Aspects of Krylov Complexity

Tanay Pathak

Indian Institute of Science, Bengaluru, India

December 01, 2022
arxiv: 2203.03534, 2210.02474

Overview

Part I: Operator Growth

Part II: Unstable saddle

Part III: SYK model

Part IV: Double Scaled SYK

PART I

Operator Growth

For a given hamiltonian \mathbf{H} and operator \mathcal{O}. Under the time evolution the operator becomes complicated, $\mathcal{O}(t)=e^{i H t} \mathcal{O} e^{-i H t}$

$$
\begin{aligned}
\mathcal{O}(t) & =\mathcal{O}-i t[H, \mathcal{O}]-\frac{t^{2}}{2!}[H,[H, \mathcal{O}]]+\frac{i t^{3}}{3!}[H,[H,[H, \mathcal{O}]]]+\cdots \\
& =\mathcal{O}-i t \mathcal{L} \mathcal{O}-\frac{t^{2}}{2!} \mathcal{L}^{2} \mathcal{O}+\frac{i t^{3}}{3!} \mathcal{L}^{3} \mathcal{O} \cdots=e^{i \mathcal{L} t} \mathcal{O}
\end{aligned}
$$

Liouvillian $\mathcal{L}(\bullet)=[H, \bullet]$

Example

$$
H=-\sum_{i=1}^{N} Z_{i} Z_{i+1}-g \sum_{i=1}^{N} X_{i}-h \sum_{i=1}^{N} Z_{i}
$$

$$
\mathcal{L} Z_{1}=\left[H, Z_{1}\right] \sim Y_{1}
$$

$$
\mathcal{L}^{2} Z_{1}=\left[H,\left[H, Z_{1}\right]\right] \sim Y_{1}+X_{1} Z_{2}
$$

$$
\mathcal{L}^{3} Z_{1}=\left[H,\left[H,\left[H, Z_{1}\right]\right]\right] \sim Y_{1}+X_{1} Y_{2}+Y_{1} Z_{2}
$$

$$
\mathcal{L}^{4} Z_{1}=\left[H,\left[H,\left[H,\left[H, Z_{1}\right]\right]\right]\right] \sim X_{1}+Y_{1}+Z_{1} X_{1} X_{2}+Y_{1} Y_{2}+Z_{1} Z_{2}+X_{1} Z_{2}+\cdots
$$

Lanczos Algorithm

- Form the basis: $\left\{\mathcal{O}, \mathcal{L O}, \mathcal{L}^{2} \mathcal{O}, \cdots\right\}$

Lanczos Algorithm

- Form the basis: $\left\{\mathcal{O}, \mathcal{L O}, \mathcal{L}^{2} \mathcal{O}, \cdots\right\}$
- Define inner-product given by

$$
\begin{equation*}
\langle A \mid B\rangle=\frac{1}{D} \operatorname{Tr}\left(A^{\dagger} B\right) \tag{1}
\end{equation*}
$$

Lanczos Algorithm

- Form the basis: $\left\{\mathcal{O}, \mathcal{L O}, \mathcal{L}^{2} \mathcal{O}, \cdots\right\}$
- Define inner-product given by

$$
\begin{equation*}
\langle A \mid B\rangle=\frac{1}{D} \operatorname{Tr}\left(A^{\dagger} B\right) \tag{1}
\end{equation*}
$$

- Orthonormalize using Gram-Schmidt (GS) process.

Lanczos Algorithm

- Form the basis: $\left\{\mathcal{O}, \mathcal{L O}, \mathcal{L}^{2} \mathcal{O}, \cdots\right\}$
- Define inner-product given by

$$
\begin{equation*}
\langle A \mid B\rangle=\frac{1}{D} \operatorname{Tr}\left(A^{\dagger} B\right) \tag{1}
\end{equation*}
$$

- Orthonormalize using Gram-Schmidt (GS) process.
- $1 \leq$ Krylov Space with dimensions $\leq D^{2}-D+1$.

