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• graphene: flat single layer of C atoms on honeycomb lattice


‣ 2D material


‣ excellent conductor, mechanically strong, flexible,…

• emergent symmetries → massless Dirac electrons:  
 
 
                                    

‣ unusual Landau-level sequence 


‣ half-integer QHE, Klein tunneling,…

iℏγμ∂μψ = 0

ϵn ∝ sgn(n) B |n |

• band theory works very well → no sign of strongly-correlated behavior!

graphite

graphene

Introduction & motivation



• bilayer graphene


‣ layers weakly coupled via van der Waals interactions


‣ experiments at small twist angle  → strongly-correlated behaviorθ ∼ 1∘

• phase diagram reminiscent of hight-Tc cuprates/pnictides,...


• new platform for study of strongly-correlated materials


#twistronics #moiré-materials
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proximity effects. The carrier density n is tuned by applying a voltage 
to a Pd/Au bottom gate electrode. In Fig. 1b we show the longitudi-
nal resistance Rxx as a function of temperature for two magic-angle 
devices, M1 and M2, with twist angles of 1.16° and 1.05°, respectively. 
At the lowest temperature studied of 70 mK, both devices show zero 
resistance, and therefore a superconducting state. The critical temper-
ature Tc as calculated using a resistance of 50% of the ‘normal’-state 
(non-superconducting) value is approximately 1.7 K and 0.5 K for the 
two devices that we studied in detail. In Fig. 1c, d we show a single- 
particle band structure and density of states (DOS) near the charge 
neutrality point calculated for θ = 1.05°. The superconductivity in both 
devices occurs when the Fermi energy EF is tuned away from charge 
neutrality (EF = 0) to be near half-filling of the lower flat band (EF < 0, 
as indicated in Fig. 1d). The DOS within the energy scale of the flat 
bands is more than three orders of magnitudes higher than that of 
two uncoupled graphene sheets, owing to the reduction of the Fermi 
velocity and the increase in localization that occurs near the magic 
angle. However, the energy at which the DOS peaks does not gener-
ally coincide with the density that is required to half-fill the bands. 
In addition, we did not observe any appreciable superconductivity 
when the Fermi energy was tuned into the flat conduction bands 
(EF > 0). In Fig. 1e we show the current–voltage (I–Vxx, where Vxx 
is the four-probe voltage, as defined in Fig. 1a) curves of device M2 
at different temperatures. We observe typical behaviour for a two- 
dimensional superconductor. The inset shows a tentative fit of the 
same data to a Vxx ∝ I3 power law, as is predicted in a Berezinskii–
Kosterlitz–Thouless transition in two-dimensional superconductors23. 
This analysis yields a Berezinskii–Kosterlitz–Thouless transition tem-
perature of TBKT ≈ 1.0 K at n = −1.44 × 1012 cm−2, where, as before, 

n is the carrier density induced by the gate and measured from the 
charge neutrality point (which is different from the actual carrier  
density involved in transport, as we show below).

In contrast to other known two-dimensional and layered super-
conductors, the superconductivity in magic-angle TBG requires the 
application of only a small gate voltage, corresponding to a minimal 
density of only 1.2 × 1012 cm−2 from charge neutrality, an order of mag-
nitude lower than the value of 1.5 × 1013 cm−2 in LaAlO3/SrTiO3 inter-
faces and of 7 × 1013 cm−2 in electrochemically doped MoS2, among 
others24. Therefore, gate-tunable superconductivity can be realized 
in a high-mobility system without the need for ionic-liquid gating or 
chemical doping. In Fig. 2a we show the two-probe conductance of 
device M1 versus n at zero magnetic field and at a 0.4-T perpendic-
ular magnetic field. Near the charge neutrality point (n = 0), a typical 
V-shaped conductance is observed, which originates from the renor-
malized Dirac cones of the TBG band structure. The insulating states 
centred at approximately ±3.2 × 1012 cm−2 (which corresponds to ns 
for θ = 1.16°) are due to single-particle bandgaps in the band structure 
that correspond to filling ±4 electrons in each superlattice unit cell. In 
between, there are conductance minima at ±2 and ±3 electrons per 
unit cell. These minima are associated with many-body gaps induced by 
the competition between the Coulomb energy and the reduced kinetic 
energy due to confinement of the electronic state in the superlattice 
near the magic angle; these gaps give rise to insulating behaviour near 
the integer fillings18. One possible mechanism for the gaps is similar 
to the gap mechanism in Mott insulators, but with an extra two-fold 
degeneracy (for the case of ±2 electrons) from the valleys in the origi-
nal graphene Brillouin zone17,18,25,26. In the vicinity of −2 electrons 
per unit cell (n ≈ −1.3 × 1012 cm−2 to n ≈ −1.9 × 1012 cm−2) and at a 
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Figure 2 | Gate-tunable superconductivity in magic-angle TBG. 
a, Two-probe conductance G2 = I/Vbias of device M1 (θ = 1.16°) measured 
in zero magnetic field (red) and at a perpendicular field of B⊥ = 0.4 T 
(blue). The curves exhibit the typical V-shaped conductance near charge 
neutrality (n = 0, vertical purple dotted line) and insulating states at the 
superlattice bandgaps n = ±ns, which correspond to filling ±4 electrons 
in each moiré unit cell (blue and red bars). They also exhibit reduced 
conductance at intermediate integer fillings of the superlattice owing to 
Coulomb interactions (other coloured bars). Near a filling of −2 electrons 
per unit cell, there is considerable conductance enhancement at zero field 
that is suppressed in B⊥ = 0.4 T. This enhancement signals the onset of 

