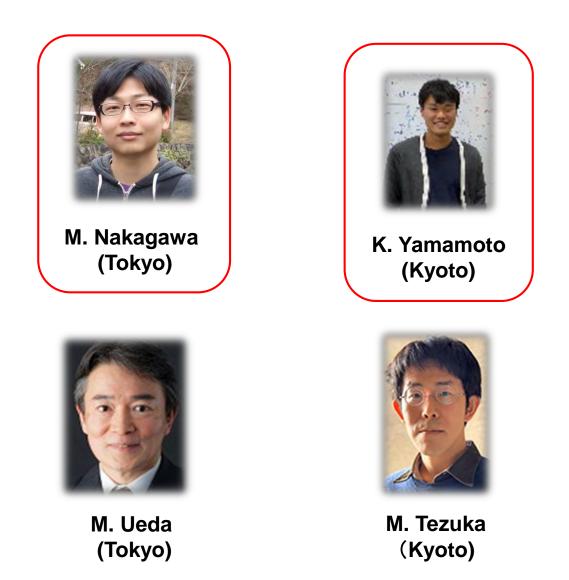
Critical Properties of Non-Hermitian Correlated Systems

Norio Kawakami Kyoto University

NQS2022@Kyoto Dec.2, 2022

Collaborators:



Introduction

Hermitian or non-Hermitian

Closed quantum (many-body) systems

Unitary evolution

described by Hermitian Hamiltonian

♦ Open quantum (many-body) systems

Dissipative environment Life time

Gain & loss, etc

Naïvely

Systems with dissipative environment Effective non-Hermitian description ?

Effective non-Hermitian description

Vortex depinning phenomena in superconductors *N. Hatano and D. Nelson, PRL (1996)*

Breakdown of a Mott isnulator *T. Fukui and N. Kawakami PRB(1998)*

Open quantum systems

C. M. Bender and S. Boettcher, PRL (1998) (PT symmetry) Y. Ashida, S. Furukawa, and M. Ueda, Nat. Commun (2017) K. Kawabata, Y. Ashida, H. Katsura and M. Ueda, PRB (2018)...etc.

PT symmetric systems: Experiments

A. Guo and G. J. Salamo, PRL (2009)

C. E. Ruter et al. Nat. Phys. (2010)

A. Regensburger et al. Nature (2010), L. Xiao et al (2017), ... etc.

◆Non-Hermitian topological phases

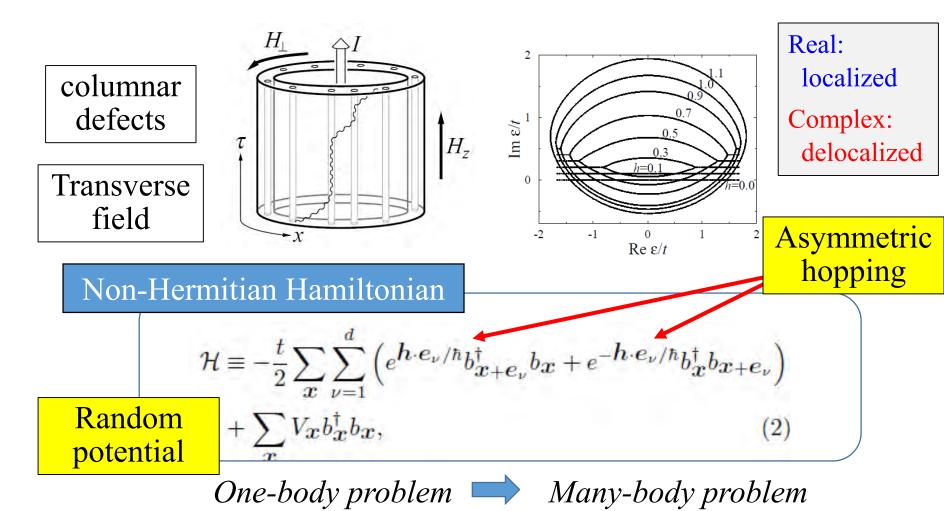
K. Esaki, M. Sato, K. Hasebe and M. Kohmoto, PRB(2011), etc

◆ Non-Hermitian perspective of correlated systems *V. Kozii and Liang Fu (2017), Yoshida et al (2018), etc.*

Localization transitions in non-Hermitian quantum mechanics

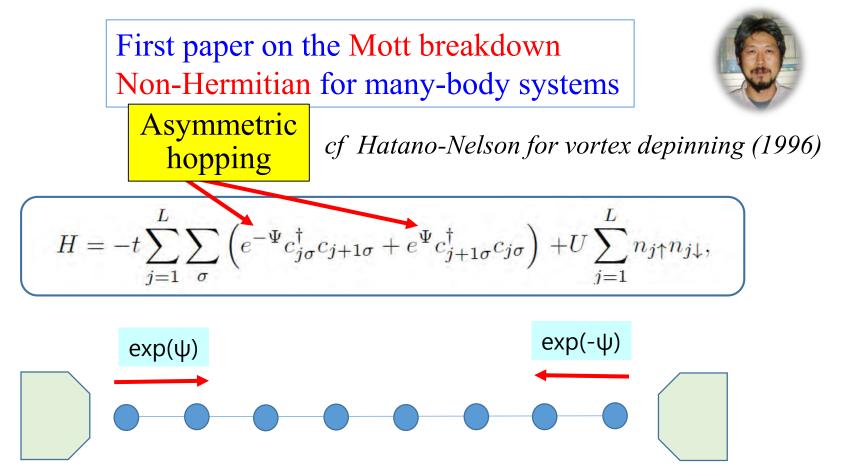
N. Hatano and D. Nelson, Phys. Rev. Lett. 77, 58 (1996)

Vortex: Pinning-depinning transition in superconductors



Breakdown of a Mott insulator: Exact solution of non-Hermitian Hubbard model

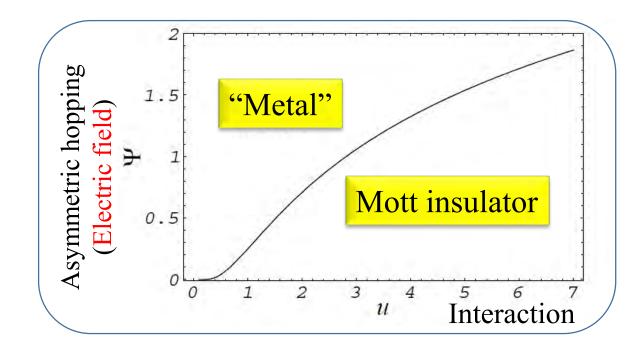
T. Fukui and NK, Phys. Rev. B58, 16051 (1998)



Oka-Aoki (2010) showed that this breakdown effectively describes Dielectric breakdown by electric field!

Breakdown of a Mott insulator: Exact solution of non-Hermitian Hubbard model

T. Fukui and NK, Phys. Rev. B58, 16051 (1998)



"Dielectric breakdown of one-dimensional Mott insulators Sr₂CuO₃ and SrCuO₂" Y. Taguchi, T. Matsumoto, and Y. Tokura, *Phys. Rev. B62, 7015-7018 (2000).*

Few studies for 20 years: Correlation Effects on Non-Hermitian Systems addressed again recently !