Lanczos coefficients

- Start with normalized vector $\left.\mid \mathcal{O}_{0}\right)^{1}$
- Define $\left.\left.\mid \mathcal{O}_{1}\right):=b_{1}^{-1} \mathcal{L} \mid \mathcal{O}_{0}\right)$ where $b_{1}^{2}=\left(\mathcal{O}_{0} \mathcal{L} \mid \mathcal{L} \mathcal{O}_{0}\right)$.
- Repeat the procedure

$$
\begin{aligned}
\left.\mid \mathcal{A}_{n}\right) & \left.\left.:=\mathcal{L} \mid \mathcal{O}_{n-1}\right)-b_{n-1} \mid \mathcal{O}_{n-2}\right) \\
b_{n} & :=\sqrt{\left(\mathcal{A}_{n} \mid \mathcal{A}_{n}\right)} \\
\mid \mathcal{O}_{n} & \left.:=b_{n}^{-1} \mid \mathcal{A}_{n}\right)
\end{aligned}
$$

Sequence $\left\{b_{n}\right\}$ is called Lanczos coefficients. Set of orthonormal basis states $\left.\mid \mathcal{O}_{n}\right)$, is called Krylov basis.
${ }^{2}$ Time evolution: $\left.\left.\mid \mathcal{O}(t)\right)=\sum_{n=0}^{\mathcal{K}-1} i^{n} \phi_{n}(t) \mid \mathcal{O}_{n}\right)$
The ϕ_{n} 's satisfy the following equation

$$
\dot{\phi}_{n}=b_{n} \phi_{n-1}(t)-b_{n+1} \phi_{n+1}(t)
$$

Unitarity: $\sum_{n=0}^{K-1}\left|\phi_{n}(t)\right|^{2}=1$
Krylov complexity: $\sum_{n=0}^{K-1} n\left|\phi_{n}(t)\right|^{2}$

Lanczos coefficients

3

Chaotic system:
$b_{n} \sim \alpha n, \quad C_{K}(t) \sim e^{2 \alpha t}$
Integrable system:
$b_{n} \sim \alpha n^{\delta}, C_{K}(t) \sim(\alpha t)^{1 /(1-\delta)}$

Behavior of lanczos coefficients

Universal Operator growth hypothesis

"For a chaotic system Lanczos coefficients grow linearly and this is the fastest growth possible"4

$$
b_{n}=\alpha n+\gamma+O(1)
$$

[^0]
Universal Operator growth hypothesis

"For a chaotic system Lanczos coefficients grow linearly and this is the fastest growth possible"4

$$
\begin{gathered}
b_{n}=\alpha n+\gamma+O(1) \\
\lambda_{L} \leq 2 \alpha
\end{gathered}
$$

${ }^{4}$ A Universal Operator Growth Hypothesis arXiv:1812.08657.

Universal Operator growth hypothesis

"For a chaotic system Lanczos coefficients grow linearly and this is the fastest growth possible"4

$$
\begin{gathered}
\qquad b_{n}=\alpha n+\gamma+O(1) \\
\lambda_{L} \leq 2 \alpha \\
\text { Does linear } b_{n} \Longrightarrow \text { chaos? }
\end{gathered}
$$

No!!!
${ }^{4}$ A Universal Operator Growth Hypothesis arXiv:1812.08657.

PART II

Unstable saddle

Classical LMG model ${ }^{5}$:

$$
H=x+2 J z^{2}
$$

where $X=(x, y, z)$ are classical $\mathrm{SU}(2)$ spin variables satisfying $\left\{X_{i}, X_{j}\right\}=\epsilon_{i j k} X_{k}, J>1 / 2$ and $x^{2}+y^{2}+z^{2}=1$.

Unstable saddle

Classical LMG model ${ }^{5}$:

$$
H=x+2 J z^{2}
$$

where $X=(x, y, z)$ are classical $\mathrm{SU}(2)$ spin variables satisfying $\left\{X_{i}, X_{j}\right\}=\epsilon_{i j k} X_{k}, J>1 / 2$ and $x^{2}+y^{2}+z^{2}=1$.

The unstable saddle point is at $X=(\pm 1,0,0)$.

Unstable saddle

Classical LMG model ${ }^{5}$:

$$
H=x+2 J z^{2}
$$

where $X=(x, y, z)$ are classical $\operatorname{SU}(2)$ spin variables satisfying $\left\{X_{i}, X_{j}\right\}=\epsilon_{i j k} X_{k}, J>1 / 2$ and $x^{2}+y^{2}+z^{2}=1$.

The unstable saddle point is at $X=(\pm 1,0,0)$.
The growth exponent of the trajectories near the saddle is $\omega_{\text {saddle }}=\sqrt{2 J-1}$

Figure: a) The growth ${ }^{6}$ of b_{n} with n. b) The growth of $K(t)$ with t.

Figure: a) The growth ${ }^{6}$ of b_{n} with n. b) The growth of $K(t)$ with t.

Krylov complexity detects scrambling in integrable system, due to unstable saddle point!!!

