

Eper site = −2V = −
2t2

U′

Macroscopic number of degeneracy!
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Eigenstate (3)

Dimer covering - DC

−J per singlet
(−V) × 2 per dimer

Eper site = −
J

2
− V = −

2t2

U
−
t2

U′



2328 Nov 2022, NQS2022

Eigenstate (3)

Dimer covering - DC

−J per singlet
(−V) × 2 per dimer

Eper site = −
J

2
− V = −

2t2

U
−
t2

U′

Macroscopic number of degeneracy!



2428 Nov 2022, NQS2022

“Phase Diagram”

U

U′
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Rough Estimation of U and U′

U = αα, U′ = αα′ (α 6= α′)

αα′ =
∫

d2~r

∫

d2~r′ρα(~r)V(~r − ~r′)ρα′(~r′) =
1

(2π)2

∫

d2 ~qρα,~qV~qρα′,− ~q

ƒ~q =
∫

d2~re−~q·~r ƒ (~r)

ρα(~r) = |(α)upper
(~r)|2 + |(α)lower(~r)|

2

bare Coulomb interaction

V~q =
2πk0e2

ε̄q
, k0 =

1

4πε0
, ε̄ =

ε

ε0

screening by metallic gates at z = ±dgate

V~q =
2πk0e2

ε̄q
tnh(qdgate)
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U vs U′ vs W
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Summary

monolayer BC3: 3 valley system

twisted bilayer BC3: valley dependent quasi-1D bands

valleytronics

unique model in strongly correlated limit

BC3

B
C

monolayer twisted�bilayer

2D,�three�
valleys

quasi-1D,��
valleywise
exotic�phases�with�
strong�correlation

arXiv:2206.14835
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Materials: BC3 and C3N

H. Wang et al., J. Appl. Phys. 126, 234302 (2019).
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Experiment: BC3

H. Tanaka et al., Solid State Commun. 136, 22 (2005).
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Experiment: BC3

H. Tanaka et al., Solid State Commun. 136, 22 (2005).
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Effective Tunneling and Layer Degeneracy Lifting

target

layer
doubling

interlayer hopping

gap & energy shift

Δ ~k(~τ)

depend on ~τ!

Δ ~k(~τ) = |V ~k(~τ)|, V(~r) = V ~k(~τ(~r))
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Degeneracy Lifting
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