Many-body localization and quantum error correction in Sachdev-Ye-Kitaev type models

Novel Quantum States in Condensed Matter 2022
1 December 2022
Masaki TEZUKA (Kyoto Univ.)

SYK-related publications and collaborators

- Sachdev-Ye-Kitaev model
- Proposal for experiment: PTEP 2017, 083101 and arXiv:1709.07189
- with Ippei Danshita and Masanori Hanada
- Black Holes and Random Matrices: JHEP 1705(2017)118
- with J. S. Cotler, G. Gur-Ari, M. Hanada, J. Polchinski, P. Saad, S. H. Shenker, D. Stanford, and A. Streicher
- Scrambling time: JHEP 1807(2018)124 with Hrant Gharibyan, M. Hanada, and S. H. Shenker
- SYK4+2

Also see our reply [PRL 126, 109102 (2021)] to the comment by J. Kim and X. Cao [PRL 126, 109101 (2021)]

- Chaotic-integrable transition: PRL 120, 241603 (2018)
- with Antonio M. García-García, Bruno Loureiro, and Aurelio Romero-Bermúdez
- Characterization of quantum chaos: JHEP 1904(2019)082 and Phys. Rev. E 102, 022213 (2020)
- with Hrant Gharibyan, M. Hanada, and Brian Swingle
- Related setups:
- [short-range interactions] Phys. Rev. B 99, 054202 (2019) with A. M. García-García
- Uniform couplings: Phys. Lett. B 795, 230 (2019) and J. Phys. A 54, 095401 (2021) with Pak Hang Chris Lau, Chen-Te Ma, and Jeff Murugan

- Quantitative analysis of Fock-space localization in SYK4+2

- Many-body transition point and inverse participation ratio
- Phys. Rev. Research 3, 013023 (2021) with Felipe Monteiro, Tobias Micklitz, and Alexander Altland
- Entanglement entropy
- Phys. Rev. Lett. 127, 030601 (2021) with F. Monteiro, A. Altland, David A. Huse, and T. Micklitz
- Sparse SYK: arXiv:2208.12098 with Onur Oktay, Enrico Rinaldi, M. Hanada and Enrico Nori
- Quantum error correction: in preparation with Yoshifumi Nakata

Introduction

Chaos and scrambling in quantum many-body systems

Contents

- Out-of-time-ordered correlators and the SYK model
- Chaotic-integrable transition in SYK_{4+2}
- Fock space localization: eigenstate localization and entanglement
- Quantum error correction with SYK-type models
- Case of binary-coupling sparse SYK

Lyapunov exponent and out-of-time-order correlators (OTOC)

$$
F(t)=\left\langle\hat{W}^{\dagger}(t) \hat{V}^{\dagger}(0) \hat{W}(t) \hat{V}(0)\right\rangle W(t)=e^{i H t} W e^{-i H t}
$$

Classical chaos:

Infinitesimally different initial coords

Quantum dynamics:

$$
C_{T}(t)=\left\langle[\hat{x}(t), \hat{p}(0)]^{2}\right\rangle
$$

For operators V and W, consider $\left.C(t)=\left.\langle |[W(t), V(t=0)]\right|^{2}\right\rangle=\left\langle W^{\dagger}(t) V^{\dagger}(0) W(t) V(0)\right\rangle+\cdots$ [Wiener 1938][Larkin \& Ovchinnikov 1969]

$$
\text { OTOC } \sim e^{2 \lambda_{\mathrm{L}} t} \text { at long times, } \lambda_{\mathrm{L}}>0 \text { : chaotic }
$$

"Black holes are fastest quantum scramblers"
[P. Hayden and J. Preskill 2007] [Y. Sekino and L. Susskind 2008] [Shenker and Stanford 2014]
$\lambda_{\mathrm{L}} \leq 2 \pi k_{\mathrm{B}} T / \hbar$ (chaos bound)
[J. Maldacena, S. H. Shenker, and D. Stanford, JHEP08(2016)106]

Sachdev-Ye-Kitaev model

N Majorana- or Dirac- fermions with all-to-all Gaussian random couplings
[Majorana version]

$$
\widehat{H}=\frac{\sqrt{3!}}{N^{3 / 2}} \sum_{1 \leq a<b<c<d \leq N} J_{a b c d} \hat{\chi}_{a} \hat{\chi}_{b} \hat{\chi}_{c} \hat{\chi}_{d}
$$

[A. Kitaev: talks at KITP (2015)]
cf. SY model [S. Sachdev and J. Ye, PRL 1993] arXiv:cond-mat/9212030 (>1300 citations after 2015)
[Dirac version]
$\widehat{H}=\frac{1}{(2 N)^{3 / 2}} \sum_{i j ; k l} J_{i j ; k l} \hat{c}_{i}^{\dagger} \hat{c}_{j}^{\dagger} \hat{c}_{k} \hat{c}_{l}$
[A. Kitaev's talk]
[S. Sachdev: PRX 5, 041025 (2015)]

Studied for long time in the nuclear theory context
[French and Wong (1970)][Bohigas and Flores (1971)]
"Two-body Random Ensemble"

Solvable in the large- N limit, maximally chaotic, holographic correspondence to 1+1d gravity
\rightarrow Many variants of the model: bosonic, multiflavor, supersymmetric, nonhermitian, ...