PART III

Method of moments

The time evolution is in Krylov basis: $\quad|O(t)\rangle=\sum_{n=0}^{K-1} i^{n} \varphi_{n}(t)\left|O_{n}\right\rangle$
Autocorrelation function

$$
C(t) \equiv \varphi_{0}=\left\langle O(t) \mid O_{0}\right\rangle
$$

It contains the full information about the growth.

$$
\begin{aligned}
& C(-i t):=\sum_{k=0}^{\infty} \mu_{2 k} \frac{t^{2 k}}{(2 k)!} \quad \Rightarrow \quad \mu_{2 k}=\left.(-1)^{k} \frac{d^{2 k}}{d t^{k}} C(t)\right|_{t=0} . \\
& b_{1}^{2} \cdots b_{n}^{2}=\operatorname{det}\left(\mu_{i+j}\right)_{0 \leq i, j \leq n} \quad\left\{\mu_{2 k}\right\} \Rightarrow\left\{b_{k}\right\}
\end{aligned}
$$

If we know the analytic results for the autocorrelation function then we can get some analytic results for moments, lanczos coefficients and Krylov complexity.

SYK model

The hamiltonian is given by

$$
\begin{equation*}
H=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{q} \leq N} j_{i_{1} \cdots i_{q}} \psi_{i_{1}} \psi_{i_{2}} \cdots \psi_{i_{q}} \tag{2}
\end{equation*}
$$

Mean:

$$
\left\langle j_{i_{1} \cdots i_{q}}\right\rangle=0
$$

Variance:

$$
\left\langle j_{i_{1} \cdots i_{q}}^{2}\right\rangle=2^{q-1} \frac{(q-1)!J^{2}}{q N^{q-1}}
$$

Consider initial operator ${ }^{7} \mathcal{O}_{0}=\sqrt{2} \psi_{1}$ The auto-correlation function

$$
C(t)=1+\frac{2 \log ((\mathcal{J} t))}{q}
$$

Moments: $m_{2 n}=\frac{1}{q} \mathcal{J}^{2 n} T_{n-1}+O\left(1 / q^{2}\right), \quad n \geq 1$
Tangent numbers: $\left\{T_{n-1}\right\}_{n=1}^{\infty}=1,2,16, \cdots$
Lanczos coefficients

$$
b_{n}=\left\{\begin{array}{ll}
\mathcal{J} \sqrt{2 / q}+O(1 / q), & n=1 \\
\mathcal{J} \sqrt{n(n-1)}+O(1 / q), & n>1
\end{array} \quad \xrightarrow{\text { large- } n} \quad b_{n} \sim \alpha n\right.
$$

K-complexity: $\frac{2}{q} \sinh ^{2}(\mathcal{J} t)+O\left(1 / q^{2}\right)$

Large q-correction

We next consider the $1 / q^{2}$ correction ${ }^{8}$ to the auto-correlation function as follows

$$
C(t)=1+\frac{g(t)}{q}+\frac{h(t)}{q^{2}}
$$

Lanczos coefficients

First few lanczos analytically ${ }^{9}$

$$
\begin{align*}
& b_{1}=\mathcal{J} \sqrt{\frac{2}{q}}, \quad b_{2}=\sqrt{2} \mathcal{J}+\frac{31}{\sqrt{2}} \frac{\mathcal{J}}{q}+O\left(1 / q^{2}\right), \quad b_{3}=\sqrt{6} \mathcal{J}-\frac{65}{\sqrt{6}} \frac{\mathcal{J}}{q}+O\left(1 / q^{2}\right), \\
& b_{4}=\sqrt{12} \mathcal{J}+\frac{343}{\sqrt{12}} \frac{\mathcal{J}}{q}+O\left(1 / q^{2}\right), \quad b_{5}=\sqrt{20} \mathcal{J}-\frac{8677}{18 \sqrt{20}} \frac{\mathcal{J}}{q}+O\left(1 / q^{2}\right), \\
& b_{6}=\sqrt{30} \mathcal{J}+\frac{74987}{60 \sqrt{30}} \frac{\mathcal{J}}{q}+O\left(1 / q^{2}\right), \quad b_{7}=\sqrt{42} \mathcal{J}-\frac{18811}{12 \sqrt{42}} \frac{\mathcal{J}}{q}+O\left(1 / q^{2}\right), \\
& b_{8}=\sqrt{56} \mathcal{J}+\frac{4830986}{1575 \sqrt{56}} \frac{\mathcal{J}}{q}+O\left(1 / q^{2}\right), \quad b_{9}=\sqrt{72} \mathcal{J}-\frac{17822817}{4900 \sqrt{72}} \frac{\mathcal{J}}{q}+O\left(1 / q^{2}\right), \\
& b_{10}=\sqrt{90} \mathcal{J}+\frac{71870293}{11760 \sqrt{90}} \frac{\mathcal{J}}{q}+O\left(1 / q^{2}\right) \tag{3}
\end{align*}
$$

a) Behaviour of lanczos coefficients ${ }^{10}$

${ }^{10}$ arxiv:2210.02474.

