Mesoscopic transport with ultracold atomic gases

Shun Uchino

Japan Atomic Energy Agency

- Small sample (conduction channel) attached to macroscopic reservoirs
- Electric current induced by external bias voltage

C. Rossler et al., APL 93, 071107 (2008)

Fractional charge / measurement in FQHE

R. de-Picciotto et al., Nature **389**, 162 (1997); L. Saminadyar et al., PRL **79**, 2526 (1997).

Mesoscopic system w/ cold atoms

Two-terminal setup realized by Esslinger's group at ETH

2.0

- Atomic current (charge neutral)
- Current induced by biases on thermodynamic quantities (chemical potential, temperature)

~500 µm

Why cold atoms?

Control of quantum statistics

S. Eckel et al., PRA 93, 063619 (2016).

(AEA) Transport in strongly-interacting Fermi gases A

(IEA) Transport in strongly-interacting Fermi gases

(AEA) Mesoscopic system + dissipation (atom loss)

Experimental results were interpreted with a phenomenological non-Hermitian Landauer-Büttiker analysis

(AEA) Mesoscopic system + dissipation (atom loss)

Current formula of lossy point contact

SU, arXiv:2206.09088 (PRA in press)

$$I = \int \frac{d\omega}{2\pi} \Big[\mathcal{T}(\omega) + \frac{\mathcal{L}(\omega)}{2} \Big] [n_L(\omega) - n_R(\omega)] \qquad \begin{array}{l} \mathcal{T}(\omega) : \text{transmittance} \\ \mathcal{L}(\omega) : \text{loss probability} \end{array}$$

- Obtained with an analysis based on Keldysh+ Lindblad formalism or three-terminal Landauer-Büttiker analysis
- Consistent with the non-Hermitian Landauer-Büttiker analysis

(AFA) Strongly-interacting Fermi gas + dissipation

0.00

0.01

0.03

 $\Delta \mu / \Delta$

0.02

0.04

0.05

0.06

Synthetic dimensions

Time, au (ms

 $\frac{2}{t_s/t_x}$

0.3

0.4

0.5

±∓

 $\frac{2}{t_s/t_x}$

(Mesoscopic transport via magnetic impurity

$$\mathcal{H} = \int d^3r \Big[\sum_{\sigma=\uparrow,\downarrow} \psi_{\sigma}^{\dagger} \Big\{ -\frac{\hbar^2 \nabla^2}{2m} + V(\mathbf{r}) \Big\} \psi_{\sigma} - g \psi_{\uparrow}^{\dagger} \psi_{\downarrow}^{\dagger} \psi_{\downarrow} \psi_{\uparrow} \Big] + \sum_{\sigma} V_{\sigma} \psi_{\sigma}^{\dagger} \psi_{\sigma}(\mathbf{0}) \Big]$$

$$\mathcal{H} = \int d^3r \Big[\sum_{\alpha=1,2} \psi_{\alpha}^{\dagger} \Big\{ -\frac{\hbar^2 \nabla^2}{2m} + V(\mathbf{r}) \Big\} \psi_{\alpha} - g \psi_{\uparrow}^{\dagger} \psi_{\downarrow}^{\dagger} \psi_{2} \psi_{1} \Big] + \sum_{\sigma} V_{\sigma} \psi_{\sigma}^{\dagger} \psi_{\sigma}(\mathbf{0}) \Big]$$

$$\mathcal{H} = \int d^3r \Big[\sum_{\alpha=1,2} \psi_{\alpha}^{\dagger} \Big\{ -\frac{\hbar^2 \nabla^2}{2m} + V(\mathbf{r}) \Big\} \psi_{\alpha} - g \psi_{\uparrow}^{\dagger} \psi_{2}^{\dagger} \psi_{2} \psi_{1} \Big] + \sum_{\alpha,\beta=1,2} \psi^{\dagger} V_{\alpha\beta} \psi_{\beta}(\mathbf{0}) \Big]$$

$$V_{12(21)} \neq 0 \quad \text{if } V_{\uparrow} \neq V_{\downarrow}$$

Landauer-Büttiker formula $I = \int \frac{d\epsilon}{h} \mathcal{T}(\epsilon) [f_1(\epsilon) - f_2(\epsilon)]$