Critical Properties of Non-Hermitian Correlated Systems

Contents

PART I

1. Non-Hermitian Kondo effect *Prototype of many-body non-Hermitian systems*

M. Nakagawa et al. PRL 121, 203001(2018)

PART II

2. Non-Hermitian Tomonaga-Luttinger liquids *Quantum XXZ spin chain*

K. Yamamoto et al. PRB 105, 205125(2022)

PART III

2. SU(N) Generalization of Dissipative TL liquids *Haldane's "ideal gas" approach K. Yamamoto et al. arXiv:2207.04395*

Non-Hermitian Kondo effect in ultracold atoms

Kondo Effect

Paradigmatic example of quantum many-body physics
 A localized impurity spin coupled with free fermions

$$H = \sum_{\boldsymbol{k},\sigma} \varepsilon(\boldsymbol{k}) c^{\dagger}_{\boldsymbol{k}\sigma} c_{\boldsymbol{k}\sigma} - J \boldsymbol{S}_{c0} \cdot \boldsymbol{S}_{imp}$$

Kondo model

[J. Kondo, Prog. Theor. Phys. 32, 37 (1964)]

Kondo temperature $T_K = D\sqrt{|\rho_0 J|} \exp\left[\frac{1}{\rho_0 J}\right]$

free fermions

impurity

spin

antiferro. spin exchange
$$(J < 0)$$

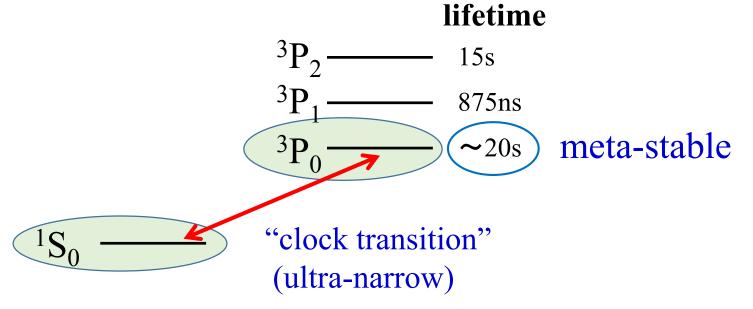
Kondo singlet

Ubiquitous phenomenon ✓ Dilute magnetic impurities
✓ Heavy fermions
✓ Quantum dots
✓ Cold atoms

Alkaline-earth cold atoms

• Two electrons in the outer shell (Ca, Yb, Sr) $^{2S+1}L_J$

electronic ground state: ${}^{1}S_{0}$ excited state: ${}^{3}P_{0} \rightarrow$ meta-stable : "higher-orbital state" $(J=0 \rightarrow J=0$: forbidden)



Kondo Effect: Ultracold Atoms

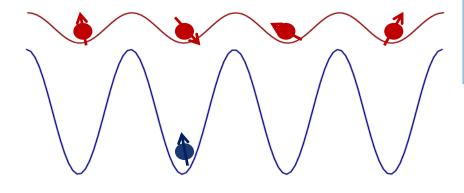
Kondo effect in ultracold atoms?

Most promising candidate: alkaline-earth (¹⁷¹Yb, ¹⁷³Yb, ⁸⁷Sr)

[Gorshkov et al, Nat. Phys. (2010)]

 $\bigcirc \textbf{Atomic ground state (}^{1}S_{0}) \longrightarrow \textbf{conduction electrons} \\ \bigcirc \textbf{Metastable excited state (}^{3}P_{0}) \longrightarrow \textbf{localized impurity} \\ (spin degrees of freedom : nuclear spin)$

■ Difference of polarizability → state-dependent lattice

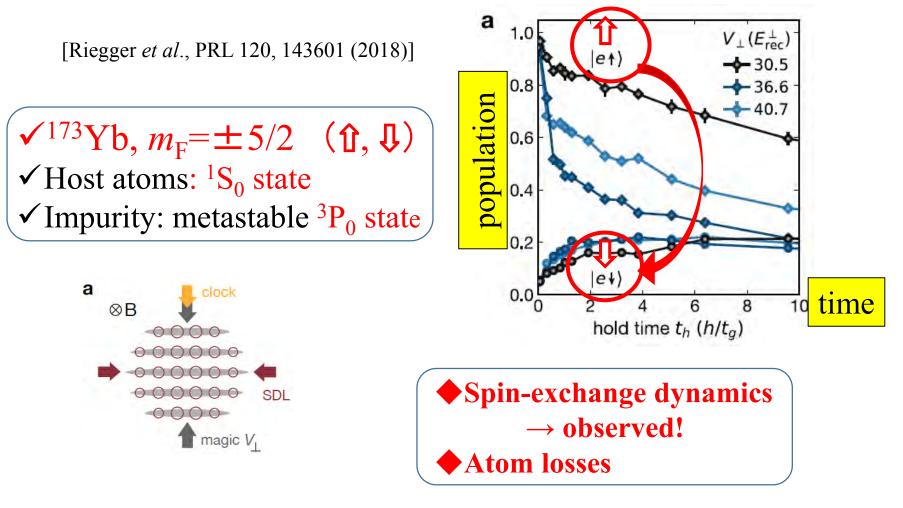


¹S₀ state (g) : shallow lattice \rightarrow "conduction electrons"

³ P_0 state (e) : deep lattice \rightarrow "localized impurity"

Kondo Effect: Ultracold Atoms

Experimental realization of the "Kondo Hamiltonian"



Problem: Kondo effect with atom losses

Message of this part

Quantum many-body physics with inelastic collisions

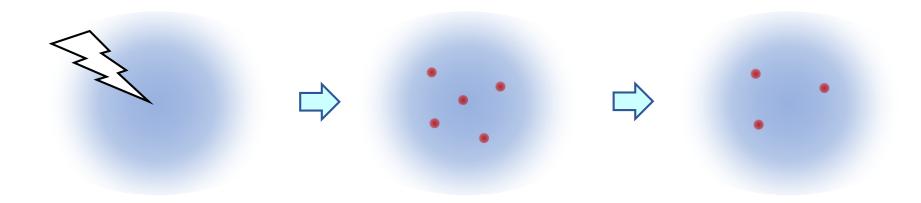
Atom loss: formulated as an open quantum system → emergence of <u>non-Hermitian Hamiltonians</u>

Quantum many-body physics with non-Hermitian Hamiltonians

Non-Hermitian generalization of the Kondo effect

Setup

Excitations to ${}^{3}P_{0}$ state (clock transition)



Equilibrium gas of Yb (or Sr) All atoms are in ¹S₀ state ³P₀ state as impurities
: Kondo system