superconductivity. Measurements were conducted at 70 mK; Vbias = 10 µV. 
b, Four-probe resistance Rxx, measured at densities corresponding to 
the region bounded by pink dashed lines in a, versus temperature. Two 
superconducting domes are observed next to the half-filling state, which 
is labelled ‘Mott’ and centred around −ns/2 = −1.58 × 1012 cm−2. The 
remaining regions in the diagram are labelled as ‘metal’ owing to the 
metallic temperature dependence. The highest critical temperature 
observed in device M1 is Tc = 0.5 K (at 50% of the normal-state resistance). 
c, As in b, but for device M2, showing two asymmetric and overlapping 
domes. The highest critical temperature in this device is Tc = 1.7 K.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

Cao et al., Nature (2018)

Introduction & motivation



• theoretical study of strongly-correlated quantum materials


‣ needs suitable quantum many-body methods

Introduction & motivation

Mean-field level approaches

- Hartree-Fock

- RPA

- single-channel resummations

Dynamical mean-field theory (DMFT)

Quantum Monte Carlo (QMC)

Functional renormalization group
...

Density-matrix renormalization group (DMRG)

Tensor networks



Outline

• Chapter I: From 2D moiré materials to frustrated superlattice Hubbard models


• Chapter II: Interaction effects in hexagonal superlattice Hubbard models


• Chapter III: Functional renormalization group


• Chapter IV: Functional renormalization group for moiré materials


• Chapter V: Further developments and outlook



Chapter I: From 2D moiré materials to frustrated superlattice Hubbard models 

‣ 2D materials and their heterostructures

‣ Geometric theory of 2D moiré patterns

‣ Band structure of transition metal dichalcogenides 

‣ Moiré bands

‣ Effective moiré tight-binding models and Coulomb interactions

‣ Mini review of some theoretical and experimental results

Katsnelson, Graphene (2012)

Wu, Lovorn, Tutuc, MacDonald, PRL (2018)

Koshino et al., PRX (2018)



• broader class of 2D materials (semi-conductors, insulators,...)


• heterostructures from stacking and twisting 2D materials

top view
Geim & Grigorieva, Nature (2013)

2D materials LEGO® with a twist

  see also tutorial by M. Koshino!→



2D moiré materials

• AA stacking



• rotation by θ = 30∘

‣ 12-fold rotationally symmetric lattice without any translational symmetry (quasicrystal)

2D moiré materials



• rotation by θ = 5∘

‣ small twist angle → interference effect → large-scale moiré superlattice

AA

AB BAAA AA

BA ABAA BAAB

AB BA AAAA

AA

2D moiré materials



• generally: overlay of 2 periodic structures with slight mismatch → moiré interference pattern

rotation by θ = 5∘  but different lattice constantsθ = 0∘

2D moiré materials



• start with 2 identical honeycomb lattices


‣ rotate layers 1 and 2 around a pair of B sites by 


‣ Bravais lattice vectors of layer  after rotation:

∓θ/2

l

A1
A2

B2

B1
−θ/2
+θ/2

AA

AB BAAA AA

BA ABAA BAAB

AB BA AAAA

AA

‣ likewise the reciprocal lattice vectors become ⃗a*(l)
i = R(∓θ/2) ⃗a*i

‣ ions at lattice sites generate (crystal) potential for electrons

 with ⃗a(l)
i = R(∓θ/2) ⃗ai R(φ) = ( cos φ sin φ

−sin φ cos φ)

Geometric theory of 2D moiré patterns



• crystal potential  of bilayer structure → superposition of crystal potentials of both layers


‣ sum of 2 Fourier series:

V( ⃗r)

V( ⃗r) = ∑
mn

[umneim ⃗a*(1)
1 ⋅ ⃗r+in ⃗a*(1)

2 ⋅ ⃗r + wmneim ⃗a*(2)
1 ⋅ ⃗r+in ⃗a*(2)

2 ⋅ ⃗r], m, n ∈ ℤ

= ∑
mn

umneim ⃗a*(1)
1 ⋅ ⃗r+in ⃗a*(1)

2 ⋅ ⃗r [1 +
wmn

umn
eim ⃗G M

1 ⋅ ⃗r+in ⃗G M
2 ⋅ ⃗r]

modulation on scale of graphene lattice constant (moiré) interference effect

‣ here  can be seen as reciprocal lattice vectors of moiré superlattice⃗G M
i = ⃗a*(1)

i − ⃗a*(2)
i

⃗G M
i = [R(−θ/2) − R(+θ/2)] ⃗a*i = ( 0 2 sin(θ/2)

−2 sin(θ/2) 0 ) ⃗a*i , i ∈ {1,2}

‣  define the moiré Brillouin zone of the superlattice⃗G M
1 , ⃗G M

2

⃗G M
1

⃗G M
2

Γ

M

K′￼

K

Geometric theory of 2D moiré patterns



• real-space moiré lattice vectors  


‣ obtained from relation 


‣ length of moiré unit vectors: 

⃗L M
j

⃗G M
i ⋅ ⃗L M

j = 2πδij

aM = | ⃗L M
j | =

a0

2 |sin(θ/2) |
≈

a0

|θ |
‣ for small  θ : aM ≈ a0/ |θ | ≫ a0

• include small mismatch  in lattice constants → moiré lattice constant:δ aM ≈
a0

