Functional renormalization group approach to strongly-correlated moiré materials

Ruhr-University Bochum

Michael M. Scherer

Oct 31, 2022 @ YITP

Introduction & motivation

- graphene: flat single layer of C atoms on honeycomb lattice
 - 2D material
 - excellent conductor, mechanically strong, flexible,...

emergent symmetries \rightarrow massless Dirac electrons:

$$i\hbar\gamma^{\mu}\partial_{\mu}\psi=0$$

- unusual Landau-level sequence $\epsilon_n \propto \operatorname{sgn}(n)\sqrt{B | n |}$
- half-integer QHE, Klein tunneling,...
- band theory works very well \rightarrow **no sign of strongly-correlated behavior**!

Introduction & motivation

- bilayer graphene
 - layers weakly coupled via van der Waals interactions
 - experiments at small twist angle $\theta \sim 1^\circ \rightarrow$ strongly-correlated behavior

ght-T_c cuprates/pnictides,... ly-correlated materials

Introduction & motivation

- theoretical study of strongly-correlated quantum materials
 - needs suitable quantum many-body methods

Quantum Monte Carlo (QMC)

Mean-field level approaches

- Hartree-Fock
- RPA
- *single-channel* resummations

Functional renormalization group

Outline

- Chapter I: From 2D moiré materials to frustrated superlattice Hubbard models
- **Chapter II:** Interaction effects in hexagonal superlattice Hubbard models
- **Chapter III:** Functional renormalization group
- **Chapter IV:** Functional renormalization group for moiré materials
- **Chapter V:** Further developments and outlook •

Chapter I: From 2D moiré materials to frustrated superlattice Hubbard models

- 2D materials and their heterostructures
- Geometric theory of 2D moiré patterns
- Band structure of transition metal dichalcogenides
- Moiré bands
- Effective moiré tight-binding models and Coulomb interactions
- Mini review of some theoretical and experimental results

Katsnelson, *Graphene* (2012) Wu, Lovorn, Tutuc, MacDonald, PRL (2018) Koshino *et al.*, PRX (2018)

2D materials LEGO[®] with a twist

- broader class of **2D materials** (semi-conductors, insulators,...)
- heterostructures from stacking and twisting 2D materials

Graphene	- CERFF
hBN	
MoS ₂	
WSe ₂	
uorographene	

top view

 \rightarrow see also tutorial by M. Koshino!

AA stacking

• rotation by $\theta = 30^{\circ}$

12-fold rotationally symmetric lattice without any translational symmetry (quasicrystal)

• rotation by $\theta = 5^{\circ}$

► small twist angle \rightarrow interference effect \rightarrow large-scale **moiré superlattice**

• generally: overlay of 2 periodic structures with slight mismatch \rightarrow moiré interference pattern

Geometric theory of 2D moiré patterns

- start with 2 identical honeycomb lattices
 - rotate layers 1 and 2 around a pair of B sites by $\mp \theta/2$
 - Bravais lattice vectors of layer l after rotation:

$$\vec{a}_i^{(l)} = R(\mp \theta/2)\vec{a}_i \text{ with } R(\varphi) = \begin{pmatrix} \cos\varphi & \sin\varphi \\ -\sin\varphi & \cos\varphi \end{pmatrix}$$

- likewise the reciprocal lattice vectors become \vec{a} .
- ions at lattice sites generate (crystal) potential for electrons

$$^{(l)} = R(\mp \theta/2)\vec{a}_i^*$$

Geometric theory of 2D moiré patterns

- crystal potential $V(\vec{r})$ of bilayer structure \rightarrow superposition of crystal potentials of both layers
 - sum of 2 Fourier series:

$$\begin{split} V(\vec{r}) &= \sum_{mn} \left[u_{mn} e^{im\vec{a}_{1}^{*(1)} \cdot \vec{r} + in\vec{a}_{2}^{*(1)} \cdot \vec{r}} + w_{mn} e^{im\vec{a}_{1}^{*(2)} \cdot \vec{r} + in\vec{a}_{2}^{*(2)} \cdot \vec{r}} \right], \quad m, n \in \mathbb{Z} \\ &= \sum_{mn} u_{mn} e^{im\vec{a}_{1}^{*(1)} \cdot \vec{r} + in\vec{a}_{2}^{*(1)} \cdot \vec{r}} \left[1 + \frac{w_{mn}}{u_{mn}} e^{im\vec{G}_{1}^{M} \cdot \vec{r} + in\vec{G}_{2}^{M} \cdot \vec{r}} \right] \\ &\text{dulation on scale of graphene lattice constant} \qquad (\text{moiré) interference effect} \end{split}$$

$$= \sum_{mn} \left[u_{mn} e^{im\vec{a}_{1}^{*(1)} \cdot \vec{r} + in\vec{a}_{2}^{*(1)} \cdot \vec{r}} + w_{mn} e^{im\vec{a}_{1}^{*(2)} \cdot \vec{r} + in\vec{a}_{2}^{*(2)} \cdot \vec{r}} \right], \quad m, n \in \mathbb{Z}$$

$$= \sum_{mn} u_{mn} e^{im\vec{a}_{1}^{*(1)} \cdot \vec{r} + in\vec{a}_{2}^{*(1)} \cdot \vec{r}} \left[1 + \frac{w_{mn}}{u_{mn}} e^{im\vec{G}_{1}^{M} \cdot \vec{r} + in\vec{G}_{2}^{M} \cdot \vec{r}} \right]$$

modulation on scale of graphene lattice constant

• here $\vec{G}_i^M = \vec{a}_i^{*(1)} - \vec{a}_i^{*(2)}$ can be seen as reciprocal lattice vectors of moiré superlattice

$$\overrightarrow{G}_i^M = \begin{bmatrix} R(-\theta/2) - R(+\theta/2) \end{bmatrix} \vec{a}_i^* = \begin{pmatrix} 0 & 2\sin(\theta/2) \\ -2\sin(\theta/2) & 0 \end{pmatrix} \vec{a}_i^*, \quad i \in \{1,2\}$$