Some impurities are lost due to inelastic collisions

Measurement of the "surviving" impurities

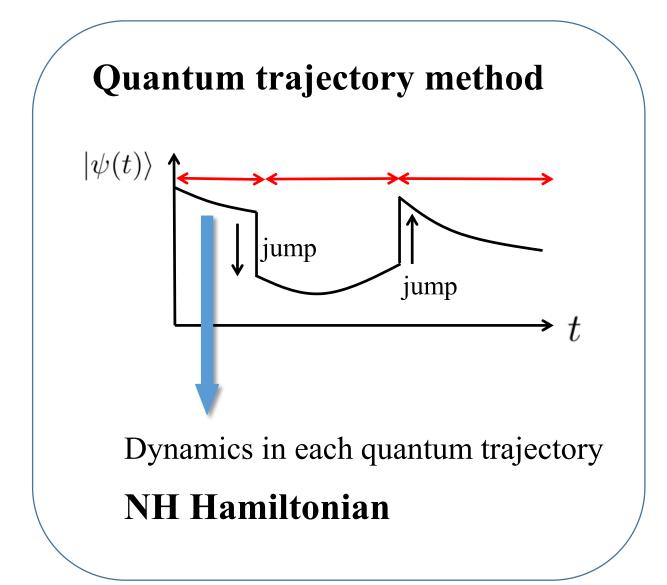
Non-Hermitian Kondo effect

Non-Hermitian Kondo Model

• Atom loss \rightarrow described by a quantum master equation

[See e.g. Daley, Adv. Phys. 63, 77 (2014)]

Non-Hermitian Hamiltonian : Dynamics between loss events



Non-Hermitian Kondo Model

• Atom loss \rightarrow described by a quantum master equation

[See e.g. Daley, Adv. Phys. 63, 77 (2014)]

$$\frac{d\rho(t)}{dt} = -i[H,\rho] + \sum_{\alpha=\pm,\uparrow\uparrow,\downarrow\downarrow} (L_{\alpha}\rho L_{\alpha}^{\dagger} - \frac{1}{2}\{L_{\alpha}^{\dagger}L_{\alpha},\rho\})$$

$$= -i(H_{\text{eff}}\rho - \rho H_{\text{eff}}^{\dagger}) + \sum_{\alpha=\pm,\uparrow\uparrow,\downarrow\downarrow} L_{\alpha}\rho L_{\alpha}^{\dagger} \qquad \text{Two-body loss event} \\ : \text{ change the particle } \#$$

Non-Hermitian Hamiltonian : Dynamics between loss events

Our interest: "surviving" impurity (projection to lossless dynamics) → Dynamics is described by the non-Hermitian Hamiltonian!

Non-Hermitian Kondo Hamiltonian!
$$H_{\text{eff}} = H - \frac{i}{2} \sum_{\alpha} L_{\alpha}^{\dagger} L_{\alpha} = \sum_{k,\sigma} \varepsilon(k) c_{k\sigma}^{\dagger} c_{k\sigma} - J S_{c0} \cdot S_{\text{imp}}$$
Imaginary int. by "backaction" of projection

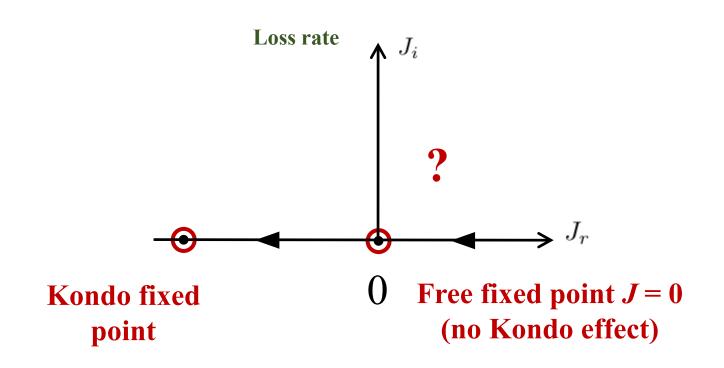
Renormalization group

First approach: renormalization group

$$\frac{dJ}{d\ell} = -\rho_0 J^2 - \frac{\rho_0^2}{2} J^3$$
$$(J = J_r + iJ_i)$$

(ρ_0 : DOS at the Fermi energy)

[Nozières-Blandin, J. Phys. 41, 193 (1980)]



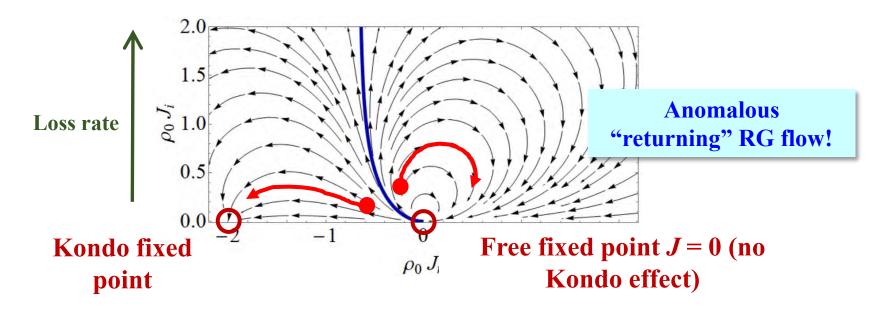
Renormalization group

First approach: renormalization group

$$\frac{dJ}{d\ell} = -\rho_0 J^2 - \frac{\rho_0^2}{2} J^3$$
$$(J = J_r + iJ_i)$$

(ρ_0 : DOS at the Fermi energy)

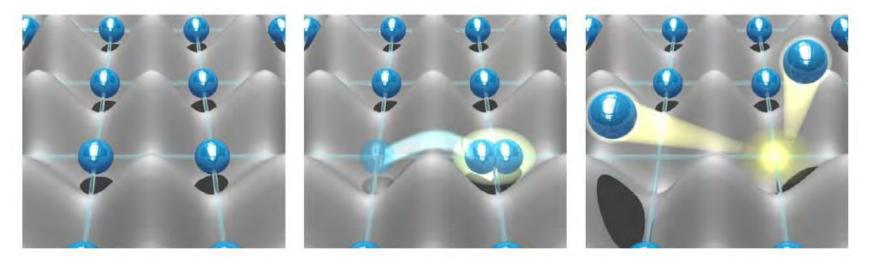
[Nozières-Blandin, J. Phys. 41, 193 (1980)]



Non-Hermitian quantum phase transition induced by inelastic scattering

Physical interpretation: Quantum Zeno effect

Physical picture of the non-Hermitian quantum phase transition → (continuous) quantum Zeno effect



[Tomita et al., Sci. Adv. 3, e1701513 (2017)]

Particle loss induces effective "repulsion"