θ2 + δ2

• note: generally moiré pattern is not periodic as periods of layers are incommensurate for general 


‣ commensurability for special  → rigorously periodic pattern


‣ but: moiré superlattice vectors can be defined for any  as above


‣ for small  → incommensuration effects are small

(θ, δ)

(θ, δ)

(θ, δ)

(θ, δ)

AA

AB BA

⃗L 1
M

⃗L 2
M

Geometric theory of 2D moiré patterns
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Fig. 1. Atomic structure of as-grown MoS2/WSe2 vdW heterostructures revealed by STM and STEM. (A) STM image for a MoS2/WSe2 vdW heterostructure on the highly
orientedpyrolytic-graphite (HOPG) substrate. (B) Close-up STM image showing the hexagonalMoiré patternwith a periodicity of 8.7 nm. (C) Schematicmodel of theMoiré pattern
on an R-stacked MoS2/WSe2 hetero-bilayer. By using the lattice constants of 3.16 Å for MoS2 and 3.28 Å for WSe2, the simulated supercell marked by black solid lines shows a
periodicity of 8.64 nm. (D) Atomically resolved STEM image. Typical regions in an R-stacked heterostructure—AA, ABSe, Br, and ABW—are labeled in both (C) and (D). The close-up
STEM images for each region are shown in the right columnof (E). The simulated images (basedonanR-type stacking) and their corresponding atomicmodels aredisplayed in the
middle and left columns of (E), respectively. (A and B) −3.0 V, 10 pA. Exp., experimental.

Fig. 2. First-principles calculations for the interlayer separations and electronic structures of representative sites in an R-stacked MoS2/WSe2 heterostructure.
(A) Side views of the atomic models for AA, ABSe, Br, and ABW regions with an average lattice constant (Supplementary Materials). The calculated interlayer separations
for four atomic alignments are labeled in (A). (B) A perspective view of an STM image zoomed in on a unit cell of the Moiré pattern. A height profile along the diagonal
line from AA to AA [gray dashed line in (B)] is shown in (C). Energy band structure of the AA registry is displayed in (D), whereas its corresponding density of states
(DOS) diagrams are shown in (E). The size of the green (red) circles represents the projected weight on the d orbitals of Mo (W), and the states are labeled in the
subscript based on this project. The corrections for the strain resulting from the average lattice constant used in the calculation are labeled for the typical critical points
in the DOS diagram. Results for other sites can be found in the Supplementary Materials. (B) −3.0 V, 10 pA.
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WSe2/MoS2 in  AA region

Zhang et al., Sci. Adv. (2017)

• schematic band structure of singlelayer WSe2


‣ band extrema at two inequivalent BZ corners  and K K′￼

}conduction bands  
(small spin splitting from SOC)

} valence bands  
(large spin splitting from SOC)

↑

↑

↓

↓

WSe2 MoS2

ϵF

• focus on energies/states near maximum of  WSe2 valence bands

2D group-VI transition metal dichalcogenides



• WSe2 lattice constant 


• MoS2 lattice constant 

a0 ≈ 3.32 Å

a0 ≈ 3.19 Å

8.5nm

} δ = |a0 − a′￼0 | /a0 ≈ 0.039 ⇒ aM ≈
a0

θ2 + δ2
≈ 8.5 nm

WSe2/MoS2 heterobilayer at θ = 0∘



• long-range moiré pattern of WSe2/MoS2 features different stacking regions


‣ induces periodic potential for WSe2 valence band states  → moiré potential  with period Δ( ⃗r) aM

‣ sum over moiré reciprocal lattice vectors 


‣ sufficient to include 6  in first shell


‣  


‣ C3 symmetry 


➡ all six  fixed by 

⃗G
⃗G

Δ( ⃗r) ∈ ℝ ⇒ V( ⃗G) = V*(− ⃗G)

⇒ V(R(2π/3) ⃗G) = V( ⃗G)

V( ⃗G) V( ⃗G1 ) = Veiψ

⃗G2

⃗G1Γ

• moiré potential can be measured experimentally (STM) → parameter fit: 


• interlayer coupling can be modified by external fields and pressure

(V, ψ) ≈ (5.1 meV, − 71∘)

Δ( ⃗r ) = ∑⃗
G

V( ⃗G) ei ⃗G⋅ ⃗r•  can be approximated by Fourier seriesΔ( ⃗r)

Wu, Lovorn, Tutuc, MacDonald, PRL (2018)

Moiré potential of WSe2/MoS2



• focus on effect of moiré potential on states near maximum of WSe2 valence band 


‣ effective mass approximation for maximum of WSe2 band

ℋkin = −
ℏ2 ⃗Q2

2m*
with m* ≈ 0.35m0K ↑

• dispersion from moiré Bloch Hamiltonian in plane wave representation

⟨ ⃗k + ⃗G |ℋ | ⃗k + ⃗G′￼⟩ = −
ℏ2 | ⃗k + ⃗G |2

2m*
δ ⃗G , ⃗G′￼

+
6

∑
i=1

V( ⃗Gi)δ ⃗Gi, ⃗G− ⃗G′￼

• moiré band Hamiltonian for WSe2 valence band maximum states

ℋ = ℋkin + Δ( ⃗r ) with Δ( ⃗r ) =
6

∑
i=1

V( ⃗Gi) ei ⃗Gi⋅ ⃗r ⃗G2⃗G3

⃗G6
⃗G5

⃗G1Γ
⃗G4

⃗G

Moiré band Hamiltonian of WSe2/MoS2



• moiré bands from moiré potential

kx

ϵ(kx)

basis reciprocal lattice vector of atomic lattice

moiré reciprocal lattice vector of superlattice

Moiré bands of WSe2/MoS2



kx

ϵ(kx)

basis reciprocal lattice vector of atomic lattice

moiré reciprocal lattice vector of superlattice

• moiré bands from moiré potential

Moiré bands of WSe2/MoS2



kx

ϵ(kx)

basis reciprocal lattice vector of atomic lattice

moiré reciprocal lattice vector of superlattice

• moiré bands from moiré potential

‣ formation of band gaps ∼ Δ(r)

