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Introduction



◆Closed quantum (many-body) systems

Unitary evolution 
described by Hermitian Hamiltonian

Hermitian or non-Hermitian

Naïvely

Dissipative environment
Life time
Gain & loss, etc

◆Open quantum (many-body) systems

Systems with dissipative environment 
Effective non-Hermitian description ? 



◆Vortex depinning phenomena in superconductors

Effective non-Hermitian description

◆Breakdown of a Mott isnulator
T. Fukui and N. Kawakami PRB(1998)

e.g.
N. Hatano and D. Nelson, PRL  (1996)

◆PT symmetric systems: Experiments

◆Non-Hermitian perspective of correlated systems
V. Kozii and  Liang Fu (2017), Yoshida et al (2018), etc.

A. Guo and G. J. Salamo, PRL (2009)
C. E. Ruter et al. Nat. Phys. (2010)
A. Regensburger et al. Nature (2010),  L. Xiao et al (2017), … etc.

◆Open quantum systems
C. M. Bender and S. Boettcher, PRL (1998)

◆Non-Hermitian topological phases
K. Esaki, M. Sato, K. Hasebe and M. Kohmoto, PRB(2011), etc

Y. Ashida, S. Furukawa, and M. Ueda, Nat. Commun (2017)
K. Kawabata, Y. Ashida, H. Katsura and M. Ueda, PRB (2018)…etc. 

(PT symmetry) 



Localization transitions 
in non-Hermitian quantum mechanics

N. Hatano and D. Nelson, Phys. Rev. Lett. 77, 58 (1996)

Vortex: Pinning-depinning transition in superconductors

columnar 
defects

Real:
localized

Complex:
delocalized

Transverse
field Asymmetric 

hopping

One-body problem            Many-body problem

Non-Hermitian Hamiltonian

Random 
potential



First paper on the Mott breakdown
Non-Hermitian for many-body systems

cf Hatano-Nelson for vortex depinning (1996)

Oka-Aoki (2010) showed that this breakdown effectively describes
Dielectric breakdown by electric field!

exp(ψ) exp(-ψ)

T. Fukui and NK, Phys. Rev. B58, 16051 (1998)

Breakdown of a Mott insulator:
Exact solution of non-Hermitian Hubbard model

Asymmetric 
hopping
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Mott insulator

“Metal”

Few studies for 20 years:
Correlation Effects on Non-Hermitian Systems

addressed  again recently !

"Dielectric breakdown of one-dimensional Mott insulators Sr2CuO3 and SrCuO2" 
Y. Taguchi, T. Matsumoto, and Y. Tokura, 
Phys. Rev. B62, 7015-7018 (2000). 

Experiment

T. Fukui and NK, Phys. Rev. B58, 16051 (1998)

Breakdown of a Mott insulator:
Exact solution of non-Hermitian Hubbard model
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Non-Hermitian Kondo effect
in ultracold atoms

PART I

M. Nakagawa



■A localized impurity spin coupled with free fermions
■ Paradigmatic example of quantum many-body physics

Kondo model

free fermions

impurity 
spin

Kondo singlet

Kondo temperature

Dilute magnetic impurities
Heavy fermions
Quantum dots
Cold atoms

antiferro. spin exchange
( J < 0 )

[J. Kondo, Prog. Theor. Phys. 32, 37 (1964)]

Kondo Effect

Ubiquitous
phenomenon



Alkaline-earth cold atoms

Two electrons in the outer shell (Ca, Yb, Sr)
electronic ground state: 1S0

excited state: 3P0 → meta-stable : “higher-orbital state”
(J=0 → J=0 : forbidden)

2S+1LJ

Energy diagram

1S0

3P0

3P1

3P2 15s

875ns

～20s

lifetime

meta-stable

“clock transition”
(ultra-narrow)



■ Kondo effect in ultracold atoms?
Most promising candidate: alkaline-earth (171Yb, 173Yb, 87Sr) 

[Gorshkov et al, Nat. Phys. (2010)]

○Atomic ground state (1S0)   → conduction electrons
○Metastable excited state (3P0)  → localized impurity

(spin degrees of freedom : nuclear spin)

■ Difference of polarizability → state-dependent lattice

1S0 state (g) : shallow lattice
→ “conduction electrons”

3P0 state (e) : deep lattice
→ “localized impurity”

Kondo Effect: Ultracold Atoms



■ Experimental realization of the “Kondo Hamiltonian”

[Riegger et al., PRL 120, 143601 (2018)]


173Yb, mF=±5/2 （⇧, ⇩）

Host atoms: 1S0 state
Impurity: metastable 3P0 state

◆Spin-exchange dynamics
→ observed!