 \rightarrow destruction of Kondo singlet

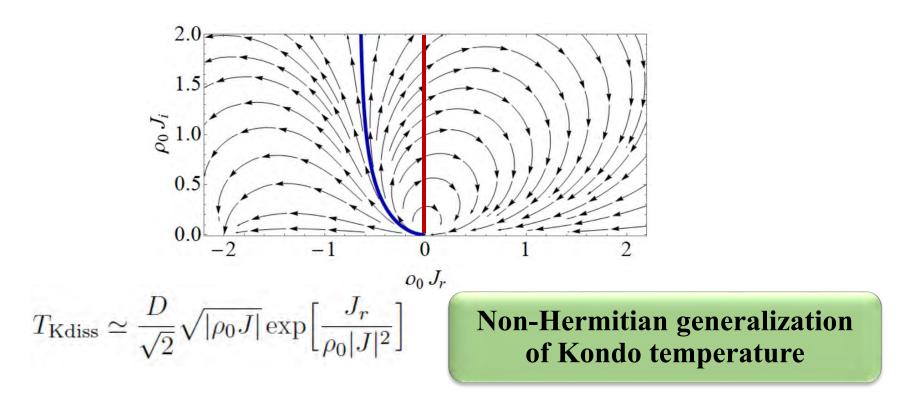
Competition between Kondo effect & quantum Zeno effect

Energy scale

■ Non-Hermitian renormalization group

Define characteristic scale : $J_r(T_{\text{Kdiss}}) = 0$

"reversion" in RG flow



Bethe ansatz exact solution

To confirm the RG prediction: Exact solution of the non-Hermitian Kondo Hamiltonian

Non-Hermitian generalization of Bethe ansatz

[Andrei, PRL (1980), Wiegmann, J. Phys. C (1981)]

$$e^{ik_jL} = e^{-i\pi\rho_0 J/2} \prod_{\alpha=1}^M \frac{\lambda_\alpha + i/2}{\lambda_\alpha - i/2} \quad (j = 1, \cdots, N),$$
$$\left(\frac{\lambda_\alpha + i/2}{\lambda_\alpha - i/2}\right)^N \left(\frac{\lambda_\alpha + 1/g + i/2}{\lambda_\alpha + 1/g - i/2}\right) = -\prod_{\beta=1}^M \frac{\lambda_\alpha - \lambda_\beta + i}{\lambda_\alpha - \lambda_\beta - i} \quad (\alpha = 1, \cdots, M),$$

 $g = -\tan(\pi\rho_0 J)$

$$k_j \ (j=1,\cdots,N)$$

- : momenta of conduction fermions (*N*: # of particles)
- $\lambda_{\alpha} \ (\alpha = 1, \cdots, M)$
- : "spin rapidity" of ↓ spin electrons (*M*: # of ↓ spins)

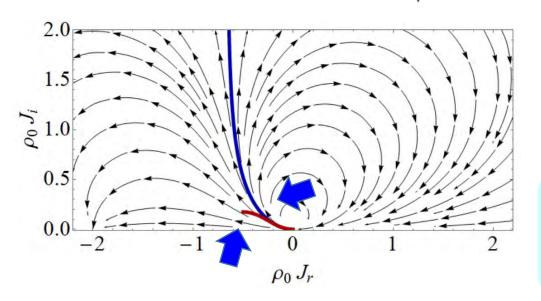
Bethe ansatz exact solution

Impurity magnetization M_i Bethe-ansatz solution of the ground state

> • $|\text{Im}(1/\tan(\pi\rho_0 J))| < 1/2$ $\implies M_i = 0$ Kondo singlet solution

•
$$|\text{Im}(1/\tan(\pi\rho_0 J))| > 1/2$$

 $\implies M_i = 1/2$ Non-Kondo solution!!



Blue: critical line by RG Red: critical line by Bethe ansatz

Good agreement between RG & Bethe ansatz in the weak-coupling regime Kondo effect in ultracold alkaline-earth atoms
 → Non-Hermitian generalization of the Kondo problem

Non-Hermitian Kondo effect

✓ Transition from Kondo to non-Kondo @ critical inelastic scattering
 ✓ Non-Hermitian phase transition → no analog in equilibrium systems
 ✓ Exact solution by Bethe ansatz

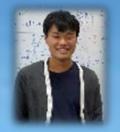
Prototypical Example of Non-Hermitian Correlated Phenomena

Reference:

M. Nakagawa, N. K., and M. Ueda, PRL (2018)

PARTII

Universal Properties of Dissipative Tomonaga-Luttinger Liquids



K. Yamamoto M. Nakagawa

• K. Yamamoto et al. PRB 105, 205125(2022)

Universal properties of 1D dissipative systems

Question addressed in this section

ID quantum critical systems: Hermitian (Unitary) well understood by Conformal Field Theory

Ex.Spin chain, Hubabrd model, etcTomonaga-Luttinger liquid $c=1 \ CFT$

How about the Non-Unitary (Non-Hermitian) case ?

Some problems are well understood

Ex. Yang–Lee edge singularity in Ising model **Negative** central charge: $c = -\frac{22}{5}$ $c_{eff} = c - 24\Delta$ $c_{eff} = \frac{2}{5}$