Moiré bands of WSe2/MoS2



• diagonalization of moiré Bloch Hamiltonian for  within cutoff circle of radius ⃗G , ⃗G′￼ 4 | ⃗G1 |

• highest valence moiré band is isolated by band gap and has small bandwidth W ∼ 20 meV
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Moiré bands of WSe2/MoS2 at θ = 0∘



• isolated flat band can be described by effective tight-binding model

t3

t1
t2

H0 = ∑
v=±

∑⃗
R , ⃗R ′￼

t( ⃗R ′￼− ⃗R )c†
⃗R ,v
c ⃗R ′￼,v

•  on sites of triangular moiré superlattice ( )


‣ corresponding BZ is exactly the moiré BZ


•  is valley index from 

⃗R a = aM

v = ± K, K′￼

• accurate description of flat-band dispersion


‣ fit hopping parameters 


‣ for : 




•  decrease exponentially with increasing 

t1, t2, t3
θ = 0∘

t1 ≈ 2.5 meV, t2 ≈ 0.5 meV, t3 ≈ 0.25 meV

ti aM

Moiré tight-binding model



t3

t1
t2

���

ϵ [meV]

kx ky

DOS� Γ � ��
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ϵ
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��
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KΓ

M1
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M3
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‣ isolated band is fully occupied at charge neutrality → becomes partially occupied upon hole doping


‣ full range of band fillings accessible by electrical gating


‣ Fermi-surface nesting and van Hove singularity at 3/4 hole doping

Moiré tight-binding model

• isolated flat band can be described by effective tight-binding model



• can construct localized Wannier functions  for isolated band centered at moiré potential maxima


• spatial extent  of  increases with  as                   (harmonic oscillator approximation)


➡ 


➡ onsite repulsion  decreases slowly as  increases

w( ⃗r)

aW w( ⃗r) aM aW ∝ aM

aW /aM ∝ 1/ aM

U ∼ e2/(ϵaW) aM

➡ ratio of interaction to bandwidth:  

 increases quickly with  

➡ supports formation of strongly correlated states!

U
W

aM ∼
1
θ

Wu, Lovorn, Tutuc, MacDonald, PRL (2018)

Wannier wave-function of isolated band



• effective dielectric constant  is sensitive to 3D dielectric environment


‣ adding (metallic) screening layers at distance 


‣ electron-electron interaction potential with screening

ϵ

d/2

Ũ( ⃗r ) =
e2

ϵr
−

e2

ϵ r2 + d2

vertical distance to screening layerbackground dielectric constant

• use  to project onto isolated Wannier band states


‣ extended Hubbard interaction

Ũ( ⃗r)

Hint =
1
2 ∑

v,v′￼

∑⃗
R , ⃗R ′￼

U( ⃗R ′￼− ⃗R )c†
⃗R v
c†

⃗R ′￼v′￼

c ⃗R ′￼v′￼
c ⃗R v

= ∑⃗
R

U0n ⃗R ↑n ⃗R ↓ + ∑
⟨ ⃗R ⃗R ′￼⟩

U1n ⃗R n ⃗R ′￼
+ ∑

⟨⟨ ⃗R ⃗R ′￼⟩⟩

U2n ⃗R n ⃗R ′￼
+ …

‣ strength and range of i.a. parameters can be adjusted by , , and θ d ϵ

U1 U2

U3

U0

○

○
○ ○

○
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○ ○
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Extended Hubbard interactions



• summary of effective model:

KΓ

M1

M2

M3

K′￼

U1 U2

U3

U0

H = ∑
v=±

∑⃗
R , ⃗R ′￼

t( ⃗R ′￼− ⃗R )c†
⃗R ,v
c ⃗R ′￼,v +

1
2 ∑

v,v′￼

∑⃗
R , ⃗R ′￼

U( ⃗R ′￼− ⃗R )c†
⃗R v
c†

⃗R ′￼v′￼

c ⃗R ′￼v′￼
c ⃗R v

Hubbard Model Physics in Transition Metal Dichalcogenide Moiré Bands:

Supplemental Material

Fengcheng Wu,1 Timothy Lovorn,2 Emanuel Tutuc,3 and A. H. MacDonald2

1Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
2Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA

3Department of Electrical and Computer Engineering, Microelectronics Research Center,
The University of Texas at Austin, Austin, Texas 78758, USA