Appendix of [Gharibyan, Hanada, Shenker, Tezuka: JHEPO7(2018)124] cf. [S. Torquato, Phys. Rep. 745, 1 (2018)]; S. Sakai's talk earlier today

Hyperuniform distribution of eigenvalues

- Shift the origin so that $\left\langle\epsilon_{j}\right\rangle=0$, rescale so that $\operatorname{Tr} H^{2}=\sum_{j} \epsilon_{j}^{2}=$ const.
- Unfold each sample using the density profile $\langle\rho(E)\rangle$. $\quad n(E, K)$: number of
- Compute the number variance $\Sigma^{2}(K)=\left\langle n^{2}(E, K)\right\rangle-\langle n(E, K)\rangle^{2}=\left\langle n^{2}(E, K)\right\rangle-K^{2}$.

Proposals for experimental realization

[I. Danshita, M. Hanada, MT: PTEP 2017, 083101 (2017)]
Ultracold fermions in optical lattice

+ photoassociation lasers
 N quanta of magnetic flux through a nanoscale hole

[A. Chen, R. Ilan, F. de Juan, D.I. Pikulin, M. Franz, PRL 121, 036403 (2018)]

Graphene flake with an irregular boundary in magnetic field

$$
\begin{gathered}
\hat{H}_{\mathrm{m}}=\sum_{s=1}^{n_{s}}\left\{\nu_{s} \hat{m}_{s}^{\dagger} \hat{m}_{s}+\sum_{i, j} g_{s, i j}\left(\hat{m}_{s}^{\dagger} \hat{c}_{i} \hat{c}_{j}-\hat{m}_{s} \hat{c}_{i}^{\dagger} \hat{c}_{j}^{\dagger}\right)\right\} . \\
\left|\nu_{s}\right| \gg\left|g_{s, i j}\right| \\
\hat{H}_{\mathrm{eff}}=\sum_{s, i, j, k, l} \frac{g_{s, i j} g_{s, k}}{\nu_{s}} \hat{c}_{i}^{\dagger} \hat{c}_{j}^{\dagger} \hat{c}_{k} \hat{c}_{l} .
\end{gathered}
$$

[^0]
NMR experiment for the SYK model

"Quantum simulation of the non-fermi-liquid state of Sachdev-
Ye-Kitaev model" Zhihuang Luo, Yi-Zhuang You, Jun Li, Chao-
Ming Jian, Dawei Lu, Cenke Xu, Bei Zeng and Raymond Laflamme, npj Quantum Information 5, 53 (2019)

$$
H=\frac{J_{i j k l}}{4!} \chi_{i} \chi_{j} \chi_{k} \chi_{l}+\frac{\mu}{4} C_{i j} C_{k l} \chi_{i} \chi_{j} \chi_{k} \chi_{l}
$$

$$
\chi_{2 i-1}=\frac{1}{\sqrt{2}} \sigma_{x}^{1} \sigma_{x}^{2} \cdots \sigma_{x}^{i-1} \sigma_{z}^{i}, \chi_{2 i}=\frac{1}{\sqrt{2}} \sigma_{x}^{1} \sigma_{x}^{2} \cdots \sigma_{x}^{i-1} \sigma_{y}^{i}
$$

$$
H=\sum_{s=1}^{70} H_{s}=\sum_{s=1}^{70} a_{i j k l}^{s} \sigma_{\alpha_{i}}^{1} \sigma_{\alpha_{j}}^{2} \sigma_{\alpha_{k}}^{3} \sigma_{\alpha_{l}}^{4}
$$

$$
e^{-i H \tau}=\left(\prod_{s=1}^{70} e^{-i H_{s} \tau / n}\right)^{n}+\sum_{s<s^{\prime}} \frac{\left[H_{s}, H_{s^{\prime}}\right] \tau^{2}}{2 n}
$$

$$
+O\left(|a|^{3} \tau^{3} / n^{2}\right)
$$

A. M. García-García, A. Romero-Bermúdez, B. Loureiro, and MT, Phys. Rev. Lett. 120, 241603 (2018)

Also see our reply [PRL 126, 109102 (2021)] to the comment by J. Kim and X. Cao [PRL 126, 109101 (2021)]
Q.: Minimum requirements for chaotic behavior? (\rightarrow gravity interpretation?) Study a simple model with analytical + numerical methods

Gaussian random couplings $J_{a b c d}$: average 0 , standard deviation $\frac{\sqrt{6} J}{N^{3 / 2}}$ $K_{a b}:$ average 0, standard deviation $\frac{K}{\sqrt{N}}$

$$
J=1: \text { unit of energy }
$$

Normalization here:

$$
\left\{\hat{\chi}_{a}, \hat{\chi}_{b}\right\}=\delta_{a b}
$$

SYK_{4} as unperturbed Hamiltonian, K controls the strength of SYK_{2} (one-body random term, solvable)

Here we take (GUE)

$$
N \equiv 2,6(\bmod 8)
$$

Both terms respect charge parity in complex fermion description
\rightarrow Full numerical exact diagonalization (ED) of $2^{N / 2-1}$-dimensional matrix, $N \lesssim 34$ possible

Large- N calculation for Out-of-Time Order Correlator (OTOC)