Results ${ }^{11}$

a) Different time scales

b) K-complexity

${ }^{11}$ arxiv:2210.02474.

PART IV

Double Scaled SYK

- Two stage limit ${ }^{12}$:

First take $N \rightarrow \infty$, with fixed q .
Then take $q \rightarrow \infty$
${ }^{12}$ arXiv:1604.07818.

Double Scaled SYK

- Two stage limit ${ }^{12}$:

First take $N \rightarrow \infty$, with fixed q .
Then take $q \rightarrow \infty$

- Double scaled limit ${ }^{13}$:

Take $N, q \rightarrow \infty$ simultaneously keeping $\lambda=\frac{q^{2}}{N}$ fixed.

Double Scaled SYK

- Two stage limit ${ }^{12}$:

First take $N \rightarrow \infty$, with fixed q .
Then take $q \rightarrow \infty$

- Double scaled limit ${ }^{13}$:

Take $N, q \rightarrow \infty$ simultaneously keeping $\lambda=\frac{q^{2}}{N}$ fixed.

- $\tilde{t}_{s}=q \tilde{t}_{c}{ }^{1415}$

[^1]
Hyperscrambling

Lanczos coefficients: $b_{n}=\mathcal{J} \sqrt{n q(2+(n-1) q)}, \quad n \geq 1$

Hyperscrambling

Lanczos coefficients: $b_{n}=\mathcal{J} \sqrt{n q(2+(n-1) q)}, \quad n \geq 1$
$C_{K}\left(\tilde{t}_{c}\right)=\eta \sinh ^{2}\left(\alpha \tilde{t}_{c}\right)=\frac{2}{q} \sinh ^{2}\left(q \mathcal{J} \tilde{t}_{c}\right) \sim \frac{2}{q} e^{2 q \mathcal{J} \tilde{t}_{c}}$.

Hyperscrambling

Lanczos coefficients: $b_{n}=\mathcal{J} \sqrt{n q(2+(n-1) q)}, \quad n \geq 1$
$C_{K}\left(\tilde{t}_{c}\right)=\eta \sinh ^{2}\left(\alpha \tilde{t}_{c}\right)=\frac{2}{q} \sinh ^{2}\left(q \mathcal{J} \tilde{t}_{c}\right) \sim \frac{2}{q} e^{2 q \mathcal{J} \tilde{t}_{c}}$.
Scrambling time :

$$
C_{K}\left(\tilde{t}_{c}^{*}\right) \sim O(1) \Longrightarrow \tilde{t}_{c}^{*} \sim \frac{1}{2 q \mathcal{J}} \ln q
$$

Hyperscrambling

Lanczos coefficients: $b_{n}=\mathcal{J} \sqrt{n q(2+(n-1) q)}, \quad n \geq 1$

$$
C_{K}\left(\tilde{t}_{c}\right)=\eta \sinh ^{2}\left(\alpha \tilde{t}_{c}\right)=\frac{2}{q} \sinh ^{2}\left(q \mathcal{J} \tilde{t}_{c}\right) \sim \frac{2}{q} e^{2 q \mathcal{J} \tilde{t}_{c}} .
$$

Scrambling time :

$$
C_{K}\left(\tilde{t}_{c}^{*}\right) \sim O(1) \Longrightarrow \tilde{t}_{c}^{*} \sim \frac{1}{2 q \mathcal{J}} \ln q
$$

$\tilde{t}_{c}^{*} \rightarrow 0$. Hence scrambling is instantaneous.