◆Atom losses

time

po
pu

la
tio

n

Kondo Effect: Ultracold Atoms

Problem: Kondo effect with atom losses



Quantum many-body physics with inelastic collisions

Atom loss: formulated as an open quantum system
→ emergence of non-Hermitian Hamiltonians

Non-Hermitian generalization of the Kondo effect

Quantum many-body physics with non-Hermitian 
Hamiltonians

Message of this part



Setup



Equilibrium gas of Yb (or Sr)
All atoms are in 1S0 state

3P0 state as 
impurities

: Kondo system

Some impurities are lost
due to inelastic 

collisions

Excitations to 3P0 state (clock transition)

Measurement of the “surviving” impurities

Setup

Non-Hermitian Kondo effect



■Atom loss → described by a quantum master equation

Two-body loss event
: change the particle #

[See e.g. Daley, Adv. Phys. 63, 77 (2014)]

Non-Hermitian Hamiltonian : Dynamics between loss events

Non-Hermitian Kondo Model



jump
jump

Quantum trajectory method

NH Hamiltonian
Dynamics in each quantum trajectory



■Atom loss → described by a quantum master equation

Two-body loss event
: change the particle #

[See e.g. Daley, Adv. Phys. 63, 77 (2014)]

Non-Hermitian Hamiltonian : Dynamics between loss events

Our interest: “surviving” impurity (projection to lossless dynamics)
→ Dynamics is described by the non-Hermitian Hamiltonian!

Non-Hermitian Kondo Model

Imaginary int. by “backaction” of projection

Non-Hermitian Kondo Hamiltonian!



Results



■ First approach: renormalization group

(ρ0: DOS at the Fermi energy)

[Nozières-Blandin, J. Phys. 41, 193 (1980)]

Kondo fixed 
point

Free fixed point J = 0 
(no Kondo effect)

Loss rate

0

?

Renormalization group



Kondo fixed 
point

Non-Hermitian quantum phase transition 
induced by inelastic scattering

Free fixed point J = 0 (no 
Kondo effect)

Loss rate Anomalous
“returning” RG flow!

Renormalization group
■ First approach: renormalization group

(ρ0: DOS at the Fermi energy)

[Nozières-Blandin, J. Phys. 41, 193 (1980)]



■ Physical picture of the non-Hermitian quantum phase transition
→ (continuous) quantum Zeno effect

Particle loss induces effective “repulsion”
→ destruction of Kondo singlet

[Tomita et al., Sci. Adv. 3, e1701513 (2017)]

Competition between Kondo effect & quantum Zeno effect

Physical interpretation: Quantum Zeno effect



■ Non-Hermitian renormalization group

Non-Hermitian generalization
of Kondo temperature

“reversion” in RG flow
Define characteristic scale : Jr(TKdiss) = 0

Energy scale



■ To confirm the RG prediction: 
Exact solution of the non-Hermitian Kondo Hamiltonian

Bethe ansatz exact solution

■ Non-Hermitian generalization of Bethe ansatz

where

: momenta of conduction fermions
(N: # of particles)

: “spin rapidity” of ↓ spin electrons
(M: # of ↓ spins)

[Andrei, PRL (1980), Wiegmann, J. Phys. C (1981)]



■ Impurity magnetization Mi
Bethe-ansatz solution of the ground state

◆

◆

Kondo singlet solution

Non-Kondo solution!!

Blue: critical line by RG
Red: critical line by Bethe ansatz

Good agreement
between RG & Bethe ansatz
in the weak-coupling regime

Bethe ansatz exact solution



■ Kondo effect in ultracold alkaline-earth atoms
→ Non-Hermitian generalization of the Kondo problem

■ Non-Hermitian Kondo effect

Transition from Kondo to non-Kondo @ critical inelastic scattering
Non-Hermitian phase transition → no analog in equilibrium systems
Exact solution by Bethe ansatz

Reference:
M. Nakagawa , N. K., and M. Ueda, PRL (2018)

Part I: Summary

Prototypical Example of 
Non-Hermitian Correlated Phenomena 



Universal Properties of 
Dissipative Tomonaga-Luttinger Liquids

PART II

● K. Yamamoto et al. PRB 105, 205125(2022)

K. Yamamoto M. Nakagawa



Question addressed in this section

Universal properties of 1D dissipative systems

●1D quantum critical systems: Hermitian (Unitary)
well understood by Conformal Field Theory

Ex.   Spin chain, Hubabrd model, etc
Tomonaga-Luttinger liquid c=1 CFT

Little is known for CFT with complex energy spectrum

How about the Non-Unitary (Non-Hermitian) case ?