Deviation from the chaos bound as SYK_{2} component is introduced

RMT-like behavior lost as SYK_{2} term is introduced

$P(s)$: level spacing distribution
Ratio of consecutive level spacing $E_{i+1}-E_{i}$ to the local mean level spacing Δ (requires unfolding of the spectrum)
SYK_{4} limit (small K):
Obeys random matrix theory (RMT)
(GUE (Gaussian Unitary Ensemble) if $N \equiv 2,6(\bmod 8)$)
SYK $_{2}($ large $K)$: Poisson $\left(e^{-S}\right)$
$N=30$, Central 10% of eigenvalues
Also see: T. Nosaka, D. Rosa, and J. Yoon, JHEP 1809, 041 (2018) for other symmetry cases

$\mathrm{SYK}_{q \geq 4}+\mathrm{SYK}_{2}:$ breakdown of chaos

$$
\widehat{H}=\sum_{1 \leq a<b<c<d}^{N} \underset{J_{a b c a} \hat{\chi}_{a} \hat{\chi}_{b} \hat{\chi}_{c} \hat{\chi}_{d}}{\mathrm{SYK}_{1}+i} \sum_{1 \leq a<b}^{N} \underset{K_{a b} \hat{x}_{a} \hat{\chi}_{b}}{\mathrm{SYK}_{N}} \quad K_{a b}: \text { standard deviation }=\kappa / \sqrt{N}
$$

\rightarrow Understood as localization of the many-body wave function in Fock space

Many-body localization

- Anderson localization: concept in non-interacting systems
- Localization of wavefunctions due to scatterings at impurities
- Many experiments in cold atom gases, optical fibers, etc.
- MBL: does localization occur in interacting systems?
[Gornyi, Mirlin, Polyakov 2005, Basko, Aleiner, Altshuler 2006, Oganesyan and Huse 2007, ... many others]
- Memory of initial conditions remains accessible at long times
- Reduced density matrix on a subsystem does not approach a thermal one
- Energy eigenstates do not obey Eigenstate Thermalization Hypothesis (ETH)
- Area law, rather than volume law, of entanglement entropy
- "Standard model": spin-1/2 Heisenberg model + random field in z direction
- Much debate on the location of the localization transition

$$
\begin{aligned}
& \widehat{H}=\sum_{i}^{N} \widehat{S_{i}} \cdot \widehat{S_{i+1}}+\sum_{i}^{N} h_{i} \widehat{S_{i}^{z}} \\
& h_{i} \in[-h, h] \text { uniform distribution }
\end{aligned}
$$

F. Monteiro, T. Micklitz, MT, and A. Altland, Phys. Rev. Research 3, 013023 (2021)

Our model and choice of basis

$\mathrm{SYK}_{4}+\delta \mathrm{SYK}_{2}$

$$
\hat{H}=-\sum_{1 \leq a<b<c<d}^{N=2 N_{\mathrm{D}}} J^{\prime}{ }_{a b c a} \hat{\psi}_{a} \hat{\psi}_{b} \hat{\psi}_{c} \hat{\psi}_{d}+i \sum_{1 \leqslant a<b}^{N} K_{a b} \hat{\psi}_{a} \hat{\psi}_{b}
$$

Block-diagonalize the SYK_{2} part (the skew-symmetric matrix $\left(K_{a b}\right)$ has eigenvalues $\pm v_{j}$)

$$
\widehat{H}=-\sum_{1 \leq a<b<c<d}^{2 N_{\mathrm{D}}} J_{a b c d} \hat{\chi}_{a} \hat{\chi}_{b} \hat{\chi}_{c} \hat{\chi}_{d}+i \sum_{1 \leq j \leq N}^{2 N_{\mathrm{D}}} v_{j} \hat{\chi}_{2 j-1} \hat{\chi}_{2 j}
$$

Normalization of $J_{a b c d}, v_{j}$: SYK_{4} bandwidth = 1, Width of v_{j} distribution $=\delta$

We choose $\left\{\hat{\psi}_{a}, \hat{\psi}_{b}\right\}=\left\{\hat{\chi}_{a}, \hat{\chi}_{b}\right\}=2 \delta_{a b}$ as the normalization for the $N=2 N_{\mathrm{D}}$ Majorana fermions. For $\hat{c}_{j}=\frac{1}{2}\left(\hat{\chi}_{2 j-1}+\mathrm{i} \hat{\chi}_{2 \mathrm{j}}\right)$ we have $\left\{\hat{c}_{i}, \hat{c}_{j}^{\dagger}\right\}=\delta_{i j}$.
F. Monteiro, T. Micklitz, MT, and A. Altland, Phys. Rev. Research 3, 013023 (2021)

Our model and choice of basis

$$
N=2 N_{\mathrm{D}}=14: 2^{7}=128 \text { states }
$$

Basis diagonalizing the complex fermion number operators $\hat{n}_{j}=\hat{c}_{j}^{\dagger} \hat{c}_{j} \rightarrow$ Sites: the $2^{N_{\mathrm{D}}}$ vertices of an N_{D}-dim. hypercube.

$$
\begin{aligned}
& \widehat{H}=-\sum_{1 \leq a<b<c<d}^{2 N_{\mathrm{D}}} J_{a b c d} \hat{\chi}_{a} \hat{\chi}_{b} \hat{\chi}_{c} \hat{\chi}_{d}+i \sum_{1 \leq j \leq N}^{N_{\mathrm{D}}} v_{j} \hat{\chi}_{2 j-1} \hat{\chi}_{2 j}=\frac{1}{2}\left(\hat{\chi}_{2 j-1}+\hat{\mathrm{i}}_{2 \mathrm{j}}\right) \\
& =-\sum_{1 \leq a<b<c<d}^{2 N_{\mathrm{D}}} J_{a b c d} \hat{\chi}_{a} \hat{\chi}_{b} \hat{\chi}_{c} \hat{\chi}_{d}+\sum_{1 \leq j \leq N}^{N_{\mathrm{D}}} v_{j}\left(2 \hat{n}_{j}-1\right)
\end{aligned}
$$

Each term of SYK_{4} connects vertices with distance $=0,2,4$.