MOIRÉ BANDS IN WSe2/MoS2 BILAYERS

In the di↵erent-chalcogen heterobilayer WSe2/MoS2,
the top-most valence bands are also primarily associated
with WSe2 layer. There is a relatively large di↵erence
in lattice constants between WSe2 and MoS2, and the
mismatch � is |a0 � a00|/a0 ⇡ 3.9%, where a0 ⇡ 3.32
Å and a00 ⇡ 3.19 Å are respectively lattice constants
of WSe2 and MoS2. Due to the mismatch �, there is a
moiré pattern even in rotationally aligned WSe2/MoS2
bilayer. Experimentally, scanning tunneling microscopy
measurement has identified a spatial variation with an
amplitude of 50 meV in the valence band maximum en-
ergy of aligned WSe2/MoS2 bilayer in AA stacking.[1]
We study moiré bands in this system, and the analysis
is similar to that presented in the main text. The moiré
potential that acts on the valence band states of WSe2 is
still approximated by:

�(r) =
0X

b

V (b) exp[ib · r] (1)

where the summation over b is again restricted to the six
moiré reciprocal lattice vectors in the first shell, which
are given by: bj ⇡ ✓Gj ⇥ ẑ � �Gj . Here ✓ is the rota-
tion angle, � is the lattice constant mismatch, and Gj

is the reciprocal lattice vectors of monolayer WSe2 in
the first shell. We also require that V (R̂2⇡/3b) = V (b)
and V (b) = V ⇤(�b), and all six V (b) are therefore fixed
by V (b1) = V exp(i ). By fitting to the experimentally
measured moiré potential [1], we obtain that (V, ) is
(5.1 meV,�71�) for WSe2 on MoS2 in AA stacking. The
moiré period is determined by aM ⇡ a0/

p
✓2 + �2, which

is about 8.5 nm in the aligned case (✓ = 0�) and decreases
as the twist angle increases.

Results for this system are summarized in Fig. 1. At
✓ = 0�, the highest valence moiré band is isolated from
other bands and has a bandwidth about 20 meV. The
Hubbard repulsive interaction can be at least an order of
magnitude larger compared to the hopping parameters.
Therefore, Hubbard model physics can also be realized
in WSe2/MoS2 bilayer, and the candidate many-body
ground states discussed in the main text are applicable
as well.
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FIG. 1. (a) Moiré potential energy and (b) moiré bands for

valence states of WSe2 aligned with MoS2 in AA stacking.

(c) Hopping parameters tn and (d) Hubbard model repulsive

interaction parameters ✏Un as a function of moiré period aM

(bottom) and twist angle ✓ (top).

DISCUSSION ON MOIRÉ POTENTIAL

Density-functional theory (DFT) with local or semilo-
cal exchange and correlation functionals fails to capture
the long-range van der Waals (vdW) interactions between
layers in vdW structures, and leads to inaccurate estima-
tion of binding energies.[2] DFT with random-phase ap-
proximation (RPA) correction is required to account for
the nonlocal vdW interactions; however, RPA correction
is computationally expensive and is beyond the scope of
this work.[2] Our primary interest is on the position de-
pendence of the valence band maximum energy, which
varies in the moiré pattern mainly due to the change in
the local atomic coordination between the two layers. For
this reason, we expect that the moiré potential will de-
pend less sensitively on the non-local vdW interaction,
and DFT with local-density approximation (LDA) can
provide a qualitative estimation of the moiré potential.
As shown in the main text, LDA predicts a moiré po-
tential with an amplitude about 60 meV in AA-stacked
WSe2/MoSe2 bilayer, which is comparable to the ex-

‣ ab initio w/ :ϵ = 10

‣ semiconductor background dielectric  → can be tuned by choice of dielectric layer (  for hBN)


‣ example at :    


‣ example at : 

ϵ ϵ ≈ 5

θ = 0∘ t1 ≈ 2.5 meV, ϵU0 ≈ 0.22 eV, ϵ = 5 ⇒ U0/t1 ≈ 18

θ = 1.5∘ t1 ≈ 4.0 meV, ϵU0 ≈ 0.28 eV, ϵ = 10 ⇒ U0/t1 ≈ 7
Wu, Lovorn, Tutuc, MacDonald, PRL (2018)

Extended Hubbard model on triangular lattice



‣ triangular lattice → geometric frustration


‣ Fermi surface nesting and van Hove singularities in band structure


‣ flat bands with W ~ (10 meV) and band filling tunable by gating


‣ tunable strength and range of electron-electron interactions 
 

➡ complex interplay between electronic interactions and geometric frustration 
 

‣ plethora of strongly-correlated phases expected (MIT, spin liquids, magnetism,…)

𝒪

Extended Hubbard model on triangular lattice

• summary of effective model:

KΓ

M1

M2

M3

K′￼

U1 U2

U3

U0

H = ∑
v=±

∑⃗
R , ⃗R ′￼

t( ⃗R ′￼− ⃗R )c†
⃗R ,v
c ⃗R ′￼,v +

1
2 ∑

v,v′￼

∑⃗
R , ⃗R ′￼

U( ⃗R ′￼− ⃗R )c†
⃗R v
c†

⃗R ′￼v′￼

c ⃗R ′￼v′￼
c ⃗R v



• ratio between interaction & kinetic energy  can be tuned → strong-coupling  accessible


‣ consider half-filled isolated band → strong repulsion suppresses double occupancy of moiré sites


‣ Mott insulator ground state with localized spin/valley d.o.f.


