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Spin transport in insulators
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 Ordered states YIG
 Magnons

 Quantum Spin liquids Sr2CuO3
 Spinons
 holons

D. Hirobe et al. Nat. Phys. 13, 30 (2017)

Another QSL?Magnetic pulse

Sz

Spin oscillations
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Spin transport has attracted much interest. In insulating magnets, the magnetically ordered states are realized and the spin transport is mediated by the magnons. Recently, the spin transport has been observed in the quantum spin liquid SrCuO. The nonmagnetic ground state is realized, but the magnetic pulse induces the spin oscillations and the spin excitations propagate. This spin transport is mediated by the spinons, which is one of elementary excitations. What happens in another quantum spin liquid state, for example Kitaev model.
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Kitaev model

 Hamiltonian

 Local conserved quantity

Bond frustration

A. Kitaev, Ann. Phys. 321, 2 (2006)

p q

[H,Wp]=0
[Wp,Wq]=0
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Candidate materials 
α-RuCl3, A2IrO3 (A=Na, Li) 
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Kitaev Model is one of the quantum spin models on the honeycomb lattice. Its Hamiltonian is composed of the direction dependent Ising interactions. On the x bond, anisotropy of the Ising interaction is x-direction. Therefore, each spin tends to be parallel in x-direction. On the other hand, on the z-bond, each spin tends to be parallel in z-direction. These induce bond frustration in the system, which suppresses magnetic long range order. One of the important features in the model is the existence of the local conserved quantity defined by the product of the six spin operators in each plaquette. This operator Wp commutes with the Hamiltonian and the operator Wp defined on the other plaquette.
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Kitaev model

 Hamiltonian

 Local conserved quantity

Each eigenstate

Wp=±1
+1 -1

-1

+1 +1

+1

+1+1

+1

-1

Ground state   Wp=+1 (Lieb theorem)
For all plaquettes
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Therefore, each eigenstate belongs to the subspace specified by the set of the eigenvalues of Wp, like that. According to the Lieb theorem, the ground state belongs to the subspace with all wp being unity. The existence of the local operator leads to the interesting ground state properties. 
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Commutation relations

 Wp=+1

anticommute

commute

y y

y

σx

σy

σz

+1

-1

-1

Eigenvalue of Wp
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To clarify this, we consider the isolated plaquette operator. The operator is the product of six pauli matries. Now we focus on the Number one site. Wp includes sigma_1^x and therefore wp and sigma_1^x commute with each other. On the other hand, as for sigma^y and sigma^z, anticommutation relations due to the anticommutation relations in pauli matries. Using this anticommutation relation, we can flip the eigenvalue of wp. Sigma_y times ground state has -1 eigenvalue of wp. Sigma_z is similar. As for the sigma_x, sigma_x and wp commute with each other and therefore, wp is not changed. 
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Quantum spin liquid state

 Wp=+1

+1 +1

+1

+1 +1

+1

+1-1

-1

+1

+1

+1

+1

+1

+1+1

+1

+1

-1

-1

if i,j are not located 
on the same bond

No long range order
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Therefore, sigma_x times ground state, the distribution of wp is like this. The distribution of wp for Sigma_j is like this. These two distributions are different from each other. Therefore, the inner product of two states, socalled spin-spin correlation is exactly zero. This means that no magnetic long range order occur and quantum spin liquid state is realized in the Kitaev model. This originates from the anticommutation relations for the local conserved quantities.
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Excitation 

 Hamiltonian

Majorana representation

Free hopping ∝Wp=+1

Kitaev model
・localized Majorana (flux) ∝ Wp
・itinerant Majorana cj Two energy scales

dispersion
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As for the excitation of the ground state, it is convenient to consider the Hamiltoninan in the Majorana representation. By means of the Majorana operator c, the Hamiltonian is obtained like this. In the Majorana language, cc describes the free hopping. X and y bonds, free hopping and correlated hopping appears in the z bond. However, operator eta is closely related to the local conserved quantitity Wp, and we can set Wp as unity for the ground state. Then, Hamiltonian can be diagonalized, and the dispersion relations are obtained. 