For $N=14$, each vertex is directly connected with
1 (distance=0, itself) +21 (distance= 2) +35 (distance=4) vertices out of the possible $2^{N}=128$ (64 per parity).

Method: Exact matrix integral representation; mapping to a supersymmetric sigma model;
saddle point equations; effective medium approximation

- I: Average density of states (ADoS) at band center $v=c D$
- $\left.\left.I_{q} \equiv\langle |\langle\psi \mid n\rangle\right|^{2 q} \delta\left(E_{\psi}\right)\right\rangle_{J}=q!D^{1-q}$

Fully delocalized

- II. ADOS $v=\frac{c D}{\sqrt{N_{D} \delta}} \quad$ SYK4 bandwidth=1
- II: $\operatorname{ADoS} v=\frac{c D}{\sqrt{N_{\mathrm{D}}} \delta}$, spread of wave functions $D_{\text {res }} \simeq \frac{D}{\sqrt{N_{\mathrm{D}}} \delta}$

$$
\text { - } I_{q}=q!D_{\mathrm{res}}^{1-q}
$$

Restricted

PRR 3, 013023 (2021)

$\left(N_{\mathrm{D}}=\frac{N}{2}, c=O(1), D=2^{N_{\mathrm{D}}-1}\right)$

Eigenenergy spectral

statistics (for odd N case for simplicity)
$\widetilde{K}(s)=1-\frac{\sin ^{2} s}{s^{2}}+\delta\left(\frac{s}{\pi}\right)$,
$s=\pi \omega v$ in I, II, III :
agrees with Gaussian
Unitary Ensemble (GUE)

- IV: All eigenstates localized to $\mathcal{O}(1)$ sites

> IV: Poisson statistics

PRR 3, 013023 (2021)

Inverse participation ratio for Regime III

 IPR $I_{2}=$ average of $\sum_{n}|\langle\psi \mid n\rangle|^{4}$ for normalized $\psi, \frac{1}{D} \leq I_{2} \leq 1$

$$
I_{q}=\frac{q(2 q-3)!!}{\delta^{2(1-q)}}\left(\frac{\pi D}{4 \sqrt{N_{\mathrm{D}}}}\right)^{1-q}=q(2 q-3)!!\left(\frac{4 \sqrt{N_{\mathrm{D}}} \delta^{2}}{2^{N-1} \pi}\right)^{q-1} \text { in III }
$$

Higher moments of eigenvectors

PRR 3, 013023 (2021)
Analytical prediction:

$$
I_{q}=\frac{q(2 q-3)!!}{\delta^{2(1-q)}}\left(\frac{\pi D}{4 \sqrt{N_{\mathrm{D}}}}\right)^{1-q}=q(2 q-3)!!\left(\frac{4 \sqrt{N_{\mathrm{D}}} \delta^{2}}{2^{N-1} \pi}\right)^{q-1} \text { in III }
$$

Good agreement up to large q for $\delta \sim 1$

PRR 3, 013023 (2021)

Spectral statistics: gap ratio distribution

Measure difference by KullbackLeibler (KL) divergence: $D_{\mathrm{KL}}(P \| Q)=\sum_{x} P(x) \log \frac{P(x)}{Q(x)}$.
(Analytical prediction: $\delta_{\mathrm{c}}=\frac{Z}{\sqrt{2 \rho}} W(2 Z \sqrt{\pi})=38.47$)

PRR 3, 013023 (2021)

Departure from random matrix $P(r)$ occurs after IPR $\left(I_{2}\right)$ has grown significantly

F. Monteiro, MT, A. Altland, D. A. Huse, and T. Micklitz, PRL 127, 030601 (2021)

Entanglement entropy for eigenstates

Zero-energy eigenstate $|\psi\rangle$, density matrix $\rho=|\psi\rangle\langle\psi|$

$$
\text { Reduced density matrix } \rho_{A}=\operatorname{tr}_{B} \rho
$$

$$
\text { Entanglement entropy } S_{A}=-\operatorname{tr}_{A}\left(\rho_{A} \ln \rho_{A}\right)
$$

Replica method: Evaluate disorder averaged moments $M_{r}=\left\langle\operatorname{tr}_{A}\left(\rho_{A}^{r}\right)\right\rangle, S_{A}=-\left.\partial_{r} M_{r}\right|_{r=1}$.
Fock space $\mathcal{F}=\mathcal{F}_{A} \otimes \mathcal{F}_{B}$

$$
n=(l, m)
$$

$$
\mathcal{N}=\left(n^{1}, n^{2}, \ldots, n^{r}\right), \mathcal{N}_{A}=\left(l^{1}, l^{2}, \ldots, l^{r}\right), \mathcal{N}_{B}=\left(m^{1}, m^{2}, \ldots, m^{r}\right)
$$