●Some problems are well understood

Ex. Yang–Lee edge singularity in Ising model

𝑐 = −
22

5

Negative central charge:
𝑐eff = 𝑐 − 24Δ 𝑐eff=

2

5



Message in this section

Universal properties of 1D dissipative systems

Non-Hermitian XXZ spin chain 
Complex energy spectrum 

Universal properties for correlation functions

Conformal tower for complex spectrum

We find

Complex generalization of c=1 CFT

Dissipative Tomonaga-Luttinger liquid



CFT in a nutshell



Critical phenomena in 1+1 dimensions

Local scale invariance

𝐿𝑚: conformal generators

Central charge, universality class

𝑐 =
1

2
: Ising model, 

𝑐 = 1: Tomonaga-Luttinger liquids
Example

CFT in a nutshell

Infinite # of generators

Virasoro algebra

Conformal symmetry



Correlation function

Δ+, Δ−: Conformal dimensions

CFT in a nutshell
Primary field

Primary field:
highest weight

secondary fields

conformal tower

Verma module



t

x

y

Scale transformation Time evolution of 1D ring

Conformal transformation
z    (L/2π)logz

L

Central charge c
Conformal dimensions Δ
Conformal tower

Energy spectrum of H

Bridge
Field theory Microscopic model

How to obtain ?
（Ｃ，Δ）

CFT in a nutshell



Non-Hermitian XXZ Model



In our study

Two-component Bose-Hubbard model

complexcomplex

Two-body loss of particles

Complex energy (decay)

jump 𝐿𝑖
jump 𝐿𝑖

Quantum trajectory method

Dynamics 
in each quantum trajectory

𝐿𝑖: jump operator

Ultracold gas with two-body dissipation



■1D two-component Bose-Hubbard model + Two-body loss

Strongly correlated regime Second-order perturbation theory

■NH XXZ model ( 𝑱𝒆𝒇𝒇⊥ < 𝟎 )

We see the longest surviving state in the long-time limit (largest imaginary part of energy)

■NH XXZ model ( 𝑱 > 𝟎 )

Ground state with the smallest real part of energy

map

complex

We seek for universal properties (correlation functions, finite-size scaling)

Ultracold gas with two-body dissipation



Complex generalization of 𝒄 = 𝟏 conformal field theory

■Excitation energy in a finite system
PBC

Finite-size scaling analysis in CFT
CFT analysis of excitation spectra

●Complex velocity ●Complex TL parameter

。。。

Primary(ΔN=1,ΔD=0) Primary(ΔN=0,ΔD=1) Primary(ΔN=1,ΔD=1)

Conformal
tower

Δ𝑁, Δ𝐷 ∈ ℤ
𝑛+, 𝑛−: nonnegative integers

Conformal dimensions



■Excitation energy in a finite system
PBC

Δ𝑁, Δ𝐷 ∈ ℤ
𝑛+, 𝑛−: nonnegative integers

Finite-size scaling analysis in CFT
CFT analysis of excitation spectra

●Complex velocity ●Complex TL parameter

Conformal dimensions

■TL parameter deviates from 1
𝐾θ/𝐾φ

Re Δγ

Im Δγ

(Hermitian limit 
𝐾θ/𝐾𝜙 →1)

CFT analysis  with the Bethe ansatz

1

0



■NH XXZ model complex

■Bosonization

Long-distance behavior

Bosonic fields 
with commutation relations

In the massless regime, the model is described by the NH TL Hamiltonian

■NH Tomonaga-Luttinger Hamiltonian (Gaussian)
complex

Correlation functions 

■NH Sine-Gordon Hamiltonian complex



■NH TL model (massless regime) Right

Left

complex

Complex-valued TL parameter  𝐾

[1] Biorthogonal correlation functions (𝒄 = 𝟏 CFT)

Expectation values by right or left ?

Correlation functions 

Real part of (the reciprocal of)  𝐾

Both correlation functions are characterized by the complex-valued TL parameter  𝐾

[2] Right-state correlation functions (observable)

cf Ashida et al. (2016) 



Dissipation

Results for 𝑲𝝓
small
(𝟎. 𝟏)

ReΔγ

large
(𝟎. 𝟗)

𝐿 = 130
𝑚 = 200

NH-DMRG results
NH-DMRG algorithm

Density matrix for truncation of eigenstates

NH-DMRG (color) and the Bethe ansatz (gray) agree well !