Hyperscrambling

Lanczos coefficients: $b_{n}=\mathcal{J} \sqrt{n q(2+(n-1) q)}, \quad n \geq 1$
$C_{K}\left(\tilde{t}_{c}\right)=\eta \sinh ^{2}\left(\alpha \tilde{t}_{c}\right)=\frac{2}{q} \sinh ^{2}\left(q \mathcal{J} \tilde{t}_{c}\right) \sim \frac{2}{q} e^{2 q \mathcal{J} \tilde{t}_{c}}$.
Scrambling time :
$C_{K}\left(\tilde{t}_{c}^{*}\right) \sim O(1) \Longrightarrow \tilde{t}_{c}^{*} \sim \frac{1}{2 q \mathcal{J}} \ln q$
$\tilde{t}_{c}^{*} \rightarrow 0$. Hence scrambling is instantaneous.
Violation of bound on chaos?

We can have following situations ${ }^{16}$ for $q \sim N^{\alpha}$:
$\alpha<1 / 2 \quad$ K-local, $\quad \alpha=1 / 2 \quad$ transition, $\quad \alpha>1 / 2$ - K-non-local
${ }^{16}$ L. Erdos and D. Schroeder- [arXiv:1407.1552].

We can have following situations ${ }^{16}$ for $q \sim N^{\alpha}$:
$\alpha<1 / 2 \quad$ K-local, $\quad \alpha=1 / 2 \quad$ transition, $\quad \alpha>1 / 2-\quad$ K-non-local
Hamburger moment problem: Suppose $w(x)$ is a distribution on \mathbb{R} whose moments $\left\{m_{0}, m_{2}, \cdots\right\}$ are all known. What is $w(x)$?
${ }^{16}$ L. Erdos and D. Schroeder- [arXiv:1407.1552].

We can have following situations ${ }^{16}$ for $q \sim N^{\alpha}$:
$\alpha<1 / 2 \quad$ K-local, $\quad \alpha=1 / 2 \quad$ transition, $\quad \alpha>1 / 2$ - K-non-local
Hamburger moment problem: Suppose $w(x)$ is a distribution on \mathbb{R} whose moments $\left\{m_{0}, m_{2}, \cdots\right\}$ are all known. What is $w(x)$?

Carleman's condition(sufficient)

$$
\lim _{N \rightarrow \infty} \sum_{n=1}^{N} m_{2 n}^{-1 / 2 n}=\infty \quad \longrightarrow \quad \lim _{N \rightarrow \infty} \sum_{n=1}^{N} \frac{1}{b_{n}}=\infty
$$

${ }^{16}$ L. Erdos and D. Schroeder- [arXiv:1407.1552].

We can have following situations ${ }^{16}$ for $q \sim N^{\alpha}$:
$\alpha<1 / 2 \quad$ K-local, $\quad \alpha=1 / 2 \quad$ transition, $\quad \alpha>1 / 2$ - K-non-local
Hamburger moment problem: Suppose $w(x)$ is a distribution on \mathbb{R} whose moments $\left\{m_{0}, m_{2}, \cdots\right\}$ are all known. What is $w(x)$?

Carleman's condition(sufficient)

$$
\lim _{N \rightarrow \infty} \sum_{n=1}^{N} m_{2 n}^{-1 / 2 n}=\infty \quad \longrightarrow \quad \lim _{N \rightarrow \infty} \sum_{n=1}^{N} \frac{1}{b_{n}}=\infty
$$

$\lim _{N \rightarrow \infty} \sum_{n=1}^{N} \frac{1}{b_{n}}=0 \quad$ Hamburger problem is indeterminate

[^2]
Summary and Future work

- Linear b_{n} doesn't necessary implies chaos.

Summary and Future work

- Linear b_{n} doesn't necessary implies chaos.
- Studied higher order corrections in q.

Summary and Future work

- Linear b_{n} doesn't necessary implies chaos.
- Studied higher order corrections in q.
- Hyperscrambling in DSSYK.

Summary and Future work

- Linear b_{n} doesn't necessary implies chaos.
- Studied higher order corrections in q.
- Hyperscrambling in DSSYK.
- Many body scrambling.

Summary and Future work

- Linear b_{n} doesn't necessary implies chaos.
- Studied higher order corrections in q.
- Hyperscrambling in DSSYK.
- Many body scrambling.
- Proving or deriving the operator growth hypothesis.

Thank You!

[^0]: ${ }^{4}$ A Universal Operator Growth Hypothesis arXiv:1812.08657.

[^1]: ${ }^{12}$ arXiv:1604.07818.
 ${ }^{13}$ arXiv:1811.02584.
 ${ }^{14}$ arXiv:2209.09999.
 ${ }^{15}$ arXiv:2205.00315..

[^2]: ${ }^{16}$ L. Erdos and D. Schroeder- [arXiv:1407.1552].