Little is known for CFT with complex energy spectrum

Universal properties of 1D dissipative systems

Message in this section

Dissipative Tomonaga-Luttinger liquid

Non-Hermitian XXZ spin chain

Complex energy spectrum

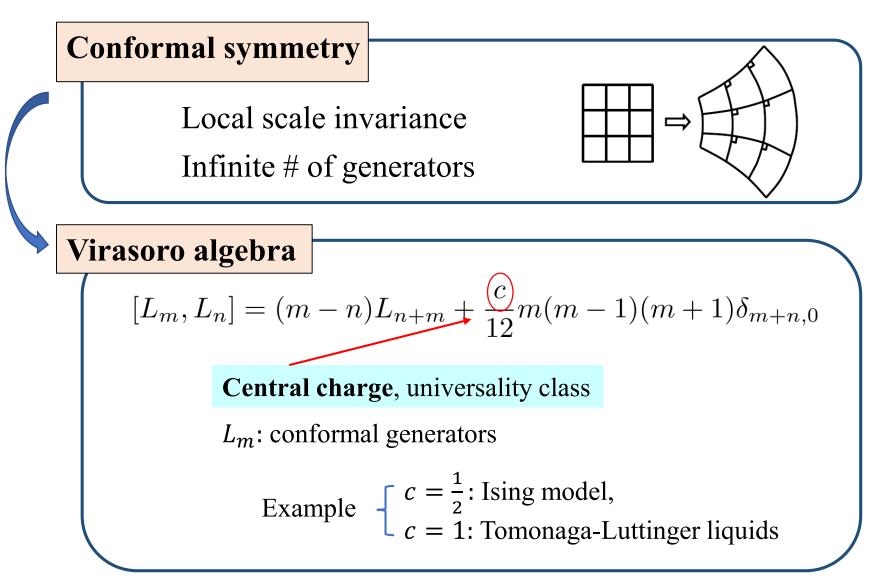
We find

Complex generalization of c=1 CFT

Conformal tower for complex spectrum

Universal properties for correlation functions

Critical phenomena in 1+1 dimensions



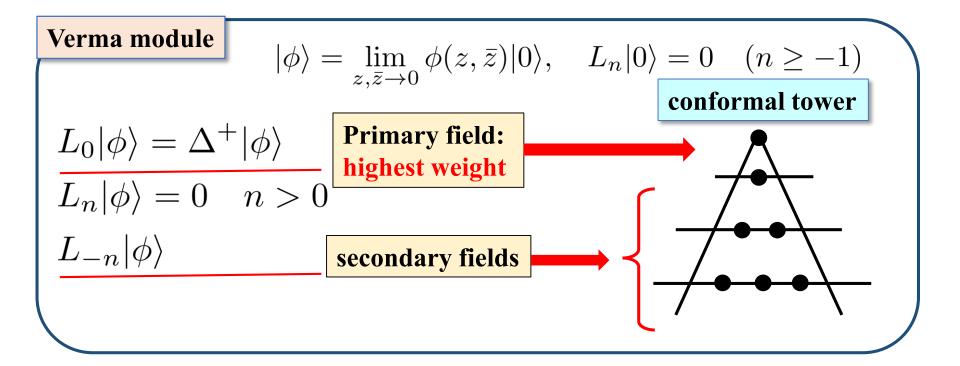
Primary field

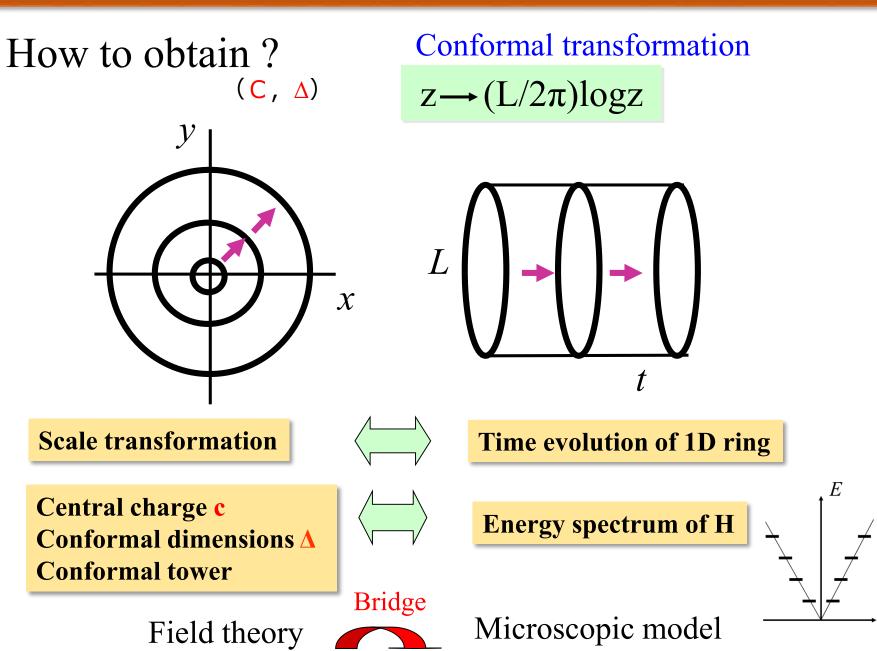
$$\phi(z,\bar{z}) = \left(\frac{dw}{dz}\right)^{\Delta^+} \left(\frac{d\bar{w}}{d\bar{z}}\right)^{\Delta^-} \tilde{\phi}(w,\bar{w})$$

Correlation function

$$\langle \phi(z,\bar{z})\phi(z',\bar{z}')\rangle = |z-z'|^{-2\Delta^+}|\bar{z}-\bar{z}'|^{-2\Delta^-}$$

 Δ^+ , Δ^- : Conformal dimensions

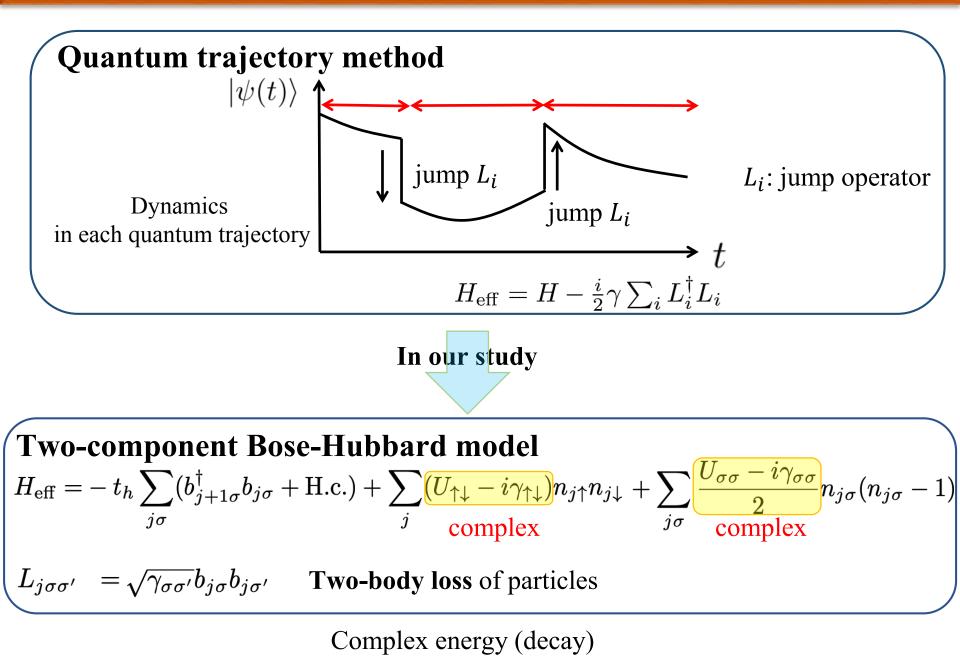




k

Non-Hermitian XXZ Model

Ultracold gas with two-body dissipation



Ultracold gas with two-body dissipation

1D two-component Bose-Hubbard model + Two-body loss

 $U_{\sigma\sigma'} \gg t_h$

$$H_{\text{eff}} = -t_h \sum_{j\sigma} (b_{j+1\sigma}^{\dagger} b_{j\sigma} + \text{H.c.}) + \sum_j (U_{\uparrow\downarrow} - i\gamma_{\uparrow\downarrow}) n_{j\uparrow} n_{j\downarrow} + \sum_{j\sigma} \frac{U_{\sigma\sigma} - i\gamma_{\sigma\sigma}}{2} n_{j\sigma} (n_{j\sigma} - 1)$$

Strongly correlated regime Second-order perturbation theory

NH XXZ model ($J_{eff}^{\perp} < \mathbf{0}$ **)** $H_{\text{eff}} = (J_{\text{eff}}^{\perp} + i\Gamma^{\perp}) \sum_{i} (S_{j+1}^{x}S_{j}^{x} + S_{j+1}^{y}S_{j}^{y} + \Delta_{\gamma}S_{j+1}^{z}S_{j}^{z})$

We see the **longest surviving state** in the long-time limit (**largest imaginary part** of energy)

complex

NH XXZ model (**J** > **0**)

$$H_{\text{eff}}^{\text{XXZ}} = \frac{J}{2} \sum_{j} (S_{j+1}^{+} S_{j}^{-} + S_{j+1}^{-} S_{j}^{+}) + J \Delta_{\gamma} \sum_{j} S_{j+1}^{z} S_{j}^{z}$$

Ground state with the smallest real part of energy

We seek for universal properties (correlation functions, finite-size scaling)