Discrepancy for large dissipation
Finite-size effect becomes serious
near the AF transition point (Re Δγ~1)

We apply this algorithm to open quantum systems

TL parameter: calculating 𝜟𝑬𝐬𝐩𝐢𝐧 (spin change) and 𝜟𝑬𝐬𝐩𝐞𝐜𝐭𝐫𝐚𝐥 (spin conserved)

TL parameter Velocity of excitations

Comparison with the Bethe-ansatz results



NH-DMRG results 
NH-DMRG results of correlation functions

Qualitatively the same as 
the finite-size scaling results 
of the excitation spectrum 

𝐿 = 100
𝑚 = 170 We perform the fitting for 𝐾𝜙 and 𝐶2

Field theory

Two-parameter fitting with 𝐾𝜙 and 𝐶2 in correlation functions NH-DMRG (color)
Bethe ansatz (gray)

𝐿 = 100
𝑚 = 170 small

(𝟎. 𝟏)

ReΔγ

large
(𝟎. 𝟗)

Dissipation

However... fitting accuracy is low due to

Effect of the edges (system size is limited)

Severe convergence problem due to non-Hermiticity

NH-DMRG agree rather well with the analytical results !



Summary of Part II

◉Model : NH XXZ model 

Universal scaling
Complex TL parameter  𝐾

Complex generalization of 
𝒄 = 𝟏 CFT

◉ Universal Properties of Dissipative Tomonaga-Luttinger liquid 

Non-unitary CFT with complex spectra: little is known

■ Finite-size scaling analysis

■ Two-types of correlation functions



SU(N) Generalization of 
Dissipative Tomonaga-Luttinger Liquids

PART III

● K. Yamamoto and N. Kawakami. arXiv:2207.04395

K. Yamamoto



Generalization to SU(N) spin symmetry

Universal properties with SU(N) symmetry

Experimental advances in ultracold atoms with SU(N) symmetry
e.g. SU(N) Hubbard models

Haldane’s ideal-gas description 

• Powerful method to obtain universal properties of 1D critical systems
• Critical properties of SU(N) Hubbard models can be extracted

“Ideal gas description” of  universal properties in 1D

In our study

complex (dissipation) spin exchange operator
Ha and Haldane PRB 1992NH SU(N) Calogero-Sutherland model

1/x2 long-range interaction



Ideal-gas description

Two-body phase shift

Single-component case

s=1 fermion, s=0 boson

Sutherland, 1971

Step-function two-body phase shift θ(k):
Interaction effect : level repulsion  λ

“ Ideal gas” obeying
“Fractional exclusion statistics”

1/x2 interaction
Ground state

Universal properties in 1D quantum many-body systems

Haldane, 1991



NH generalization of spin-charge separation

Excitation energy: SU(N) model

𝒅,𝒎：quantum numbers

Spin sector (real)
SU(N) Cartan matrix
c=N-1 
SU(N) Kac-Moody algebra

Charge sector
Complex generalization of c=1 U(1) Gaussian CFT

Ideal-gas description



Critical exponents

Dissipation only affects the charge exponent

Dissipation effects are described by two real TL parameters

Fermion correlator Boson correlator

Charge-density correlator

Two-kinds of parameters for charge sector



Towards experimental realization

Hubbard model + Two-body loss

Universal properties of metallic phases are described by 
complex U(1)×SU(2) TL liquids

complex (dissipation)

On the other hand…

◆ Realization of NH system Postselection by quantum-gas microscopy

◆ Dissipation Introduction of two-body loss by photoassociation

◆ Candidate Hubbard model w/ ultracold alkaline-earth-like atoms 173Yb

Universal Properties obtained by “ideal gas approach”

can be applied to a variety of SU(N) systems



Summary of Part III

NH generalization of spin-charge separation

SU(N) Interacting systems:

Spin sector (real)
SU(N) Cartan matrix
c=N-1 level-1 SU(N) 
Kac-Moody algebra

Charge sector (complex due to dissipation)
Complex generalization of c=1 U(1) Gaussian CFT

Universal scaling relations



Outlook

Critical Properties of Non-Hermitian 
Correlated Systems

◆CFT classification of non-Hermitian  critical systems

◆CFT description of measurement-induced transitions

What is the “ effective central charge”?

Primary fields, Virasoro tower structure ?

etc.
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