$\|\psi\rangle$	$\langle\psi\|$
0	0
l	\bar{l}
m	\bar{m}
0	0

$$
\rho_{A}^{r}=\sum_{\substack{l_{1}, \ldots, l^{r} \\ m^{1}, \ldots, m^{r}}} \psi^{\left(l^{1}, m^{1}\right)} \bar{\psi}^{\left(l^{2}, m^{1}\right)} \psi^{\left(l^{2}, m^{2}\right)} \bar{\psi}^{\left(l^{3}, m^{2}\right)} \cdots \psi^{\left(l^{r}, m^{r}\right)} \bar{\psi}^{\left(l^{1}, m^{r}\right)}
$$

Evaluation of power of reduced density matrix

$$
\rho_{A}^{r}=\sum_{\substack{n^{1}, \ldots, l^{r} \\ m^{1}, \ldots, m^{r}}} \psi^{\left(l^{1}, m^{1}\right)} \bar{n}^{1} \bar{\psi}^{\left(l^{2}, m^{1}\right)} \psi^{\left(l^{2}, m^{2}\right)} \bar{\psi}^{\left(l^{3}, m^{2}\right)} \cdots \psi^{\left(l^{r}, m^{r}\right)} \bar{\psi}^{\left(l^{1}, m^{r}\right)}
$$

For this sum to survive disorder averaging,

$$
\begin{aligned}
& \mathcal{N}=\left(n^{1}, n^{2}, \ldots, n^{r}\right) \text { and } \overline{\mathcal{N}}=\left(\bar{n}^{1}, \bar{n}^{2}, \ldots, \bar{n}^{r}\right) \text { should be equal as sets, } \\
& \mathcal{N}^{i}=\overline{\mathcal{N}}^{\sigma(i)}
\end{aligned}
$$

PRL 127, 030601 (2021)

Regime I: maximally random case

$$
D_{A(B)}=2^{N_{A(B)}-1}
$$

Uniform distribution of wave functions, $v_{n}=v$

$$
M_{r}=\left\langle\operatorname{tr}_{A}\left(\rho_{A}^{r}\right)\right\rangle, S_{A}=-\left.\partial_{r} M_{r}\right|_{r=1}
$$

$$
M_{r} \approx D_{A}^{1-r}+\binom{r}{2} D_{A}^{2-r} D_{B}^{-1}
$$

Up to single transpositions
Difference from the thermal value $S_{\text {th }}=\ln D_{A}$

$$
S_{A}-S_{\mathrm{th}}=-\frac{D_{A}}{2 D_{B}}
$$

Exponentially small if $N_{A} \ll N_{B}$; S_{A} very close to the thermal value

$$
\left.M_{r}=\left\langle\operatorname{tr}_{A}\left(\rho_{A}^{r}\right)\right\rangle=\left.\sum_{\sigma} \sum_{\mathcal{N}} \prod_{i=1}^{r}\langle | \psi_{n^{i}}\right|^{2}\right\rangle \delta_{\mathcal{N}_{A},(\sigma \circ \tau) \mathcal{N}_{A}} \delta_{\mathcal{N}_{B}, \sigma \mathcal{N}_{B}}
$$

Regimes II and III: reduced effective dimension

- Assume ergodicity and calculate S_{A}
- Energy shell: extended cluster of resonant sites (width κ) embedded in the Fock space
- Neighboring sites of n : energy $v_{m}=$ $v_{n} \pm \mathcal{O}(\delta)$, much more likely to be in the same shell because $\delta \ll \Delta_{2}=\sqrt{N_{\mathrm{D}}} \delta$

Additional assumptions

- Exponentially large number of sites \rightarrow self averaging
(sum over site energies = average over approx. Gaussian distributed contributions of subsystem energies to the total energy)
- Total energy $E \sim E_{A}+E_{B}$
\rightarrow Up to single transpositions (justified in $1 \ll N_{A} \ll N_{\mathrm{D}} \&$ replica limit):

$$
S_{A}-S_{\mathrm{th}}=-\frac{1}{2} \ln \left(\frac{N_{\mathrm{D}}}{N_{B}}\right)+\frac{N_{A}}{2 N_{D}}-\sqrt{\frac{N_{\mathrm{D}}}{2 N_{A}}} \frac{D_{A}}{2 D_{B}}\left(\frac{1}{\sqrt{N_{\mathrm{D}}}}<\delta<\delta_{\mathrm{c}} \sim N_{\mathrm{D}}^{2} \ln N_{\mathrm{D}}\right)
$$

$S_{A}-S_{\mathrm{th}}=-\frac{D_{A}}{2 D_{B}}$
in Regime I

PRL 127, 030601 (2021)

Offset from the thermal value

$N_{\mathrm{D}}=14$ ($N=28$ Majorana fermions)

$$
S_{A}-S_{\mathrm{th}}=-\frac{1}{2} \ln \left(\frac{N_{\mathrm{D}}}{N_{B}}\right)+\frac{N_{A}}{2 N_{D}}-\sqrt{\frac{N_{\mathrm{D}}}{2 N_{A}}} \frac{D_{A}}{2 D_{B}}(<0)
$$

in Regimes II, III $\left(\frac{1}{\sqrt{N_{\mathrm{D}}}} \ll \delta<\delta_{\mathrm{C}} \sim N_{\mathrm{D}}^{2} \ln N_{\mathrm{D}}\right)$

$$
D_{A(B)}=2^{N_{A(B)}-1}
$$

Phys. Rev. Lett. 120, 241603 (2018) arXiv:1707.02197 (poster at NQS2017)

with A. M. García-García, A. Romero-Bermúdez, and B. Loureiro Phys. Rev. Research 3, 013023 (2021) arXiv:2005.12809 with Felipe Monteiro, Tobias Micklitz, and Alexander Altland Phys. Rev. Lett. 127, 030601 (2021) arXiv:2012.07884 with F. Monteiro, A. Altland, David A. Huse, and T. Micklitz