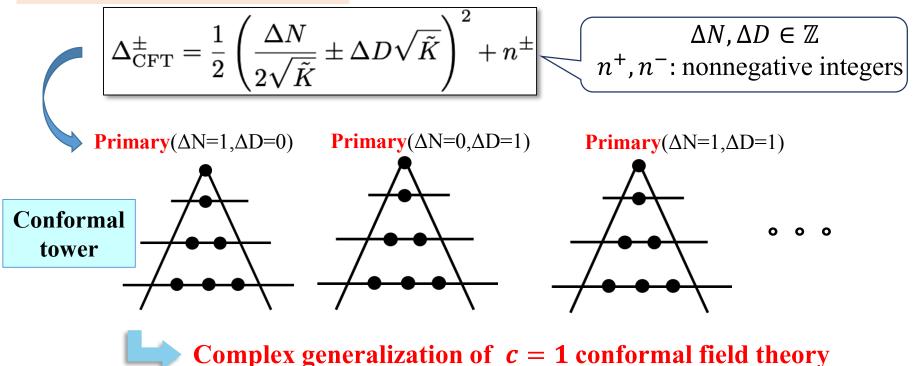
Finite-size scaling analysis in CFT

CFT analysis of excitation spectra

Excitation energy in a finite system

$$\Delta E_{\text{PBC}} = \frac{2\pi \tilde{u}}{L} \left[\frac{1}{4\tilde{k}} (\Delta N)^2 + \tilde{k} (\Delta D)^2 + n^+ + n^- \right] \qquad \frac{\text{PBC}}{\tilde{u}}$$
• Complex velocity \tilde{u} • Complex TL parameter \tilde{K}

Conformal dimensions



Finite-size scaling analysis in CFT

CFT analysis of excitation spectra

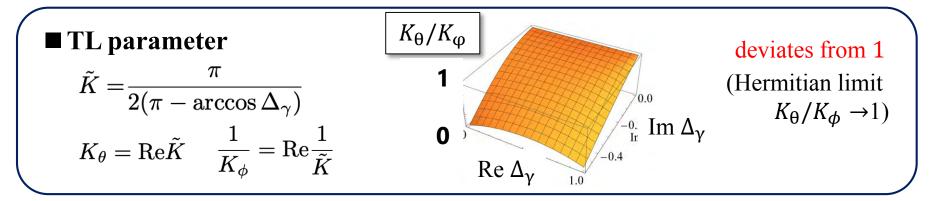
Excitation energy in a finite system

$$\Delta E_{\text{PBC}} = \frac{2\pi \tilde{u}}{L} \left[\frac{1}{4\tilde{k}} (\Delta N)^2 + \tilde{k} (\Delta D)^2 + n^+ + n^- \right] \qquad \frac{\text{PBC}}{\tilde{u}}$$
• Complex velocity \tilde{u} • Complex TL parameter \tilde{K}

Conformal dimensions

$$\Delta_{\rm CFT}^{\pm} = \frac{1}{2} \left(\frac{\Delta N}{2\sqrt{\tilde{K}}} \pm \Delta D\sqrt{\tilde{K}} \right)^2 + n^{\pm} \qquad \qquad \Delta N, \Delta D \in \mathbb{Z}$$
$$n^+, n^-: \text{ nonnegative integers}$$

CFT analysis with the Bethe ansatz



Correlation functions

NH XXZ model

$$H_{\text{eff}}^{\text{XXZ}} = \frac{J}{2} \sum_{j} (S_{j+1}^{+} S_{j}^{-} + S_{j+1}^{-} S_{j}^{+}) + J \Delta_{\gamma} \sum_{j} S_{j+1}^{z} S_{j}^{z}$$
Long-distance behavior

Bosonization

$$S^{z}(x) = -\frac{1}{\pi} \nabla \phi(x) + \frac{(-1)^{x}}{\pi \alpha} \cos(2\phi(x)),$$

Bosonic fields
with commutation relations
$$S^{+}(x) = \frac{e^{-i\theta(x)}}{\sqrt{2\pi\alpha}} \left((-1)^{x} + \cos(2\phi(x)) \right),$$

$$[\phi(x_{1}), \nabla \theta(x_{2})] = i\pi \delta(x_{2} - x_{1})$$

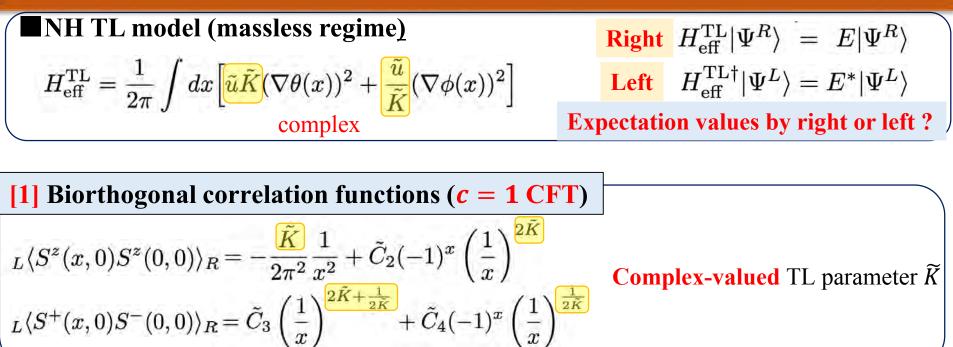
NH Sine-Gordon Hamiltonian complex $H_{\text{eff}}^{\text{sG}} = H_{\text{eff}}^{\text{TL}} - \frac{2\tilde{g}_3}{(2\pi\alpha)^2} \int dx \cos(4\phi(x))$

NH Tomonaga-Luttinger Hamiltonian (Gaussian)

$$H_{\text{eff}}^{\text{TL}} = \frac{1}{2\pi} \int dx \left[\frac{\tilde{u}\tilde{K}}{\tilde{u}\tilde{K}} (\nabla\theta(x))^2 + \frac{\tilde{u}}{\tilde{K}} (\nabla\phi(x))^2 \right]$$

In the massless regime, the model is described by the NH TL Hamiltonian

Correlation functions



 ${}_{R}\langle S^{z}(x)S^{z}(0)\rangle_{R} = -\frac{K_{\phi}}{2\pi^{2}}\frac{1}{x^{2}} + C_{2}(-1)^{x}\left(\frac{1}{x}\right)^{2K_{\phi}} \qquad \text{Real part of (the reciprocal of) } \tilde{K}$ ${}_{R}\langle S^{+}(x)S^{-}(0)\rangle_{R} = C_{3}\left(\frac{1}{x}\right)^{2K_{\phi}+\frac{1}{2K_{\theta}}} + C_{4}(-1)^{x}\left(\frac{1}{x}\right)^{\frac{1}{2K_{\theta}}} \qquad \qquad \frac{1}{K_{\phi}} = \operatorname{Re}\frac{1}{\tilde{K}}$ $K_{\theta} = \operatorname{Re}\tilde{K}$ $C_{f} \text{ Ashida et al. (2016)}$

[2] Right-state correlation functions (observable)