• \vec{G}_1^M , \vec{G}_2^M define the moiré Brillouin zone of the superlattice

Geometric theory of 2D moiré patterns

- real-space moiré lattice vectors \overrightarrow{L}_i^M
 - obtained from relation $\overrightarrow{G}_{i}^{M} \cdot \overrightarrow{L}_{i}^{M} = 2\pi\delta_{ii}$
 - ► length of moiré unit vectors: $a_M = |\vec{L}_j^M| = \frac{a_0}{2|\sin(\theta/2)|} \approx \frac{a_0}{|\theta|}$
 - for small θ : $a_M \approx a_0 / |\theta| \gg a_0$
- include small mismatch δ in lattice constants \rightarrow moiré lattice constant: $a_M \approx \frac{a_0}{\sqrt{\theta^2 + \delta^2}}$
- note: generally moiré pattern is not periodic as periods of layers are incommensurate for general (θ, δ)
 - commensurability for special $(\theta, \delta) \rightarrow$ rigorously periodic pattern
 - but: moiré superlattice vectors can be defined for any (θ, δ) as above
 - for small (θ, δ) \rightarrow incommensuration effects are small

2D group-VI transition metal dichalcogenides

- schematic band structure of singlelayer WSe₂
 - band extrema at two inequivalent BZ corners K and K'

• focus on energies/states near maximum of WSe₂ valence bands

conduction bands (small spin splitting from SOC)

(large spin splitting from SOC)

WSe₂/MoS₂ heterobilayer at $\theta = 0^{\circ}$

Moiré potential of WSe₂/MoS₂

- long-range moiré pattern of WSe₂/MoS₂ features different stacking regions
 - induces periodic potential for WSe₂ valence band states \rightarrow moiré potential $\Delta(\vec{r})$ with period a_M

- $\Delta(\vec{r})$ can be approximated by Fourier series sum over moiré reciprocal lattice vectors \overrightarrow{G} • sufficient to include 6 \overrightarrow{G} in first shell
- - $\Delta(\vec{r}) \in \mathbb{R} \Rightarrow$
 - C₃ symmetry =
 - \implies all six $V(\overrightarrow{G})$ fixed by $V(\overrightarrow{G_1}) = Ve^{i\psi}$
- moiré potential can be measured experimentally (STM) \rightarrow parameter fit: $(V, \psi) \approx (5.1 \text{ meV}, -71^{\circ})$ interlayer coupling can be modified by external fields and pressure

$$V(\overrightarrow{G}) = V^*(-\overrightarrow{G})$$

$$\Rightarrow V(R(2\pi/3)\vec{G}) = V(\vec{G})$$

 $\Delta(\vec{r}) = \sum_{\overrightarrow{G}} V(\overrightarrow{G}) e^{i\overrightarrow{G}\cdot\overrightarrow{r}}$

Wu, Lovorn, Tutuc, MacDonald, PRL (2018)

Moiré band Hamiltonian of WSe₂/MoS₂

- focus on effect of moiré potential on states near maximum of WSe₂ valence band
 - effective mass approximation for maximum of WSe₂ band

$$\mathcal{H}_{\rm kin} = -\frac{\hbar^2 \vec{Q}^2}{2m^*} \quad \text{with} \quad m^* \approx 0.3$$

• moiré band Hamiltonian for WSe₂ valence band maximum states

$$\mathscr{H} = \mathscr{H}_{kin} + \Delta(\vec{r}) \text{ with } \Delta(\vec{r}) = \sum_{i=1}^{6} V(\vec{G}_i) e^{i\vec{G}_i}$$

dispersion from moiré Bloch Hamiltonian in plane wave representation

$$\langle \vec{k} + \vec{G} | \mathcal{H} | \vec{k} + \vec{G'} \rangle = -\frac{\hbar^2 |\vec{k} + \vec{G}|^2}{2m^*} \delta_{\vec{G},\vec{G'}} + \sum_{i=1}^6 V(\vec{G}_i) \delta_{\vec{G}_i,\vec{G} - \vec{G'}}$$

 $5m_0$

 $\cdot \vec{r}$

Moiré bands of WSe₂/MoS₂

• moiré bands from moiré potential

Moiré bands of WSe₂/MoS₂

moiré bands from moiré potential

Moiré bands of WSe₂/MoS₂

• moiré bands from moiré potential

Moiré bands of WSe₂/MoS₂ at $\theta = 0^{\circ}$

• diagonalization of moiré Bloch Hamiltonian for \vec{G} , $\vec{G'}$ within cutoff circle of radius $4|\vec{G_1}|$

highest valence moiré band is isolated by band gap and has small bandwidth $W\sim 20\,{
m meV}$

Moiré tight-binding model

• isolated flat band can be described by **effective tight-binding model** $H_0 = \sum \sum t(\vec{R'} - \vec{R})c_{\vec{R},v}^{\dagger}c_{\vec{R'},v}$ $v = \pm \overrightarrow{R}, \overrightarrow{R'}$

• \overrightarrow{R} on sites of triangular moiré superlattice ($a = a_M$)

- corresponding BZ is exactly the moiré BZ
- $v = \pm$ is valley index from K, K'

accurate description of flat-band dispersion

- fit hopping parameters t_1, t_2, t_3
- for $\theta = 0^\circ$:

 $t_1 \approx 2.5 \text{ meV}, \quad t_2 \approx 0.5 \text{ meV}, \quad t_3 \approx 0.25 \text{ meV}$

• t_i decrease exponentially with increasing a_M

Moiré tight-binding model

•

- isolated band is fully occupied at charge neutrality \rightarrow becomes partially occupied upon hole doping
- full range of band fillings accessible by electrical gating
- Fermi-surface nesting and van Hove singularity at 3/4 hole doping

Wannier wave-function of isolated band

- can construct localized Wannier functions $w(\vec{r})$ for isolated band centered at moiré potential maxima
- spatial extent a_W of $w(\vec{r})$ increases with a_M as $a_W \propto \sqrt{a_M}$

$$\Rightarrow a_W / a_M \propto 1 / \sqrt{a_M}$$

→ onsite repulsion $U \sim e^2/(\epsilon a_W)$ decreases slowly as a_M increases

(harmonic oscillator approximation)

ratio of interaction to bandwidth:

$$\frac{U}{W} \text{ increases quickly with } a_M \sim \frac{1}{\theta}$$

supports formation of strongly correlated states!