‣ perform strong-coupling limit → spin/valley Heisenberg model:


‣  from  perturbation theory (e.g., )

∼ U0/t U0 ≫ t1

J1, J2, J3 t/U J1 = 4t2
1 /U0

Hs = ∑⃗
R , ⃗R ′￼

J( ⃗R ′￼− ⃗R ) ⃗S ⃗R ⋅ ⃗S ⃗R ′￼

J2/J1
 Néel order120∘ stripe antiferromagnet0.06 0.17spin liquid

Zhu & White, PRB (2015), Hu, Gong, Zhu, Sheng, PRB (2015)

Half-filling and strong-coupling limit



• away from the effective spin model in the strong-coupling limit → charge fluctuations


‣ need to study Hubbard model directly


‣ focus of many current numerical efforts (DMRG/tensor-network methods, Monte Carlo methods,…)


‣ schematic phase diagram:

U0/t1
 Néel order120∘∼ 9 ∼ 11insulating regime

Wietek et al., PRX (2021), Szasz et al., PRX (2020), Chen et al., arxiv:2102.05560 (2021),…

metal

non-magnetic, chiral spin liquid?
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Half-filling from weak to strong coupling



• situation is less explored away from half filling


• at or near 3/4 filling → van Hove singularity & approximate nesting (depending on )


‣ nesting supports spin/valley fluctuations → magnetic/valley ordering tendencies?


‣ pairing glue and superconductivity from spin/valley fluctuations?

t1, t2, t3, …

- how to find out? … appropriate many-body methods …


- which kind of superconductivity?  … symmetry of pairing function, gap, …


- phenomenology of superconducting state?  … excitation spectrum, edge states, …

Away from half filling



• Mott physics at 1/2 filling & Wigner crystals or stripe phases at fractional fillings:

Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices, Regan et al., Nature 579 (2020)


Correlated insulating states at fractional fillings of moiré superlattices, Xu et al., Nature 587 (2020)


Stripe phases in WSe2/WS2 moiré superlattices, Jin et al., Nature Materials 20, 940 (2021)
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Here ω is the excitation frequency and ∼α n= ∆OC/∆  is the optical  
detection responsivity in region 2, which is constant for the fixed bot-
tom gate voltage used in our study. The frequency-dependent optical 
signal ∆OC(ω) allows us to extract the values of both CQ and R: at low 
excitation frequencies the resistance is negligible, so the optical signal 
probes the quantum capacitance CQ, which is proportional to the den-
sity of states of the moiré heterostructure. At high modulation frequen-
cies, both CQ and R contribute to the optical signal.

We focus our study on WSe2/WS2 heterostructures with near-zero 
twist angles that have a moiré superlattice with a period of about 8 nm 
owing to the ~4% lattice mismatch between the WS2 and WSe2 monolay-
ers. Figure 1d shows a schematic of device D1: few-layer graphene is 
used for the gates and contact to the TMD layers, and hexagonal boron 
nitride (hBN) is used at the top and bottom gate dielectrics (εr = 4.2; 
see Methods and ref. 25 for fabrication details). Figure 1e shows an opti-
cal microscopy image of the final device, with contours highlighting 
the WS2 and WSe2 layers and the local graphite top gate. To verify the 
presence of the moiré superlattice, we examine the optical absorp-
tion spectrum of the heterostructure (Fig. 1f). The spectrum shows 
clear splitting of the WSe2 A exciton, which is a signature of the moiré 
superlattice in the heterostructure25.

Figure 2a shows the ODRC signals as a function of the hole doping of 
the WSe2/WS2 moiré superlattice in region 1. We use an a.c. excitation 

voltage with the peak-to-peak amplitude of 10 mV at 1 kHz and 30 kHz. 
When region 1 is charge-neutral (Vtop > 0.2 V), the ∆OC signal is small 
because no carriers are available to redistribute in the bandgap of 
WSe2. When region 1 is hole-doped (Vtop < 0.2 V), charge redistribu-
tion occurs, leading to a large increase in the signal. Interestingly, we 
observe a strong gap-like feature at −1 V (blue dashed line in Fig. 2a). 
From a capacitance model, we estimate the corresponding hole con-
centration to be 1.86 × 1012 cm−2, which matches well with a density of 
one hole per moiré unit cell (n0 = 1.88 × 1012 cm−2; see Methods). We 
also observe two sharp dips at −0.2 V and −0.6 V (orange and green 
dashed lines in Fig. 2a), which correspond to hole concentrations of 
n = n0/3 and n = 2n0/3, respectively. Additionally, a broad, weaker feature 
is observed at −2.25 V, which corresponds to n = 2n0. These features 
become stronger at the higher excitation frequency of 30 kHz. ODRC 
signals for additional aligned heterostructures are shown in Extended 
Data Fig. 5.

We extract numerical values for the doping-dependent Ceff and R of 
the moiré heterostructure based on the effective a.c. circuit model and 
equation (1). We plot Ceff and R as a function of carrier doping in Fig. 2b, 
c (grey lines). An optical responsivity of α = 1.4 × 10−12 cm2 is chosen so 
that = +C C C C