Both correlation functions are characterized by the **complex-valued TL parameter** \tilde{K}

NH-DMRG results

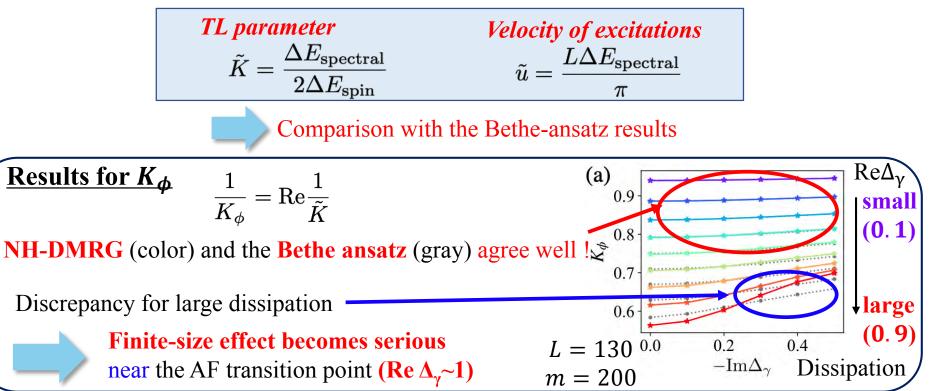
<u>NH-DMRG algorithm</u>

Density matrix for truncation of eigenstates

$$ho_i = rac{1}{2} \widehat{ ext{Tr}} \left\{ |\psi_i
angle_{LL} \langle \psi_i | + |\psi_i
angle_{RR} \langle \psi_i |
ight\}$$

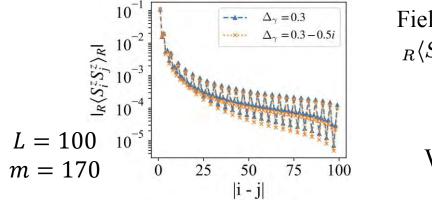
We apply this algorithm to **open quantum systems**

TL parameter: calculating ΔE_{spin} (spin change) and $\Delta E_{spectral}$ (spin conserved)



NH-DMRG results

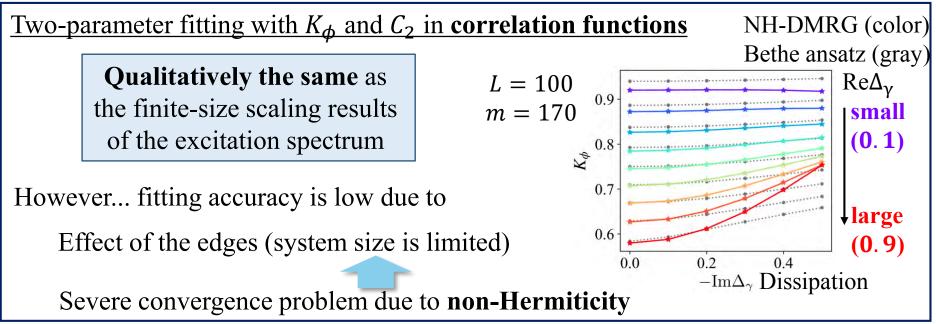
NH-DMRG results of correlation functions



Field theory

$$_{R}\langle S^{z}(x)S^{z}(0)\rangle_{R} = -\frac{K_{\phi}}{2\pi^{2}}\frac{1}{x^{2}} + C_{2}(-1)^{x}\left(\frac{1}{x}\right)^{2K_{\phi}}$$

We perform the fitting for K_{ϕ} and C_2



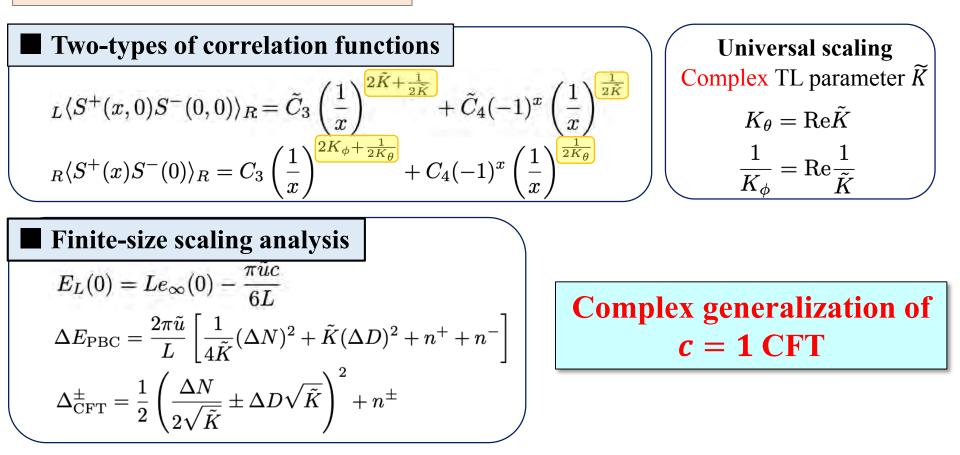
NH-DMRG agree rather well with the analytical results !

Summary of Part II

• Universal Properties of Dissipative Tomonaga-Luttinger liquid

Non-unitary CFT with complex spectra: little is known

• Model : NH XXZ model



PARTIII

SU(N) Generalization of Dissipative Tomonaga-Luttinger Liquids

Generalization to SU(N) spin symmetry

Experimental advances in **ultracold atoms** with **SU(N) symmetry** e.g. SU(N) Hubbard models

Universal properties with SU(N) symmetry

Haldane's ideal-gas description

- Powerful method to obtain universal properties of 1D critical systems
- Critical properties of SU(N) Hubbard models can be extracted

In our study

NH SU(N) Calogero-Sutherland modelHa and Haldane PRB 1992 $H_{\text{eff}} = -\frac{1}{2} \sum_{i=1}^{M} \frac{\partial^2}{\partial x_i^2} + \sum_{i < j} D(x_i - x_j)^{-2} \tilde{\lambda'} (\tilde{\lambda'} + P_{ij}^{\sigma})$ spin exchange operator I/x^2 long-range interaction

"Ideal gas description" of universal properties in 1D

Ideal-gas description

Single-component case

Sutherland, 1971

$$H_{\text{eff}} = -\sum_{j=1}^{M} \frac{\partial^2}{\partial x_j^2} + \sum_{j>l} V(x_j - x_l) \qquad \begin{bmatrix} V(x) = \frac{\tilde{g}\pi^2}{L^2} \left[\sin\left(\frac{\pi x}{L}\right) \right]^{-2} \\ 1/x^2 \text{ interaction} \end{bmatrix}$$

$$\frac{\textbf{Ground state}}{\Psi_g = \prod_{j>l} \left| \sin\frac{\pi(x_j - x_l)}{L} \right|^{\tilde{\lambda} - s} \left(\sin\frac{\pi(x_j - x_l)}{L} \right)^s \text{ s=1 fermion, s=0 boson}$$

Two-body phase shift $\theta(k) = \pi(\tilde{\lambda} - 1)\operatorname{sgn}^*(k)$