- SYK_{4+2} : maximally chaotic to integrable transition
- Analytically tractable model for many-body localization (MBL)
- Fock space: (N/2)-dimensional hypercube
- Analytical results on eigenfunction moments and MBL point
\rightarrow Agreement with numerical results without free paramters
- Evaluation of entanglement entropy S_{A} assuming ergodicity in energy shells
\rightarrow Agreement between our numerical and analytical results

Quantum error correction: The Hayden-Preskill protocol

- Alice: throws k-qubit quantum information A into a box $B_{\text {in }}$
- Bob: knows the original state of B_{in} and the Hamiltonian \widehat{H}_{S} of $S=A+B_{\text {in }}$
- Bob obtains ℓ qubits $S_{\text {out }}$ after time t. Can Bob decode (D) Alice's secret?

Black holes: fast scrambling; information recovery for $\ell \sim k$

P. Hayden and J. Preskill, "Black holes as mirrors: quantum information in random subsystems" JHEP 0709 (2007) 120 Circular unitary (Haar) ensemble was assumed

Quantum error correction: The Hayden-Preskill protocol

Recovery error

$$
\begin{aligned}
& \quad \Delta_{\widehat{H}}(t, \beta)=\frac{1}{2} \min _{\mathcal{D}: \mathrm{CPTP}}\left|\Phi^{A R}-\mathcal{D}\left(\Psi_{\text {fin }}^{S_{\text {out }} B_{\text {out }} R}(t, \beta)\right)\right|_{1} \\
& \text { is generally hard to compute... } \quad\left(|M|_{1} \equiv \operatorname{Tr} \sqrt{M^{\dagger} M}\right)
\end{aligned}
$$

Decoupling approach: for \mathcal{D} to succeed, $\rho_{S_{\text {in }} R}=\operatorname{Tr}_{B_{\text {out }}} \operatorname{Tr}_{S_{\text {out }}}|\psi(t)\rangle\langle\psi(t)|$
cannot have correlation between $S_{\text {in }}$ and R

$$
\begin{gathered}
\begin{array}{c}
\begin{array}{c}
\psi(t) \\
=\psi_{S_{\text {in }} S_{\text {out }} R B_{\text {out }}}(t)
\end{array} \\
\bar{\Delta}_{\widehat{H}}(t, \beta) \equiv \min \left\{\begin{array}{c}
1, \sqrt{\left|\rho_{S_{\text {in }} R}-\rho_{S_{\text {in }}} \otimes \frac{I_{R}}{d_{R}}\right|} \\
U
\end{array}\right. \\
\\
\left(\rho_{S_{\text {in }}}=\operatorname{Tr}_{R} \rho_{S_{\text {in }} R}\right)
\end{array} \\
\begin{array}{ll}
\psi_{A B_{\text {in }} R B_{\text {out }}}(t=0) & \text { satisfies } \Delta_{\widehat{H}}(t, \beta) \leq \bar{\Delta}_{\widehat{H}}(t, \beta) ; \\
=\rho_{B_{\text {in }} B_{\text {out }}} \otimes \Phi_{A R} & \bar{\Delta}_{\widehat{H}}(t, \beta) \text { gives a decoding error estimate }
\end{array}
\end{gathered}
$$

Quantum error correction: The Hayden-Preskill protocol

Decoupling approach: for \mathcal{D} to succeed, $\rho_{S_{\text {in }} R}=\operatorname{Tr}_{B_{\text {out }}} \operatorname{Tr}_{S_{\text {out }}}|\psi(t)\rangle\langle\psi(t)|$
cannot have correlation between $S_{\text {in }}$ and R

$$
\bar{\Delta}_{\overparen{H}}(t, \beta) \equiv \min \left\{1, \sqrt{\left|\rho_{S_{\mathrm{in}} R}-\rho_{S_{\mathrm{in}}} \otimes \frac{I_{R}}{d_{R}}\right|_{1}}\right\}
$$

gives a decoding error estimate

Haar random unitary case:

$$
\begin{gathered}
\bar{\Delta}_{\text {Haar }}(\beta)=\min \left\{1,2^{\frac{1}{2}}\left(\ell_{\text {Haar, th }}(\beta)-\ell\right)\right\} \\
\ell_{\text {Haar, th }}(\beta)=\frac{N+k-H(\beta)}{2} \stackrel{\beta \rightarrow 0}{\rightarrow} k
\end{gathered}
$$

$\bar{\Delta}_{\text {Haar }}$ exponentially decreases as
function of ℓ after $\ell \approx k$ [HP recovery]

Models for \widehat{H}_{S} and quantum error correction (QEC)

2. One-dimensional spin chains

$$
\widehat{H}_{\text {Ising }}=-J \sum_{\langle j, k\rangle} S_{j}^{Z} S_{k}^{Z}-g \sum_{j} S_{j}^{x}-h \sum_{k} S_{k}^{Z}
$$

$g=0$ or $h=0$: integrable, far from integrable lines: chaotic

$$
\begin{gathered}
\text { Heisenberg chain }+ \text { random field } \\
\widehat{H}_{\mathrm{XXZ}}=\sum_{\langle j, k\rangle} S_{j} \cdot S_{k}+\sum_{j} h_{j} S_{j}^{Z}, h_{j} \in[-W, W]
\end{gathered}
$$