1 1
+

1

eff 1 B 2
 at high doping, where the quantum capacitance 

is much larger than the geometric capacitances and has negligible 
contribution. At n = n0, n = n0/3 and n = 2n0/3, Ceff decreases, whereas 
the geometric capacitances remain unchanged (Fig. 2b). This decrease 
in Ceff is due to the much smaller quantum capacitance CQ, which results 
from the greatly reduced density of states at these fillings. At the same 
time, the electrical resistance shows marked increases at n = n0, n = n0/3 
and n = 2n0/3 (Fig. 2c). The simultaneous reduction of the density of 
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Fig. 2 | Doping-dependent resistance and capacitance probed by ODRC.  
a, ODRC signal at 1 kHz (grey) and 30 kHz (black) from charge-neutral to 
moderate hole doping. Strong gap-like features are observed at hole  
doping levels of n = n0/3 (orange dashed line), n = 2n0/3 (green dashed line)  
and n = n0 (blue dashed line). The purple dashed line corresponds to n = 0.  
b–d, Capacitance Ceff (b) and resistance (c) of region 1. Grey curves are 
extracted from the data in a, and black dots are extracted from the frequency-

dependent ODRC signal (d) at representative doping levels. In d, the dots are 
the frequency-dependent ODRC signal at the indicated values of Vtop and the 
lines are the corresponding fits with the RC circuit model. The decreased 
capacitance and increased resistance indicate emerging insulating states at 
n = n0/3, n = 2n0/3 and n = n0. All measurements are done at 3 K. e, Illustrations of 
generalized Wigner crystal (n = n0/3, n = 2n0/3) and Mott insulator states (n = n0) 
in a WSe2/WS2 moiré superlattice.

Experimental status of moiré TMDs

➡  Interactions of extended range important!



• Clear signs of superconductivity in graphene based heterostructures: 


‣ At magic angle in TBG and symmetric TTG


‣ In rhombohedral trilayer graphene and Bernal bilayer graphene (with perpendicular electric field) 


• Evidence of zero-resistance state in twisted bilayer WSe2
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FIG. 4. Evidence of superconductivity A Resistivity ver-
sus temperature and density. The density was varied with
the back gate while the top gate was kept fixed at -12.25 V.
Two zero resistance regions (suggesting superconducting be-
haviour) appear when doping away from the insulating state.
B Resistance versus temperature at di↵erent densities near
half filling. The insulating response at half filling (blue) on-
sets at 35K, whereas the superconducting states (red and
green) reach zero resistance below 3K.

mentary Information Fig. 6 for data from other devices
and angles). For the fan originating from the valence
band edge, we observe only even-integer quantum Hall
states (white lines) up to approximately B = 8 T, con-
sistent with a two-fold degenerate Fermi surface. Above
8 T, we observe onset of additional odd integer QHE
states (red lines), indicating a lifting of the combined
spin-valley degeneracy. This degeneracy lifting is not
clearly observed in the satellite fan originating from full
filling, where two-fold degenerate Landau levels persist

to the highest measured fields. The magnitude of the
0.5ns insulating peak decreases with increasing B field
and vanishes at B ⇠ 6T. This behaviour is qualitatively
consistent with a non-ferromagnetically ordered ground
state. However, a detailed understanding of this trend is
complicated by variation of both Coulomb and Zeeman
energies under perpendicular applied field. A full study
of B-field dependence is beyond the scope of the present
manuscript and will be discussed elsewhere (see also Sup-
plementary Information Fig. 7). Fig. 2b shows the Hall
resistance measured simultaneously with the longitudi-
nal resistivity shown in Fig. 2a. At high field, the sign of
the Hall resistance inverts upon doping from low to high
carrier density, consistent with the expected response for
a single band where the dispersion changes from hole-
like to electron-like as the band is filled. This provides
further confirmation that our gate range spans a single
low-energy sub-band. Fig. 2c shows the Hall resistance
versus density, measured at B = 1 T for three separate
displacement fields . The top panel (D = 0.1 V/nm)
corresponds to low displacement field where no resistive
peak is seen in the longitudinal resistance at half filling.
Here, the Hall resistance changes sign from hole-like to
electron-like transport at n/ns ⇠ 0.4, after which the
Hall e↵ect continues to show electron-like transport with
increased doping. Since there is no evidence of an insulat-
ing sate, we interpret the single crossing point as the po-
sition of the van Hove singularity (vHS) where the moiré
subband curvature changes sign. The two lower panels of
Fig. 2c (D=0.19 V/nm and D=0.30 V/nm respectively),
correspond to the range of D where a resistive peak is ob-
served at half filling. In this case three crossings appear,
which we label n1, n2 and nvHS . We identify the nvHS

crossing as the single-particle band vHS since this marks
the point beyond which the band continues to show an
electron-like Hall response. We therefore associate the
other two crossings with the appearance of the half-filling
insulating state.

The position of the vHS evolves continuously with dis-
placement field, starting at n/ns < 0.5 for low D but
moving through half filling to n/ns > 0.5 values for large
D. The magnitude of the longitudinal resistance peak
at half filling correlates closely with the position of the
single-particle vHS with the largest resistive peak seen
when the vHS is near half-filling (Fig. 2d). The depen-
dence of the half filling CI on the vHS position indicates
that the system is in a regime of moderate correlations,
where the band structure (specifically the DOS) plays
an important role in determining the properties of the
emergent insulator. However, we note that the insulat-
ing phase itself is always observed at precisely half-filling,
indicating that we are not in the weakly correlated regime
where gaps would form at the peak of the vHS.