Step-function two-body phase shift $\theta(k)$:

Haldane, 1991

Interaction effect : level repulsion λ " Ideal gas" obeying

"Fractional exclusion statistics"

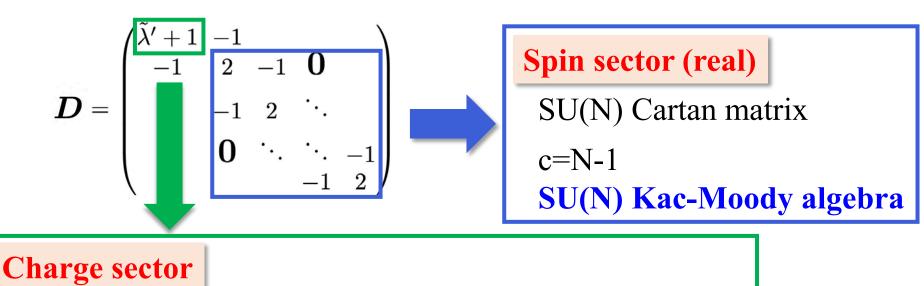
Universal properties in 1D quantum many-body systems

Ideal-gas description

Excitation energy: SU(N) model

Ideal gas approach $\Delta E = (\pi \tilde{v}/L)(\boldsymbol{m}^{t}\boldsymbol{D}\boldsymbol{m}/2 + 2\boldsymbol{d}^{t}\boldsymbol{D}^{-1}\boldsymbol{d})$

d, *m* : quantum numbers



Complex generalization of c=1 U(1) Gaussian CFT

NH generalization of spin-charge separation

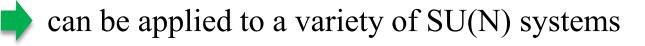
Critical exponents

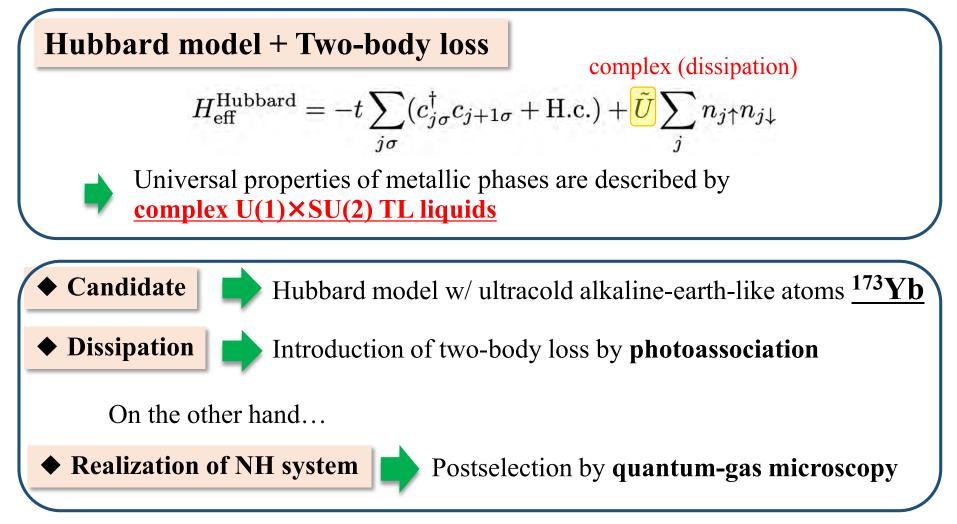
Two-kinds of parameters for charge sector $\left| \begin{array}{c} rac{1}{K_{
ho}^{\phi}} = \operatorname{Re} \left| rac{1}{ ilde{K}_{
ho}}
ight| \quad K_{
ho}^{ heta} = \operatorname{Re}[ilde{K}_{
ho}] \end{array}
ight|$ **Dissipation** only affects the **charge exponent Charge-density correlator** N $\beta_{j} = \frac{2(N-j+1)(j-1)}{N} + \frac{2(N-j+1)^{2}}{N} K_{\rho}^{\phi}$ **Fermion correlator Boson correlator** $_R \langle b^{\dagger}_{\sigma}(x) b_{\sigma}(0) \rangle_R \simeq B_1 x^{-\eta_B}$ $_R \langle c_{\sigma}^{\dagger}(x) c_{\sigma}(0) \rangle_R \simeq C_1 \cos(k_F x) x^{-\eta_F}$ $\eta_F = rac{N-1}{N} + \left[rac{1}{2NK_{
m o}^{ heta}} + rac{K_{
m
ho}^{\phi}}{2N}
ight]$ $\eta_B = \frac{N-1}{2N} + \frac{1}{2NK^{\theta}}$

Dissipation effects are described by two **real TL parameters**

Towards experimental realization

Universal Properties obtained by "ideal gas approach"



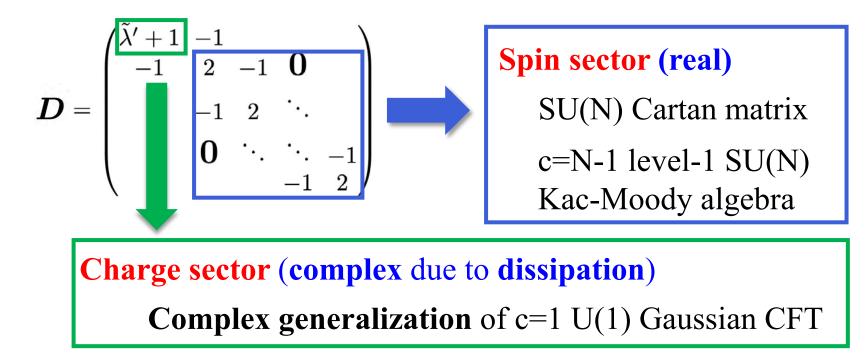


Summary of Part III

SU(N) Interacting systems:

$$\Delta E = (\pi \tilde{v}/L)(\boldsymbol{m}^t \boldsymbol{D} \boldsymbol{m}/2 + 2\boldsymbol{d}^t \boldsymbol{D}^{-1} \boldsymbol{d})$$

NH generalization of **spin-charge separation**



Universal scaling relations

Outlook

Critical Properties of Non-Hermitian Correlated Systems

◆CFT classification of non-Hermitian critical systems

CFT description of measurement-induced transitions
 What is the " effective central charge"?
 Primary fields, Virasoro tower structure ?

etc.

Summary

Critical Properties of Non-Hermitian Correlated Systems

PART I

1. Non-Hermitian Kondo effect *Prototype of many-body non-Hermitian systems M. Nakagawa et al. PRL* **121**, 203001(2018)

PART II

2. Non-Hermitian Tomonaga-Luttinger liquids *Quantum XXZ spin chain*

K. Yamamoto et al. PRB 105, 205125(2022)

PART III

2. SU(N) Generalization of Dissipative TL liquids *Haldane's "Ideal Gas" Approach K. Yamamoto et al. arXiv:2207.04395*

Thank you very much for organizing "real workshop" !

NQS2011 Kawakami (chair) NQS2014 NQS2017 NQS2022