The Sachdev-Ye-Kitaev (SYK) model

$$
\widehat{H}=\sum_{1 \leq a<b<c<d \leq 2 N} J_{a b c d} \hat{\chi}_{a} \hat{\chi}_{b} \hat{\chi}_{c} \hat{\chi}_{d}
$$

$\hat{\chi}_{a=1,2, \ldots, 2 N}: 2 N$ Majorana fermions $\left(\left\{\hat{\chi}_{a}, \hat{\chi}_{b}\right\}=2 \delta_{a b}\right)$
$J_{a b c d}$: independent Gaussian random couplings
$\left(J_{a b c d}{ }^{2}=J^{2}, \overline{J_{a b c d}}=0\right)$;
Normalization: SYK half-bandwidth $\sqrt{\frac{\left\langle\operatorname{Tr} \hat{H}^{2}\right\rangle}{2^{N}}}=1$
[Maldacena, Shanker, and
Stanford, JHEP08(2016)106]

- Solvable in the large- N limit
- Maximally chaotic ($\lambda_{\text {Lyapunov }} \rightarrow 2 \pi k_{\mathrm{B}} T / \hbar$: chaos bound)
- Correspondence to $1+1$ d gravity, random matrix
$\rightarrow \bar{\Delta}$ reaches the Haar value quickly $(t \sim \sqrt{N})$

Result for SYK4+2
 $$
\widehat{H}=\sum_{1 \leq a<b<c<d}^{N_{\mathrm{Maj}}=2 N} J_{a b c d^{\prime}}{\widehat{\chi^{\prime}}}_{a}^{\prime} \widehat{\chi}^{\prime}{ }_{b} \widehat{\chi}_{c}^{\prime}{ }_{c} \widehat{\chi}_{d}^{\prime}+i \sum_{1 \leq a<b}^{N_{\mathrm{Maj}}} K_{a b} \widehat{\chi}_{a}^{\prime} \widehat{\chi}_{b}^{\prime}=\cos \theta \widehat{H}_{\mathrm{SYK}_{4}}+\sin \theta \widehat{H}_{\mathrm{SYK}_{2}}
$$

Small entanglement

Intermediate δ : eigenstates in restricted part of Fock space, within which they are thermally distributed

Intermediate δ : plateau!

Sparse (or pruned) SYK

$$
\begin{aligned}
& \widehat{H}=\sum_{a<b<c<d} x_{a b c a} J_{a b c d} \hat{\chi}_{a} \hat{\chi}_{b} \hat{\chi}_{c} \hat{\chi}_{d}, x_{a b c d}=\left\{\begin{array}{ll}
1 & (\text { probability } p) \\
0 & (\text { probability } 1-p)
\end{array}, P\left(J_{a b c d}\right)=\frac{\exp \left(-\frac{J_{a b c d}^{2}}{2 J^{2}}\right)}{\sqrt{2 \pi J^{2}}}\right. \\
& K_{\text {cpl }}=\binom{N}{4} p: \text { Number of non-zero } x_{a b c d} \\
& \begin{array}{l}
K_{\text {cpl }} \sim \mathcal{O}(1) N \text { enough for } \\
\\
\quad \text { Random matrix-like behavior } \\
\\
\text { Large entropy per fermion at low } T!
\end{array} \\
& p \sim \frac{4!}{N^{3}}=\mathcal{O}\left(N^{-3}\right)
\end{aligned}
$$

- Talk by Brian Swingle at Simons Center (18 September 2019)
- "Sparse Sachdev-Ye-Kitaev model, quantum chaos and gravity duals" A. M. García-García, Y. Jia, D. Rosa, J. J. M. Verbaarschot, Phys. Rev. D 103, 106002 (2021)
- "A Sparse Model of Quantum Holography" S. Xu, L. Susskind, Y. Su, and B. Swingle, arXiv:2008.02303
- "Spectral Form Factor in Sparse SYK models" E. Cáceres, A. Misobuchi, and A. Raz, JHEP 2208, 236 (2022)

Article Published: 30 November 2022

Traversable wormhole dynamics on a quantum processor

Daniel Jafferis, Alexander Zlokapa, Joseph D. Lykken, David K. Kolchmeyer, Samantha I. Davis, Nikolai Lauk, Hartmut Neven $\&$ Maria Spiropulu \square

Nature 612, 51-55 (2022) \mid Cite this article

Quanta Magazine (30 November 2022)

quantum gravity
Physicists Create a Wormhole Using a Quantum Computer by Natalie wolchover | November 30, 2022 - 3 |

The unprecedented experiment explores the possibility that space-time somehow emerges from quantum information

Fig. 2: Learning a traversable wormhole Hamiltonian from the SYK model.