Wu, Lovorn, Tutuc, MacDonald, PRL (2018)

Extended Hubbard interactions

- effective dielectric constant ϵ is sensitive to 3D dielectric environment
 - adding (metallic) screening layers at distance d/2
 - electron-electron interaction potential with screening

- use $\tilde{U}(\vec{r})$ to project onto isolated Wannier band states
 - extended Hubbard interaction

$$H_{\text{int}} = \frac{1}{2} \sum_{v,v'} \sum_{\vec{R},\vec{R'}} U(\vec{R'} - \vec{R}) c^{\dagger}_{\vec{R}v} c^{\dagger}_{\vec{R'}v'} c_{\vec{R'}v'} c_{\vec{R}v}$$
$$= \sum_{\vec{R}} U_0 n_{\vec{R}\uparrow} n_{\vec{R}\downarrow} + \sum_{\langle \vec{R}\vec{R'} \rangle} U_1 n_{\vec{R}} n_{\vec{R'}} + \sum_{\langle \langle \vec{R}\vec{R'} \rangle} U_1 n_{\vec{R}} n_{\vec{R'}} + \sum_{\langle \langle \vec{R}\vec{R'} \rangle \rangle} U_1 n_{\vec{R}} n_{\vec{R'}} + \sum_{\langle \langle \vec{R}\vec{R'} \rangle \rangle} U_1 n_{\vec{R}} n_{\vec{R'}} + \sum_{\langle \langle \vec{R}\vec{R'} \rangle \rangle} U_1 n_{\vec{R}} n_{\vec{R'}} + \sum_{\langle \langle \vec{R}\vec{R'} \rangle \rangle} U_1 n_{\vec{R}} n_{\vec{R'}} + \sum_{\langle \langle \vec{R}\vec{R'} \rangle \rangle} U_1 n_{\vec{R}} n_{\vec{R'}} + \sum_{\langle \langle \vec{R}\vec{R'} \rangle \rangle} U_1 n_{\vec{R}} n_{\vec{R'}} + \sum_{\langle \langle \vec{R}\vec{R'} \rangle \rangle} U_1 n_{\vec{R}} n_{\vec{R'}} + \sum_{\langle \langle \vec{R}\vec{R'} \rangle \rangle} U_1 n_{\vec{R}} n_{\vec{R'}} + \sum_{\langle \langle \vec{R}\vec{R'} \rangle \rangle} U_1 n_{\vec{R}} n_{\vec{R'}} + \sum_{\langle \langle \vec{R}\vec{R'} \rangle \rangle} U_1 n_{\vec{R}} n_{\vec{R'}} + \sum_{\langle \langle \vec{R}\vec{R'} \rangle \rangle} U_1 n_{\vec{R'}} n_{\vec{R'}} + \sum_{\langle \langle \vec{R}\vec{R'} \rangle \rangle} U_1 n_{\vec{R'}} n_{\vec{R'}} + \sum_{\langle \langle \vec{R}\vec{R'} \rangle \rangle} U_1 n_{\vec{R'}} n_{\vec{R'}} + \sum_{\langle \langle \vec{R}\vec{R'} \rangle \rangle} U_1 n_{\vec{R'}} n_{\vec{R'}} + \sum_{\langle \langle \vec{R}\vec{R'} \rangle \rangle} U_1 n_{\vec{R'}} n_{\vec{R'}} + \sum_{\langle \langle \vec{R}\vec{R'} \rangle \rangle} U_1 n_{\vec{R'}} n_{\vec{R'}} + \sum_{\langle \vec{R}\vec{R'} \rangle} U_1 n_{\vec{R'}} n_{\vec{R'}} + \sum_{\langle \vec{R'}\vec{R'} \rangle} U_1 n_{\vec{R'}} n_{\vec{R'}} + \sum_{\langle \vec{R'}\vec{R'}$$

- strength and range of i.a. parameters can be adjusted by θ , d, and ϵ

Extended Hubbard model on triangular lattice

• summary of effective model:

- example at $\theta = 0^{\circ}$: $t_1 \approx 2.5 \text{ meV}, \ \epsilon U_0 \approx 0.22 \text{ eV}, \ \epsilon = 5 \Rightarrow U_0/t_1 \approx 18$
- example at $\theta = 1.5^{\circ}$: $t_1 \approx 4.0 \text{ meV}$, $\epsilon U_0 \approx 0.28 \text{ eV}$, $\epsilon = 10 \Rightarrow U_0/t_1 \approx 7$

semiconductor background dielectric $\epsilon \rightarrow$ can be tuned by choice of dielectric layer ($\epsilon \approx 5$ for hBN)

Wu, Lovorn, Tutuc, MacDonald, PRL (2018)

 M_1

Extended Hubbard model on triangular lattice

• summary of effective model:

$$H = \sum_{\nu=\pm} \sum_{\overrightarrow{R},\overrightarrow{R'}} t(\overrightarrow{R'} - \overrightarrow{R})c_{\overrightarrow{R},\nu}^{\dagger}c_{\overrightarrow{R'},\nu} + \frac{1}{2}\sum_{\nu,\nu'}\sum_{\overrightarrow{R},\nu'} d\overrightarrow{R'}$$

- triangular lattice \rightarrow geometric frustration
- Fermi surface nesting and van Hove singularities in band structure
- flat bands with W ~ $\mathcal{O}(10 \text{ meV})$ and band filling tunable by gating
- tunable strength and range of electron-electron interactions

plethora of strongly-correlated phases expected (MIT, spin liquids, magnetism,...)

 $\sum_{\vec{R},\vec{R}'} U(\vec{R'} - \vec{R}) c_{\vec{R}v}^{\dagger} c_{\vec{R'v'}}^{\dagger} c_{\vec{R'v'}} c_{\vec{R'v'}} c_{\vec{R'v}} c_{\vec{R'v}} c_{\vec{R'v'}} c_{\vec{$

Half-filling and strong-coupling limit

- ratio between interaction & kinetic energy $\sim U_0/t$ can be tuned \rightarrow strong-coupling $U_0 \gg t_1$ accessible • consider half-filled isolated band \rightarrow strong repulsion suppresses double occupancy of moiré sites Mott insulator ground state with localized spin/valley d.o.f.

 - perform strong-coupling limit \rightarrow spin/valley Heisenberg model:
 - J_1, J_2, J_3 from t/U perturbation theory (e.g., $J_1 =$

$$4t_1^2/U_0$$
)

$$H_{s} = \sum_{\overrightarrow{R}, \overrightarrow{R'}} J(\overrightarrow{R'} - \overrightarrow{R}) \overrightarrow{S}_{\overrightarrow{R}} \cdot \overrightarrow{S}_{\overrightarrow{R'}}$$

⁽ Zhu & White, PRB (2015), Hu, Gong, Zhu, Sheng, PRB (2015)

Half-filling from weak to strong coupling

- away from the effective spin model in the strong-coupling limit \rightarrow charge fluctuations
 - need to study Hubbard model directly
 - focus of many current numerical efforts (DMRG/tensor-network methods, Monte Carlo methods,...)
 - schematic **phase diagram**:

Away from half filling

- situation is less explored away from half filling
- at or near 3/4 filling \rightarrow van Hove singularity & approximate nesting (depending on t_1, t_2, t_3, \ldots)
 - nesting supports spin/valley fluctuations \rightarrow magnetic/valley ordering tendencies?
 - pairing glue and superconductivity from spin/valley fluctuations?

