Hyperuniform quantum states in quasicrystals

RIKEN Center for Emergent Matter Science

Shiro Sakai

Dec. 1, 2022

Quasicrystal: The third solid

Crystal without periodicity

1mm

Ho-Mg-Zn quasicrystal

I.R. Fischer, Mat. Sci. Eng. **294-296**, 10 (2000)

Shechtman *et al.,* PRL **53**, 1951 (1984).

Nobel Prize in Chem. (2011)

- Sharp Bragg spots → Ordered
- 10-fold rotational sym. \rightarrow *Aperiodic*

Diffraction pattern of Al-Mn alloy

Penrose tiling

Penrose, Inst. Math. Appl. Bull. 10, 266 (1974).

- Only two types of rhombuses $\sqrt{72^{\circ}}$
- 5-fold rotational sym. (incompatible with periodicity)

My interest: *Electronic property* on such structures

Various electronic distributions on Penrose tiling

Wave-function amplitudeCharge distributionSuperconductingMagnetizationT. Tokihiro et al.,
PRB 38, 5981 (1988)SS, R. Arita, and T. Ohtsuki,
PRB 105, 054202(2022)order parameter
SS et al. PRB 95, 024509 (2017)A. Koga and H. Tsunetsugu
PRB 102, 115125 (2020)

We can recognize some regularity in these distributions, but

what kind of regularity is it? How regular is it?

Can we capture and quantify the "regularity"?

Some of them are multifractal but not all!

Extended Hubbard model on Penrose tiling (Hartree-Fock approx.)

Charge distribution changes with average filling \overline{n} and interaction parameters (U and V).

- Translational symmetry breaking
- Multifractality
- Orderly structure

How can we characterize the "order"?

Hyperuniformity!

Hyperuniformity (1)

S. Torquato and F. H. Stillinger, Phys. Rev. E 68, 041113 (2003). S. Torquato, Physics Reports 745, 1 (2018)

Window
$$\Omega$$
: $\Theta(R - |\mathbf{r} - \mathbf{r}_c|)$ Θ : step function

$$N(R) = \sum_{i} \Theta(R - |\mathbf{r}_{i} - \mathbf{r}_{c}|)$$

: # of points inside the window

Variance of
$$N(R)$$
: $\sigma^2(R) = \overline{N(R)^2} - \left[\overline{N(R)}\right]^2$

(d: spatial dimension)

Random distribution: $\sigma^2(R) = O(R^d)$ Hyperuniform distribution: $\sigma^2(R) < O(R^d)$ at large R.

- Bulk contribution to $\sigma^2(R)$ vanishes.
- No large-scale fluctuation in the point density.

Hyperuniformity (2)

S. Torquato and F. H. Stillinger, Phys. Rev. E 68, 041113 (2003).

S. Torquato, Physics Reports 745, 1 (2018)

$$\sigma^{2}(R) \sim \begin{cases} R^{d-1} & \text{Class I} \\ R^{d-1} \ln R & \text{Class II} \\ R^{d-\alpha} (0 < \alpha < 1) & \text{Class III} \\ \end{array} \xrightarrow{} Periodic lattices \\ Quasiperiodic \\ lattices \end{cases}$$

Class-I hyperuniformity:
$$\sigma^2(R) = BR^{d-1} + O(R^{d-2})$$

Order metric

• Measure of "regularity"

Smaller B for "simpler" pattern

Hyperuniformity for density distribution

Original object: Point patterns

S. Torquato and F. H. Stillinger, PRE **68**, 041113 (2003).

Extension to random scalar field

S. Torquato, PRE **94**, 022122 (2016).
Z. Ma and S. Torquato, J. Appl. Phys. **121**, 244904 (2017).

Application to QC structure (point patterns):

- Lin, Steinhardt, and Torquato, JPCM 29, 204003 (2017); PRL 120, 247401 (2018).
- Oguz, Socolar, Steinhardt, and Torquato, PRB **95**, 054119 (2017).

Electron distribution on QC structure

First application to electron states in QC

 $N(R) = \sum_{i=1}^{N} n_i \Theta(R - |\mathbf{r}_i - \mathbf{r}_c|)$

SS, R. Arita, and T. Ohtsuki, PRB 105, 054202 (2022)

Hyperuniformity for density distribution

S. Torquato, Physics Reports 745, 1 (2018)

SS, R. Arita, and T. Ohtsuki, PRB 105, 054202 (2022)

$$\begin{split} N(R) &= \sum_{i=1}^{N} n_i \Theta(R - |\mathbf{r}_i - \mathbf{r}_c|) \\ \sigma^2(R) &= \overline{N(R)^2} - \left[\overline{N(R)}\right]^2 \\ &= AR^d + BR^{d-1} + O(R^{d-2}) \\ &\quad \text{at large } R \end{split}$$

With
$$A(R) \equiv \frac{\sigma^2(R)}{R^d}$$
 and $B(R) \equiv \frac{\sigma^2(R)}{R^{d-1}}$,
 $A = \lim_{R \to \infty} A(R)$

If A=0, the distribution is hyperuniform. Then,

$$B = \lim_{R \to \infty} B(R)$$

distinguishes different classes and gives the order metric for Class I.