An important point in the Kitaev model is that the spin degrees of freedom are devided into two. The localized Majorana flux and itinerant Majoranas. Then, this spin fractionalization lead to two energy scales. This fact can be observed in the thermodynamic quantities.
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Thermodynamic properties

 Hamiltonian

Local conserved quantity

J. Nasu et al., Phys. Rev. B 92, 115122 (2015).

itinerant

Localized

Spin fractionalization
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Two energy scales are clearly found in the thermodynamic properties. Specific heat shows double peak structures and plateau appears in the entropy. At low temperatures, the expectation value of Wp increases to unity. Therefore, lower temperature peak corresponds to the flux defrees of freedom and higher one corresponds to the itinerant Majorana fermions. 

Now, we consider the spin transport in the Kitaev model with such characteristics.



Spin transport 
in the Kitaev quantum spin liquid

Observe itinerant Majoranas in the bulk?

cf. Majorana edge current 
in α-RuCl3
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Spin correlations in Kitaev model

 No spin moment
 No spin correlations

existence of Wp
important

What happens if not ?
eg. field, edges, defects, etc.
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Spin transport?

 Two edges

hL hR

h=0
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Real-time dynamics

 zigzag edge Kitaev

 Majorana mean-field theory

 Exact diagonalization (24 sites)

hL(t)

h=0 hR≠0

hR=hL=0
exact

Gaussian pulse
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Real-time dynamics

 Change in moment hL(t)

ΔSZ

x

x
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Real-time dynamics

 Majorana mean-fields hL(t)

Spin moment

Itinerant Majorana

localized Majorana
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Role of itinerant Majoranas

 Majorana-mediated transport

Spinless
spin transport

itinerant

localized

itinerant

localized

ΔSz

tim
e

T. Minakawa et al., Phys. Rev. Lett. 125, 047204 (2020). 16
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J=100K
1 = 0.1ps
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Majorana correlations
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 Long-range correlations
Flux-free state

Power law

AK, Y. Murakami, and J. Nasu, Phys. Rev. B 103, 214421 (2021)

~𝑑𝑑−2



How stable ?
Majorana-mediated spin transport
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Stability of the spin transport

 Majorana-mediated spin transport
 Spin fractionalization
 Itinerant Majorana fermions
 fluxes

1. Heisenberg and/or Γ terms
2. Thermal fluctuations
3. Anisotropy in Ising exchanges
4. Flux configurations

19
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1. Heisenberg term

Realistic Materials
Na2IrO3, α-RuCl3

Kitaev

Heisenberg Gamma

No local symmetry Wp

Majorana-mediated spin transport   robust?

J. Chaloupka et al., Phys. Rev. Lett. 105, 027204 (2010).
T. Suzuki et al., Phys. Rev. B 92, 184411 (2015).
Y. Yamaji et al., Phys. Rev. B 93, 174425 (2016). 20
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Heisenberg interaction

 Hamiltonian

 No local symmetry   Wp
 Exact diagonalization 24sites

T. Minakawa et al., Phys. Rev. Lett. 125, 047204 (2020). 21
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2. Thermal fluctuations

 Specific heat

J. Nasu et al., Phys. Rev. B 92, 115122 (2015).

Flux Majorana fermions

x

What happens?
22
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Temperature dependence (TPQ 28sites)

 R region

time

T=0.01

T=0.1

Non-monotonic behavior
T=0.03

T=0.5

T=0

ΔS(t)

cf. simple temperature effects ?
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単なる温度効果ではない
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Spin oscillation at finite T

 Majorana mediated spin transport
Susceptibility

Nonmonotonic behavior   ~   Susceptibility
T/J

TH/J

Spin oscillations above TL      larger than those at T=0

ΔS(t*)

TL/J

H. Taguchi, Y. Murakami & AK, Phys. Rev. B 105,125137 (2022).

J. Yoshitake et al., 
PRL 117, 157203 (2016). 
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Summary

 Kitaev model 
 Transport properties
 Real-time dynamics
 Majorana mean-field theory
 Exact diagonalization

 Majorana-mediated spin transport

 Similar spin transport 
also found in the S=1 Kitaev model

cf. Majorana edge current 
Y. Kasahara et al.,
Nature 559, 227 (2018).T. Minakawa et al., Phys. Rev. Lett. 125, 047204 (2020). 

H. Taguchi, Y. Murakami & AK, Phys. Rev. B 105,125137 (2022).
AK et al., J. Phys. Soc. Jpn. 89, 033701 (2020).
那須譲治、古賀昌久, 固体物理 57, 703 (2022) 25
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