- how to find out? ... appropriate many-body methods ...
- which kind of superconductivity? ... symmetry of pairing function, gap, ...
- phenomenology of superconducting state? ... excitation spectrum, edge states, ...

Experimental status of moiré TMDs

- Mott physics at 1/2 filling & Wigner crystals or stripe phases at fractional fillings:
- (© Correlated insulating states at fractional fillings of moiré superlattices, Xu et al., Nature 587 (2020) Stripe phases in WSe2/WS2 moiré superlattices, Jin et al., Nature Materials 20, 940 (2021)

Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices, Regan et al., Nature 579 (2020)

Superconductivity (?)

- Clear signs of superconductivity in graphene based heterostructures:
 - At magic angle in TBG and symmetric TTG
 - In rhombohedral trilayer graphene and Bernal bilayer grapher e (with perpendicular electric field)
- Evidence of zero-resistance state in twisted bilayer WSe₂

Wang *et al.*, Nature Materials (2020)

Open questions:

- Superconductivity exclusive for graphene systems?
- **Conventional or electronic** mechanism?

Outline

- **Chapter I:** From 2D moiré materials to frustrated superlattice Hubbard models
- **Chapter II:** Interaction effects in hexagonal superlattice Hubbard models
- **Chapter III:** Functional renormalization group
- **Chapter IV:** Functional renormalization group for moiré materials
- **Chapter V:** Further developments and outlook •

Chapter II: Interaction effects in hexagonal superlattice Hubbard models

- Instabilities from amplified interactions
- Van-Hove scenario on the triangular lattice
- Particle-particle and particle-hole instabilities
- Competing interaction effects and unconventional superconductivity

Furukawa, Rice, Salmhofer, PRL (1998) Nandkishore, Levitov, Chubukov, Nat. Phys. (2012) Classen, Chubukov, Honerkamp, Scherer, PRB (2020)

Fermi-surface instabilities from amplified interactions

- Consider itinerant electron system:
 - density of states (DOS) ρ
 - interaction U (is it weak or strong?)
- Define dimensionless interaction = interaction x DOS:
- Example: In 2D away from Van Hove points: $hopprox 1/W \Rightarrow \lambda \sim U/W$
- **Generally**: $\lambda \sim (U/W) \hat{\rho}(E)$ dimensionless
- Increase λ through band restructuring:
 - 1. decrease W
 - 2. increase $\hat{\rho}$ (e.g. near Van-Hove singularity)
- Generalized Stoner criterium for Fermi-surface instability: $\lambda > 1$...

Van Hove scenario on the triangular lattice

- Density of states at Van-Hove filling:

- $\rho(\epsilon) = \hat{\rho}_0 \ln(\epsilon/T)$ Density of states at Van-Hove filling:
- M_1, M_2, M_3 : Nested Fermi surface with nesting vectors

Leading diagrams at E_{VH} with bare on-site interaction $U\sum c_{i+}^{\dagger}c_{i-}^{\dagger}c_{i-}c_{i+}$ •

$$\epsilon(\vec{k} + M_i) \approx -\epsilon(\vec{k})$$

direct particle-hole

- $\rho(\epsilon) = \hat{\rho}_0 \ln(\epsilon/T)$ Density of states at Van-Hove filling:
- Nested Fermi surface with nesting vectors M_1, M_2, M_3 : $\epsilon(\vec{k} + M_i) \approx -\epsilon(\vec{k})$

Sum particle-particle channel (pp ladder diagrams)

$$(i\omega, \vec{k})G(-i\omega, -\vec{k})$$

Cooper instability!

 K_{2}

 K_1

- $\rho(\epsilon) = \hat{\rho}_0 \ln(\epsilon/T)$ Density of states at Van-Hove filling:
- Nested Fermi surface with nesting vectors

particle-hole

$$\overrightarrow{p} = \overrightarrow{k} \overrightarrow{p} = U^2 T \sum_{i\omega} \int_{\vec{k}} G(i\omega, \vec{k}) G(i\omega, \vec{k} + \vec{M}_i)$$

$$= U^2 \int_{\vec{k}} \frac{n_F(\epsilon_{\vec{k}}) - n_F(\epsilon_{\vec{k} + \vec{M}_i})}{\epsilon_{\vec{k}} - \epsilon_{\vec{k} + \vec{M}_i}} = U^2 \int_{\vec{k}} \frac{2n_F(\epsilon_{\vec{k}}) - 1}{2\epsilon_{\vec{k}}}$$

$$\sim -\ln^2 \frac{W}{T}$$

• Sum particle-hole channel (analoguously to pp-ladder)

 M_1, M_2, M_3 : $\epsilon(\vec{k} + M_i) \approx -\epsilon(\vec{k})$

$$\frac{U}{1 - \frac{U}{W}\hat{\rho}_0 \ln^2 \frac{W}{T}}$$

(Generalized) Stoner instability!

 M_1

Fermi-surface instabilities at van-Hove filling

• Summary

Instabilities/singularities upon lowering temperatur

$$1 = \frac{|U|}{W} \hat{\rho}_0 \ln^2 \frac{W}{T} \quad \Rightarrow$$

- Correlations grow strong at $T_c \rightarrow \text{signature for}$
 - U<0: superconductivity
 - U>0: density wave with wave vector \vec{M}_i

$$T_c = W \exp\left[-\sqrt{\frac{W}{|U|\hat{\rho}_0}}\right]$$

signature for spontaneous symmetry breaking / ordering transition

- Instabilities appear in several channels: **competing instabilities/orders**
- Cannot be considered separately
- For example: unconventional pairing mechanism
 - 1. start with repulsive interaction
 - 2. ph fluctuations grow strong \rightarrow tendency to density wave instability
 - 3. at the same time: ph fluctuations mediate attraction in pairing channel
 - 4. pp fluctuations can overcome ph channel \rightarrow tendency to superconductivity
- Who wins at the end?