Extended Hubbard model on Penrose tiling

Coordination number Z=3,4,5,6,7

SS and A. Koga, Mater. Trans. **62**, 380 (2021). SS, R. Arita, and T. Ohtsuki, PRB **105**, 054202 (2022).

$$\hat{H} = -t \sum_{\langle ij \rangle \sigma} (\hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + \text{H.c.}) - \mu \sum_{i\sigma} \hat{n}_{i\sigma}$$
$$+ U \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow} + V \sum_{\langle ij \rangle \sigma \sigma'} \hat{n}_{i\sigma} \hat{n}_{j\sigma'}$$

Hartree-Fock approx.

$$\sum_{i\sigma} \left[U \langle \hat{n}_{i\bar{\sigma}} \rangle + V \sum_{j:\text{n.n. of } i} n_j \right] \hat{n}_{i\sigma} - V \sum_{\langle ij \rangle \sigma} \langle \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} \rangle \hat{c}_{j\sigma}^{\dagger} \hat{c}_{i\sigma}$$

Depends on the n.n. geometry

V works differently from site to site.

→ Large modulation in charge distribution.

Hyperuniformity: Result

 \overline{B}_n : Normalized order metric

$$\bar{B}_{\rm n} \equiv \bar{B}/(\phi^{1/2}\bar{n}^2) \qquad \bar{B} \equiv \frac{1}{R_{\rm max} - R_{\rm min}} \int_{R_{\rm min}}^{R_{\rm max}} B(R) dR \qquad \phi \equiv \frac{\pi N}{4V}$$

Hyperuniformity: Result

Systematic change with el-el interactions.

- Smaller \overline{B}_n for larger U (i.e., more uniform n_i)
- Larger B_n for larger V (i.e., more modulated n_i)

\overline{B}_n offers a reasonable measure!

1D Aubry-André-Harper (AAH) model

S. Aubry and G. André, Ann. Israel Phys. Soc 3, 18 (1980). P. G. Harper, Proc. Phys. Soc. Sect. A 68, 874 (1955).

Hyperuniformity in AAH model

75025 sites Exact diag.

	Wave function	DOS at ω=0	Distribution of <i>n_i</i>	Hyperuniformity class of <i>n_i</i>
		0	Continuous	I.
λ<2t	Extended	≠0	Continuous	I
λ=2t	Critical	0	Continuous	I
		≠0	$ n - n_c ^{\alpha} (\alpha > 0)$	II
λ>2t	Localized	0	Continuous	I.
		≠0	Discontinuous	II

SS, R. Arita, and T. Ohtsuki, PR Research 4, 033241 (2022).

Nontrivial relationship between DOS, $\{n_i\}$, and hyperuniformity class.

Hyperuniformity phase diagram

SS, R. Arita, and T. Ohtsuki, PR Research 4, 033241 (2022).

Phase transition between different classes

So far, we have characterized the inhomogeneous density distributions only with *a single scalar B*.

Is it possible to quantify more details by extending the definition of B?

Multi-hyperuniformity (1)

Multi-hyperuniformity (2)

SS, R. Arita, and T. Ohtsuki, PR Research 4, 033241 (2022).

$$N_{q}(R) = \sum_{i=1}^{N} n_{i}^{q} \Theta(R - |\mathbf{r}_{i} - \mathbf{r}_{c}|)$$

 $\to \sigma_{\pmb{q}}^2(R) \propto B_{\pmb{q}} R^{d-1}$

Generalized order metric

{ q>0 : More contribution from larger n_i
 q<0 : More contribution from smaller n_i

Problem:

At $\mu = 0$, n_i distribution is symmetric around $\overline{n} = 0.5$, but \overline{B}_q is asymmetric w.r.t. q=0.

Multi-hyperuniformity (3)

SS, R. Arita, and T. Ohtsuki, PR Research 4, 033241 (2022).

Black curve (μ =0) is symmetric w.r.t. q=0.

 $\rightarrow \overline{B}_{q}^{\text{sym}}$ is asymmetric only when n_{i} distribution is asymmetric.

More details of density distribution are quantified.

Summary

- Charge distributions on quasiperiodic systems are not multifractal but hyperuniform.
 - Extended Hubbard model on Penrose tiling: Characterization by the hyperuniformity order metric.
- Phase transition between inhomogeneous charge distributions of different hyperuniformity classes.
 - AAH model:

"Charge-order" transition in the absence of translational symmetry.

 Multi-hyperuniformity to quantify more detailed structure of hyperuniform density distributions.

> SS, R. Arita, and T. Ohtsuki, PRB **105**, 054202(2022); PR Research **4**, 033241 (2022).