(Symmetric injection/readout time)

(Fixed injection time $-t_{0}=-2.8$)

$$
\begin{gathered}
H_{\mathrm{L}, \mathrm{R}}=-0.36 \psi^{1} \psi^{2} \psi^{4} \psi^{5}+0.19 \psi^{1} \psi^{3} \psi^{4} \psi^{7}-0.71 \psi^{1} \psi^{3} \psi^{5} \psi^{6} \\
+0.22 \psi^{2} \psi^{3} \psi^{4} \psi^{6}+0.49 \psi^{2} \psi^{3} \psi^{5} \psi^{7},
\end{gathered}
$$

\rightarrow Realized on the Google Sycamore processor (nine-qubit circuit of 164 two-qubit, 295 single-qubit gates)

Sparse (or pruned) SYK with interaction $= \pm \mathbf{1}$

$$
\begin{aligned}
\widehat{H}= & C_{N, p} \sum_{1 \leq a<b<c<d \leq N} x_{a b c a} \hat{\chi}_{a} \hat{\chi}_{b} \hat{\chi}_{c} \hat{X}_{d}, x_{a b c d}=\left\{\begin{array}{cc}
1 & (\text { (probability } p / 2) \\
-1 & (\text { probability } p / 2) \\
0 & (\text { probability } 1-p)
\end{array}\right. \\
& \text { Random-matrix statistics for } K_{\text {cpl }}=\binom{N}{4} p \gtrsim N .
\end{aligned}
$$

```
cf. Non-Gaussian disorder average [T. Krajewski, M. Laudonio, R. Pascalie, and A. Tanasa, PRD 99, 126014 (2019)];
Kitaev's talk (2015)
```

$x_{a b c d}$ can be taken to be +1 at finite $p \ll 1$ (unary sparse SYK, see appendix of 2208.12098), however at $p=1$, the model is not chaotic [P. H. C. Lau, C.-T. Ma, J. Murugan, and MT, J. Phys. A. 54, 095401 (2021)]
M. Tezuka, O. Oktay, E. Rinaldi, M. Hanada, and F. Nori, arXiv:2208.12098

$\langle r\rangle$ as a function of $K_{\text {cpl }}$: approach RMT value

$$
\begin{gathered}
\text { Neighboring gap ratio } \\
r=\frac{\min \left(e_{i+1}-e_{i}, \quad e_{i+2}-e_{i+1}\right)}{\max \left(e_{i+1}-e_{i}, \quad e_{i+2}-e_{i+1}\right)}
\end{gathered}
$$

	Uncorrelated	GOE	GUE	GSE	
$\langle r\rangle$	2log $2-1=$ 0.38629...	$0.5307(1)$	$0.5996(1)$	$0.6744(1)$	
[Y. Y. Atas et al. PRL 2013]					

M. Tezuka, O. Oktay, E. Rinaldi, M. Hanada, and F. Nori, arXiv:2208.12098

Spectral form factor

Clear ramp for $K_{\text {cpl }} \gtrsim N$, coincides with the dense SYK as $N \rightarrow$ large

M. Tezuka, O. Oktay, E. Rinaldi, M. Hanada, and F. Nori, arXiv:2208.12098

Modified SFF (focus on band center)

$$
h(\alpha, t, \beta)=\frac{|Y(\alpha, t, \beta)|^{2}}{Y(\alpha, 0, \beta)^{2}}, Y(\alpha, 0, \beta)=\sum_{j} e^{-\alpha \epsilon_{j}^{2}-(\beta+i t) \epsilon_{j}}
$$

- Binary-coupling sparse model: rigidity of the eigenenergy spectrum \sim Gaussian-coupling model with twice as large $K_{\text {cpl }}$

$\bar{\Delta}_{\widehat{H}}(t, \beta)$ for binary-coupling sparse SYK

Time dependence: approach (binary-coupling \& Gaussian) dense model as $K_{\text {cpl }}$ is increased

Late-time value:
very close to the Haar value $2^{\frac{1-\ell}{2}}$, indistinguishable for $K_{\text {cpl }} \gtrsim 3 N$
$\bar{\Delta}_{\widehat{H}}(t, \beta)$ for binary-coupling sparse SYK

Time dependence: approach (binary-coupling \& Gaussian) dense model as $K_{\text {cpl }}$ is increased

Late-time value:
very close to the Haar value $2^{\frac{1-\ell}{2}}$, indistinguishable for $K_{\text {cpl }} \gtrsim 3 N$

$\bar{\Delta}_{\widehat{H}}(t, \beta)$ for binary-coupling sparse SYK

Time dependence: approach (binary-coupling \& Gaussian) dense model as $K_{\text {cpl }}$ is increased

Late-time value:
very close to the Haar value $2^{\frac{k-\ell}{2}}$, indistinguishable for $K_{\text {cpl }} \gtrsim 3 N$

Scaling

Normalization: SYK half-bandwidth
$\sqrt{\frac{\left\langle\operatorname{Tr} \hat{H}^{2}\right\rangle}{2^{N}}}=1, \hbar=1$

- The Haar value $\bar{\Delta}=2^{\frac{k-\ell}{2}}$ is reached after $t \sim \mathcal{O}(\sqrt{N})$

Summary

SYK-like models with long-range couplings

[2208.12098]

- $K_{\text {cpl }} \ll N$: additional degeneracy
- $K_{\text {cpl }} \gtrsim N$: realize chaotic spectrum more efficiently than Gaussian

Error decays to \sim Haar value in $t \sim \sqrt{N}$

Quantum error correction by scrambling Hamiltonian

 dynamics [Yoshifumi Nakata and MT, in preparation][PRL 120, 241603; PRR 3, 013023; PRL 127, 030601]

- $\delta \propto \tan \theta \ll 1: \mathrm{SYK}_{4}$
- $\delta=\mathcal{O}(1)$: chaotic spectrum but eigenstates restricted in Fock space; entanglement entropy has plateau
- $\delta \gg 1$: many-body localization

Error increases before many-body localization

[^0]: Approximately Gaussian if many levels are used