Outline

- **Chapter I:** From 2D moiré materials to frustrated superlattice Hubbard models
- **Chapter II:** Interaction effects in hexagonal superlattice Hubbard models
- **Chapter III:** Functional renormalization group
- **Chapter IV:** Functional renormalization group for moiré materials
- **Chapter V:** Further developments and outlook •

Chapter III: Functional renormalization group

- Physics of scales and renormalization group concept
- Functional renormalization for correlated fermions
- Truncations and approximations
- Implementation

up concept fermions

Wetterich, Phys. Lett. B (1992)
Metzner et al., RMP (2012)
Platt, Hanke, Thomale, Adv. Phys. (2013)

Quantum fields and renormalization

• quantum field theory:

framework for systems with a large number of coupled degrees of freedom

renormalization group (RG):

- exact functional RG flow equation $k\partial_k\Gamma_k[\Phi]$
- allows for non-perturbative truncations and/or systematic approximations...
 - dynamical generation of mass gaps
 - unbiased detection of ordering tendencies
 - (quantum) critical exponents, ... \bullet

mathematical procedure to study changes of a physical system when viewed at different scales k(T)

microscopic action

flowing action

quantum effective action (generates 1PI correlation fcts)

$$= \frac{1}{2} \operatorname{STr} \left(\frac{k \partial_k R_k}{\Gamma_k^{(2)} [\Phi] + R_k} \right) \qquad \text{Wetterich (1992)}$$

- Preliminary consideration:
 - ladders can also be expressed as differential equations

• define
$$y = \frac{\hat{\rho}_0}{W} \ln^2 \frac{W}{T}$$

with
$$V(T = W) = U$$
: $V = \frac{U}{1 \mp \frac{U}{W}\hat{\rho}_0 \ln^2 \frac{W}{T}}$

- Diff. eq. can be derived from Wilson RG \rightarrow integrate out fast modes in momentum shell
- Also possible to account for coupling of different channels in this way
- FRG provides formalism and generalization...

- system of interacting fermions: $S[\psi, \bar{\psi}] = -(\bar{\psi})$
- ► bare propagator: $G_0(k_0, \mathbf{k}) = \frac{1}{ik_0 \xi_{\mathbf{k}}}, \quad \xi_{\mathbf{k}} = \epsilon_{\mathbf{k}} \mu$
- generating functional (connected Green fcts):
- effective action (generates 1PI correlators): Γ

- $G_0^\Lambda(k_0,{f k})$ = modify bare propagator by IR cutoff
- define above quantities with modified propagator \rightarrow variation w.r.t to scale

$$\bar{\psi}, G_0^{-1}\psi) + V[\psi, \bar{\psi}]$$

$$\mathcal{G}[\eta,\bar{\eta}] = -\ln \int \mathcal{D}\psi \mathcal{D}\bar{\psi} \, e^{\mathcal{S}[\psi,\bar{\psi}]} e^{(\bar{\eta},\psi) + (\bar{\psi},\eta)}$$

 Λ

• exact RG equation $\frac{\partial}{\partial \Lambda} \Gamma^{\Lambda}[\phi, \bar{\phi}] = \operatorname{Tr} \left| G_0^{\Lambda} \frac{\partial (G_0^{\Lambda})^{-1}}{\partial \Lambda} \right|$

- exact RG equation has one-loop structure
- removing cutoff ($\Lambda \rightarrow 0$) yields the full effective action
- lowering cutoff corresponds to momentum-shell integration
- cannot be solved exactly!

$$- \int \operatorname{Tr} \left[\left(\frac{\delta^2 \Gamma^{\Lambda}[\phi, \bar{\phi}]}{\delta \phi \delta \bar{\phi}} + (G_0^{\Lambda})^{-1} \right)^{-1} \frac{\partial (G_0^{\Lambda})^{-1}}{\partial \Lambda} \right]$$

Platt, Hanke, Thomale (2013)

- exact RG equation $\frac{\partial}{\partial \Lambda} \Gamma^{\Lambda}[\phi, \bar{\phi}] = \operatorname{Tr} \left| G_0^{\Lambda} \frac{\partial (G_0^{\Lambda})^{-1}}{\partial \Lambda} \right|$
 - starting point for systematic approximations (vertex expansion)

$$- \operatorname{Tr} \left[\left(\frac{\delta^2 \Gamma^{\Lambda}[\phi, \bar{\phi}]}{\delta \phi \delta \bar{\phi}} + (G_0^{\Lambda})^{-1} \right)^{-1} \frac{\partial (G_0^{\Lambda})^{-1}}{\partial \Lambda} \right]$$

 $\Gamma^{(8)\Lambda}$

Salmhofer & Honerkamp (2001)

Λ V

... infinite hierarchy of flow equations!

- system with **spin-rotational invariance**
- General 4-point function: $\Gamma^{(4)\Lambda}_{\sigma_1,\sigma_2,\sigma_3,\sigma_4} = V^{\Lambda}\delta_{\sigma_1\sigma_3}\delta_{\sigma_2\sigma_4} V^{\Lambda}\delta_{\sigma_1\sigma_4}\delta_{\sigma_2\sigma_3}$ •
 - simplified flow of **spin-independent interaction vertex** V^{Λ} :

$$\begin{aligned} \frac{d}{d\Lambda} V^{\Lambda}(K_1, K_2; K_3, K_4) &= \int dK \, V^{\Lambda}(K_1, K_2, K) \, L^{\Lambda}(K, -K + K_1 + K_2) \, V^{\Lambda}(K, -K + K_1 + K_2, K_3) \,, \\ &+ \int dK \left[-2V^{\Lambda}(K_1, K, K_3) \, L^{\Lambda}(K, K + K_1 - K_3) \, V^{\Lambda}(K + K_1 - K_3, K_2, K) \right. \\ &+ V^{\Lambda}(K_1, K, K + K_1 - K_3) \, L^{\Lambda}(K, K + K_1 - K_3) \, V^{\Lambda}(K + K_1 - K_3, K_2, K) \right. \\ &+ V^{\Lambda}(K_1, K, K_3) \, L^{\Lambda}(K, K + K_1 - K_3) \, V^{\Lambda}(K_2, K + K_1 - K_3, K) \right] \,, \\ &+ \int dK \, V^{\Lambda}(K_1, K + K_2 - K_3, K) \, L^{\Lambda}(K, K + K_2 - K_3) \, V^{\Lambda}(K, K_2, K_3) \,. \end{aligned}$$

with
$$L^{\Lambda}(K, K') = \frac{d}{d\Lambda} [G_0^{\Lambda}(K)G_0^{\Lambda}(K')]$$

- system with **spin-rotational invariance** •
- General 4-point function: $\Gamma^{(4)\Lambda}_{\sigma_1,\sigma_2,\sigma_3,\sigma_4} = V^{\Lambda}\delta_{\sigma_1\sigma_3}\delta_{\sigma_2\sigma_4} V^{\Lambda}\delta_{\sigma_1\sigma_4}\delta_{\sigma_2\sigma_3}$ •

- corresponds to infinite order summation of one-loop pp and ph terms (ladder summations)
- takes into account competition between various interaction channels
- flow to strong coupling ($V^{\Lambda} \gg W$ for $T \rightarrow T_c > 0$) indicates ordering transition -- but which one?