K. Ono et al., Nat. Commun. 12, 6724 (2021).

Two-orbital lattice system with ¹⁷³Yb

¹S₀ atoms: itinerant fermions

³P₀ atom: localized impurity

Spin-dependent potential can be tuned with the orbital Feshbach resonance

G. Pagano et al., PRL **115**, 265301 (2015); M. Hofer et al., PRL **115**, 265302 (2015).

(AEA) Mesoscopic transport of Bose superfluid

Tunneling Hamiltonian formalism

$$H = H_L + H_R + H_T$$

$$I = -\dot{N}_L = i[N_L, H_T]$$

$$H_T = \sum_{\mathbf{k}, \mathbf{p}} \left(e^{-i\Delta\mu\tau} t_{\mathbf{k}, \mathbf{p}} b_{\mathbf{k}, L}^{\dagger} b_{\mathbf{p}, R} + h.c. \right)$$
absence of the momentum conservation

There must be the conversion process between condensation and normal elements.

Linear response theory: F. Meier & W. Zwerger PRA **64** 033610 (2001). Beyond linear response effect: SU & J.P. Brantut, PRR **2**, 023284 (2020); SU, PRR **2**, 023340 (2020).

Experiment: G. Del Pace et al., PRL **126**, 055301 (2021).

Editors' Suggestion

Asymmetry and nonlinearity of current-bias characteristics in superfluid–normal-state junctions of weakly interacting Bose gases

Shun Uchino 💿

Normal Superfluid bosons bosons

Normal bosons: Hartree-Fock theory Superfluid bosons: Bogoliubov theory

- Asymmetry arises from the conversion process between condensation and normal elements, and the bosonic Andreev reflection.
- Quasiparticle current shows a symmetric response and is suppressed with decreasing T.

Strongly interacting Fermi gas in a cavity

V. Helson et al., PRR 4, 133199 (2022)

$$H = H_{\text{atom}} + H_c + H_{\text{int}}$$
$$H_c = \Delta a^{\dagger} a$$
$$H_{\text{int}} = \Omega a^{\dagger} a \int d^3 r n(\mathbf{r}) \cos^2 \mathbf{k}_c \cdot \mathbf{r}$$

$$\mathbf{a}$$

$$\mathbf{b}$$

• Photon measurement reflects density-density correlation of atoms $\int S(q, w) + S(-q, w)$

$$\chi^{R}(\mathbf{q},\omega=0) = -\int d\omega \left[\frac{S(\mathbf{q},\omega) + S(-\mathbf{q},\omega)}{\omega}\right]$$

compressibility sum rule

 Agreement with a theory with the operator product expansion

Two-terminal transport of Fermi gases

Nonlinear current-bias characteristics D. Husmann et al., Science 350, 1498 (2015).

Breakdown of conductance quantization

SU and M. Ueda, PRL **118**, 105303 (2017).

Particle loss effect in mesoscopic transport

SU, arXiv:2206.09088 M.-Z. Huang et al., arXiv:2210.03371

• Transport with synthetic junctions

Realization of two and three terminal transport

S. Nakada et al., PRA 102, 031302(R) (2020). K. Ono et al., Nat. Commun. **12,** 6724 (2021).

Transport of bosons

Asymmetry and nonlinearity in SN junction SU, PRA **106**, L011303 (2022). Compressibility sum rule via optical cavity

V. Helson et al., PRR **4**, 133199 (2022).

Collaborators

Transport of Fermi gases

Lithium Lab @ ETH T. Esslinger, M. Huang, P. Fabritius, J. Mohan, M. Talebi, S. Wili

T. Giamarchi Univ. Geneva

A.M. Visuri Univ. Bonn

M. Ueda Univ. Tokyo

Transport with synthetic dimensions

K. Ono Kyoto Univ.

niv. Y. Takahashi Kyoto Univ.

Y. Nishida TITECH

Strongly-interacting Fermi gas inside a cavity

Brantut group @ EPFL J.P. Brnatut, V. Helson, T. Zwettler

K. Roux UGA

H. Konishi Kyoto Univ.