Interaction vertex:

Interaction vertex:

wavevector dependence from discretization of BZ in N patches:

 $\Lambda(k_1,k_2,k_3,k_4)$

- interaction constant within one patch
- finite set of coupled flow equations for components of V^{Λ}
 - V^{Λ} has $N_{b}^{4}N^{3}$ components
 - largest contribution due to external momenta on Fermi surface
 - Exclusively resolve momentum dependence on Fermi surface!
- facilitates efficient numerical implementation!

- Case of hexagonal Brillouin zone with nesting
- introduce patches with magnitude on FS and describe angular dependence

$$\vec{k} = k_F^{\varphi}(\cos\varphi, \sin\varphi)$$

- Solve flow equation for effective interaction $V^{\Lambda}(\varphi_1)$ (=1PI part of 2-particle correlation function)
- Fermi-surface instability:

correlations grow + sharp structures develop for certain momentum combinations

- \rightarrow long-ranged correlations in real space
- Extract type of correlations, e.g., SC or (spin) density wave

$$, \varphi_{2}, \varphi_{3})$$

• **example** for RG evolution of V^{Λ}

- example for RG evolution of V^{Λ}

• **example** for RG evolution of V^{Λ}

 φ_2

- - indicate large effective interaction for incoming momenta that
 - lie on opposite sides of the Fermi surface!
 - pronounced pairing interaction with \vec{k} and $-\vec{k}$
 - indicates superconducting instability
 - additional modulation on diagonal features: unconventional SC!

• sharp diagonal features

Outline

- **Chapter I:** From 2D moiré materials to frustrated superlattice Hubbard models
- **Chapter II:** Interaction effects in hexagonal superlattice Hubbard models
- **Chapter III:** Functional renormalization group
- **Chapter IV:** Functional renormalization group for moiré materials
- **Chapter V:** Further developments and outlook •

Chapter IV: Functional renormalization group for moiré WSe₂/MoS₂

- Functional renormalization group for extended Hubbard model on the triangular lattice
- Functional RG instabilities for WSe2/MoS2 model
- Pairing symmetry and topological superconductivity

Laura Classen MPI-FKF Stuttgart

Nico Gneist Uni Bochum

Scherer, Kennes, Classen, npj Quant. Mat. (2022) Gneist, Classen, Scherer, PRB (2022)

Extended Hubbard model on triangular lattice for moiré WSe₂/MoS₂

$$H = \sum_{\nu=\pm} \sum_{\vec{R},\vec{R'}} t(\vec{R'} - \vec{R}) c_{\vec{R},\nu}^{\dagger} c_{\vec{R'},\nu} + \frac{1}{2} \sum_{\nu,\nu'} \sum_{\vec{R},\vec{R'}} b_{\vec{R'},\nu}^{\dagger} d_{\vec{R'},\nu}^{\dagger} d_{\vec$$

- full range of band fillings accessible by electrical gating
- van Hove singularities at 3/4 hole doping
- tunable strength & range of e^-e^- interactions \rightarrow sizable non-local terms

complex interplay between electronic interactions and geometric frustration

strongly-correlated phases (MIT, spin liquids, magnetism,... e.g. @ half filling) Wietek *et al.*, PRX (2021) Szasz *et al.*, PRX (2020) Chen et al., arxiv:2102.05560 Shu & White, PRB (2015) Hu, Gong, Zhu, Sheng, PRB (2015) **F···**

 $U(\overrightarrow{R'} - \overrightarrow{R})c_{\overrightarrow{R'}\nu}^{\dagger}c_{\overrightarrow{R'}\nu'}^{\dagger}c_{\overrightarrow{R'}\nu'}c_{\overrightarrow{R'}\nu$

Van Hove filling in moiré WSe₂/MoS₂

• Extended Hubbard model on triangular lattice with accurate hoppings t_1, t_2, t_3

$$H = \sum_{\nu=\pm} \sum_{\vec{R},\vec{R'}} t(\vec{R'} - \vec{R}) c_{\vec{R},\nu}^{\dagger} c_{\vec{R'},\nu} + \frac{1}{2} \sum_{\nu,\nu'} \sum_{\vec{R},\vec{R'}} U(\vec{R'} - \vec{R})$$

 $t_1 \approx -2.5 \text{ meV}, \quad t_2 \approx 0.5 \text{ meV}, \quad t_3 \approx 0.25 \text{ meV}, \quad U/|t_1| = 3,4,5, \quad V_2/V_1 \approx 0.36, \quad V_3/V_1 \approx 0.26$

Wu, Lovorn, Tutuc, MacDonald, PRL (2018)

- $DC \stackrel{\dagger}{\overrightarrow{R}} C \stackrel{\dagger}{\overrightarrow{R}} V$

FRG phase diagram for moiré TMDs — overview

FRG phase diagram for moiré TMDs — only onsite U

- at Van-Hove filling \rightarrow peaks at nesting momenta
 - valley density wave:

$$H_{VDW} = V_{VDW} \sum_{i} \vec{T}_{M_i} \cdot \vec{T}_{-M_i} \quad \text{with} \quad \vec{T}_q = \sum_{k} c_{k\alpha}^{\dagger} \vec{\tau}_{\alpha\beta} c_{k+M\beta}$$

• in vicinity: **fragile** *i*-wave pairing

$$-8 - 7 - 6 - 5 - 4 - 3$$

 μ [meV]

(analogue of SDW)

FRG phase diagram for moiré TMDs — *inclusion of* V₁, V₂, V₃

- no strong effect on VDW
- change of pairing symmetry: **robust** *g*+i*g* regime
- fluctuations of VDW mediate attraction in **singlet pairing** channel •

FRG phase diagram for moiré TMDs — inclusion of V₁, V₂, V₃

- no strong effect on VDW
- change of pairing symmetry: **robust** *g*+i*g* regime
- fluctuations of VDW mediate attraction in **singlet pairing** channel •
- g-wave supported by V_i

 μ [meV]

- generalized BCS theory:
 - determine eigensystem of pairing i.a. $V(\vec{k}, -\vec{k}, -$
 - largest T_c from largest eigenvalue $T_c \sim \exp(-$
- extract pairing symmetry \rightarrow fit lattice harmonics to eigenfunctions

- here: largest eigenvalue 2-fold degenerate
- fitted well by 2nd-nearest-neighbor lattice harmonics

$$g_1(\vec{k}) = \frac{8}{9}[-\cos(3k_x/2)\cos(\sqrt{3k_y/2}) + cg_2(\vec{k})] = \frac{8}{(3\sqrt{3})}\sin(3k_x/2)\sin(\sqrt{3k_y/2})$$

$$\vec{k}', -\vec{k}') - \sqrt{W/\lambda \hat{\rho}_0})$$

- symmetry classified with irreducible representations of point group C_{6v} ٠
- within irrep \rightarrow lattice harmonics with different angular momentum can mix

C _{6v}	A1	A2	B1	B2
"orbital"	s-wave	i-wave	<i>f</i> -wave	<i>f</i> -wave

- 2nd-nn harmonics g_1, g_2 belong to 2D irrep E₂
- same symmetry properties under C_{6v} as 1st-nn E₂ harmonics
- why 2^{nd} nn (and not 1^{st})?
 - overcome longer-ranged repulsion V_i
 - pairing pushed outwards

- can we distinguish d_1, d_2 vs g_1, g_2 if symmetries are the same?
- number of nodes different!

• effect on properties of superconducting phase?

FRG post-processing: superconducting gap Δ

- 2 degenerate pairing solutions $\rightarrow \Delta(\vec{k}) = \Delta_1 g_1(\vec{k}) + \Delta_2 g_2(\vec{k})$
 - ground state is generally a linear combination
 - minimize Landau functional

$$\mathscr{L} = \alpha(|\Delta_1|^2 + |\Delta_2|^2) + \beta(|\Delta_1|^2 + |\Delta_2|^2)^2 + \gamma|$$

- get α, β, γ by integrating out fermions with FRG data $\Rightarrow \gamma > 0$
 - $\Rightarrow \Delta_2 = \pm i \Delta_1$ minimizes \mathscr{L} $\Rightarrow \Delta(\vec{k}) = \hat{\Delta} \left[g_1(\vec{k}) \pm i g_2(\vec{k}) \right]$
- $|\Delta(\vec{k})|$ has no nodes
- $\arg\Delta(\vec{k})$ winds 4 times around FS

 $\Delta_1^2 + \Delta_2^2 |^2$

Properties of g+ig superconductivity

- spontaneous breaking of TRS: $g_1 + ig_2$ vs. $g_1 ig_2$
 - define "pseudo-spin"

$$\vec{m} = \frac{1}{\sqrt{(\epsilon_{\vec{k}} - \mu)^2 + \Delta_{\vec{k}}^2}}$$

- topological invariant \rightarrow winding number
- $g+ig: \mathcal{N} = \pm 4$ $d+id: \mathcal{N} = \pm 2$ } same symmetries under C_{6v} but different topological states!
- \mathcal{N} chiral edge modes \rightarrow enhanced quantized Hall responses!
 - spin Hall conductance $\sigma_{xy}^s = \mathcal{N}\hbar/(8\pi)$
 - thermal Hall conductance $\kappa = \mathcal{N}\pi k_R^2/(6\hbar)$

Robustness of g+ig state

- model stronger coupling \rightarrow include superexchange $J \sum \vec{S}_i \cdot \vec{S}_j$
 - g+ig dominant for small J/U
 - for intermediate J/U d+id-wave contributes
 - topological transition when attraction from J overcomes repulsion V_i

• g+ig SC occupies extended region in phase diagram • checked for U/t = 3,4,5

J/U

Outline

- **Chapter I:** From 2D moiré materials to frustrated superlattice Hubbard models
- **Chapter II:** Interaction effects in hexagonal superlattice Hubbard models
- **Chapter III:** Functional renormalization group
- **Chapter IV:** Functional renormalization group for moiré materials
- **Chapter V:** Further developments and outlook

Chapter V: Further developments and outlook

- Improvement of the FRG method
- Applications to related (moiré) materials

© Gneist, Classen, Scherer, PRB (2022) Klebl *et al.*, arxiv:2204.00648 (2021)

High-momentum resolution

• channel decomposition $V^{\Lambda} = \frac{k_1, s}{k_2, s}$

transfer momentum & form-fac

$$\Phi^X(\boldsymbol{q}, \boldsymbol{k}, \boldsymbol{k}') = \sum_{l, l'} X^{l, l'}(\boldsymbol{q}) f_l(\boldsymbol{k})$$

obtain flow equations for X^{l,l'}(q)
 choose momentum mesh

$V^{\Lambda} \stackrel{\circ}{=} \begin{array}{c} k_1, s \longrightarrow k_3, s \\ k_2, s' \longrightarrow k_4, s' \end{array}$			
$q_P + k_P \qquad q_P + k'_P \qquad q_C $	$+ k_C q_C + $ $\Phi^C k_C$	$\begin{array}{ccc} k'_C & q_D + k \\ & & \rightarrow \\ & + & & \\ & & & \overrightarrow{k'_D} \end{array}$	$\frac{d^{D}}{\Phi^{D}} + k'_{D}$
Channel X	P	C	D
Interaction type	Pairing	Magnetic	Density
Transfer momentum q_X	$\boldsymbol{k}_1 + \boldsymbol{k}_2$	$oldsymbol{k}_1 - oldsymbol{k}_4$	$oldsymbol{k}_1 - oldsymbol{k}_3$
Momentum k_X	$-oldsymbol{k}_2$	$ig oldsymbol{k}_4$	$oldsymbol{k}_3$
Momentum k'_X	$-oldsymbol{k}_4$	$ig oldsymbol{k}_2$	$ig oldsymbol{k}_2$

 $f_l(\mathbf{k}) = e^{i\mathbf{k}\cdot\mathbf{R}_l}$

High-momentum resolution with truncated-unity FRG

 $t_1 \approx -2.5 \text{ meV}, \quad t_2 \approx 0.5 \text{ meV}, \quad t_3 \approx 0.25 \text{ meV}, \quad U/|t_1| = 4, \quad V_2/V_1 \approx 0.36, \quad V_3/V_1 \approx 0.26 \quad \text{Shou, Sheng, Kim, PRL (2022)}$

High-momentum resolution with truncated-unity FRG

- triangular lattice with a large moiré unit cell and corresponding moiré Brillouin zone
 - strong spin-momentum locking of layers
 - spin up (down) near moiré K point predominantly from top (bottom) layer
 - broken inversion symmetry of individual layers
 - inversion symmetry breaking in moiré system
 - retained C₃ three-fold rotation symmetry
 - Application of transverse displacement field (D)
 - D = interlayer potential difference tuned by top/bottom gate voltages
 - splits up spin up/down Fermi surfaces

🖗 Zang, Wang, Cano, Millis, PRB (2021)

- effective moiré tight-binding Hamiltonian H =
 - effect of displacement field modeled by changing phase ϕ and $\sigma=\pm$
 - Examples for Fermi surface configurations:

Zang, Wang, Cano, Millis, PRB (2021)

$$\sum_{\substack{\vec{k},\vec{a}_m,\\\sigma=\pm}} 2|t| \cos(\vec{k} \cdot \vec{a}_m + \sigma \phi) c^{\dagger}_{\vec{k},\sigma} c_{\vec{k},\sigma}$$

Van-Hove singularities present in band dispersion!

- effective moiré tight-binding Hamiltonian H = -
 - effect of displacement field modeled by changing phase ϕ and $\sigma=\pm$
 - Examples for Fermi surface configurations:

Zang, Wang, Cano, Millis, PRB (2021)

$$\sum_{\substack{\vec{k},\vec{a}_m,\\\sigma=\pm}} 2|t| \cos(\vec{k}\cdot\vec{a}_m+\sigma\phi) c^{\dagger}_{\vec{k},\sigma} c_{\vec{k},\sigma}$$

Van-Hove singularities present in band dispersion!

- effective moiré tight-binding Hamiltonian H =
 - effect of displacement field modeled by changing phase ϕ and $\sigma=\pm$
 - Examples for Fermi surface configurations:

Zang, Wang, Cano, Millis, PRB (2021)

$$\sum_{\substack{\vec{k},\vec{a}_m,\\\sigma=\pm}} 2|t| \cos(\vec{k} \cdot \vec{a}_m + \sigma \phi) c^{\dagger}_{\vec{k},\sigma} c_{\vec{k},\sigma}$$

Hartree-Fock study of twisted homobilayer WSe₂

- effective moiré Hubbard Hamiltonian
 - Hartree-Fock correlated phase diagram
 - general fillings and U/t = 3,10
 - Hartree-Fock approach
 - single-channel resummation of ph diagrams
 - ✓ finds plethora of (commensurate) magnetic orders!
 - misses inter-channel feedback
 - misses pp diagrams
 - \rightarrow no superconductivity!
- Zang, Wang, Cano, Millis, PRB (2021)

FRG study of twisted homobilayer WSe₂ - sanity check

- effective moiré Hubbard Hamiltonian H
 - FRG correlated phase diagram
 - general fillings and $U = 6t \simeq 0.7W$
 - numerically expensive FRG implementation
 - full resolution of BZ
 - ✓ finds (incommensurate) magnetic orders!
 - \checkmark ph susceptibilities compatible w/ HF study

$$\chi^{ij}(\boldsymbol{q}) = \sum_{\sigma_1...\sigma_4} \sigma_i^{\sigma_1\sigma_4} \chi^D_{\sigma_1\sigma_2\sigma_3\sigma_4}(\boldsymbol{q})\sigma_j^{\sigma_3\sigma_2}$$

Klebl, Fischer, Classen, Scherer, Kennes, arxiv:2204.00648 (2021)

FRG study of twisted homobilayer WSe₂

- effective moiré Hubbard Hamiltonian
 - FRG correlated phase diagram
 - general fillings and $U = 6t \simeq 0.7W$
 - numerically expensive FRG implementation
 - full resolution of BZ
 - ✓ finds (incommensurate) magnetic orders!
 - includes inter-channel feedback
 - includes pp diagrams

unconventional superconductivity!

Klebl, Fischer, Classen, Scherer, Kennes, arxiv:2204.00648 (2021)

 $H = -\sum 2|t|\cos(\vec{k}\cdot\vec{a}_m + \sigma\phi)c^{\dagger}_{\vec{k},\sigma}c_{\vec{k},\sigma} + U\sum n_{i\uparrow}n_{i\downarrow}$ $\vec{k}, \vec{a}_m, \sigma \equiv \pm$

FRG study of twisted homobilayer WSe₂

- effective moiré Hubbard Hamiltonian •
 - FRG correlated phase diagram

Klebl, Fischer, Classen, Scherer, Kennes, arxiv:2204.00648 (2021)

 $H = -\sum_{i} 2|t| \cos(\vec{k} \cdot \vec{a}_{m} + \sigma \phi) c^{\dagger}_{\vec{k},\sigma} c_{\vec{k},\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$ $\vec{k}, \vec{a}_m, \sigma = \pm$

Summary I

- - triangular lattice \rightarrow geometric frustration
 - band filling tunable by gating
 - tunable strength and range of electron-electron interactions

complex interplay between electronic interactions and geometric frustration

- plethora of strongly-correlated phases suggested (MIT, spin liquids, magnetism,...)
- recent experiments \rightarrow confirmation of relevance of many-body interactions
- what about superconductivity...?

moiré TMDs as quantum simulators for Hubbard model and other strongly-correlated electrons systems

Summary II

- simulate extended Hubbard model on triangular lattice w/ moiré TMDs
- sizeable non-local Coulomb interactions
- Van-Hove filling accessible
- resolve competing orders with FRG
 - valley-density wave
 - chiral (g+ig)-wave superconductivity
 - breaks time-reversal
 - fully gapped Fermi surface
 - topological with Chern number $|\mathcal{N}| = 4$

applications to related moiré materials, e.g., tWSe₂

Scherer, Kennes, Classen, npj Quant. Mat. (2022) Gneist, Classen, Scherer, PRB (2022) Klebl *et al.*, arxiv:2204.00648 (2021)