Fig. 2e-g shows the tWSe2 band structure calculated
by DFT as a function of D, for a 4.5� twist. At zero
D, the two layers are degenerate and the hybridization
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green) reach zero resistance below 3K.

mentary Information Fig. 6 for data from other devices
and angles). For the fan originating from the valence
band edge, we observe only even-integer quantum Hall
states (white lines) up to approximately B = 8 T, con-
sistent with a two-fold degenerate Fermi surface. Above
8 T, we observe onset of additional odd integer QHE
states (red lines), indicating a lifting of the combined
spin-valley degeneracy. This degeneracy lifting is not
clearly observed in the satellite fan originating from full
filling, where two-fold degenerate Landau levels persist

to the highest measured fields. The magnitude of the
0.5ns insulating peak decreases with increasing B field
and vanishes at B ⇠ 6T. This behaviour is qualitatively
consistent with a non-ferromagnetically ordered ground
state. However, a detailed understanding of this trend is
complicated by variation of both Coulomb and Zeeman
energies under perpendicular applied field. A full study
of B-field dependence is beyond the scope of the present
manuscript and will be discussed elsewhere (see also Sup-
plementary Information Fig. 7). Fig. 2b shows the Hall
resistance measured simultaneously with the longitudi-
nal resistivity shown in Fig. 2a. At high field, the sign of
the Hall resistance inverts upon doping from low to high
carrier density, consistent with the expected response for
a single band where the dispersion changes from hole-
like to electron-like as the band is filled. This provides
further confirmation that our gate range spans a single
low-energy sub-band. Fig. 2c shows the Hall resistance
versus density, measured at B = 1 T for three separate
displacement fields . The top panel (D = 0.1 V/nm)
corresponds to low displacement field where no resistive
peak is seen in the longitudinal resistance at half filling.
Here, the Hall resistance changes sign from hole-like to
electron-like transport at n/ns ⇠ 0.4, after which the
Hall e↵ect continues to show electron-like transport with
increased doping. Since there is no evidence of an insulat-
ing sate, we interpret the single crossing point as the po-
sition of the van Hove singularity (vHS) where the moiré
subband curvature changes sign. The two lower panels of
Fig. 2c (D=0.19 V/nm and D=0.30 V/nm respectively),
correspond to the range of D where a resistive peak is ob-
served at half filling. In this case three crossings appear,
which we label n1, n2 and nvHS . We identify the nvHS

crossing as the single-particle band vHS since this marks
the point beyond which the band continues to show an
electron-like Hall response. We therefore associate the
other two crossings with the appearance of the half-filling
insulating state.

The position of the vHS evolves continuously with dis-
placement field, starting at n/ns < 0.5 for low D but
moving through half filling to n/ns > 0.5 values for large
D. The magnitude of the longitudinal resistance peak
at half filling correlates closely with the position of the
single-particle vHS with the largest resistive peak seen
when the vHS is near half-filling (Fig. 2d). The depen-
dence of the half filling CI on the vHS position indicates
that the system is in a regime of moderate correlations,
where the band structure (specifically the DOS) plays
an important role in determining the properties of the
emergent insulator. However, we note that the insulat-
ing phase itself is always observed at precisely half-filling,
indicating that we are not in the weakly correlated regime
where gaps would form at the peak of the vHS.

Fig. 2e-g shows the tWSe2 band structure calculated
by DFT as a function of D, for a 4.5� twist. At zero
D, the two layers are degenerate and the hybridization

Open questions:


‣ Superconductivity exclusive for 
graphene systems?


‣ Conventional or electronic 
mechanism?

Wang et al., Nature Materials (2020)

Superconductivity (?)



Outline

• Chapter I: From 2D moiré materials to frustrated superlattice Hubbard models


• Chapter II: Interaction effects in hexagonal superlattice Hubbard models


• Chapter III: Functional renormalization group


• Chapter IV: Functional renormalization group for moiré materials


• Chapter V: Further developments and outlook



Chapter II: Interaction effects in hexagonal superlattice Hubbard models 

‣ Instabilities from amplified interactions

‣ Van-Hove scenario on the triangular lattice

‣ Particle-particle and particle-hole instabilities

‣ Competing interaction effects and unconventional superconductivity

Furukawa, Rice, Salmhofer, PRL (1998)

Nandkishore, Levitov, Chubukov, Nat. Phys. (2012)

Classen, Chubukov, Honerkamp, Scherer, PRB (2020)



• Consider itinerant electron system:


‣ density of states (DOS)  


‣ interaction  (is it weak or strong?)


• Define dimensionless interaction = interaction x DOS:              


• Example: In 2D  away from Van Hove points:              


• Generally:            


• Increase  through band restructuring: 


1. decrease  


2. increase         (e.g. near Van-Hove singularity)


• Generalized Stoner criterium for Fermi-surface instability:  ...

ρ

U

λ ∼ U × ρ

ρ ≈ 1/W ⇒ λ ∼ U/W

λ ∼ (U/W) ̂ρ(E)

λ

W

̂ρ

λ > 1

interaction

bandwidth

dimensionless

Fermi-surface instabilities from amplified interactions



• Effective interaction from 2-particle correlation function 


•

⟨c1c2c̄3c̄4⟩ ∼ G1G2 Γ(4)
1234 G3G4

Γ(4) =

• Density of states at Van-Hove filling:         


• Nested Fermi surface with nesting vectors      :         

ρ(ϵ) = ̂ρ0 ln(ϵ/T)

M1, M2, M3 ϵ( ⃗k + Mi) ≈ − ϵ( ⃗k)

1PI part

+ + + +

particle-particle crossed particle-hole direct particle-hole

+  … 

K1 K2

M1

M2

M3

M1

Van Hove scenario on the triangular lattice



• Leading diagrams at  with bare on-site interaction  EVH U∑
i

c†
i+c†

i−ci−ci+

particle-particle

crossed particle-hole direct particle-hole

= 0+ +

Fermi-surface instabilities from amplified interactions K1 K2

M1

M2

M3

M1

• Density of states at Van-Hove filling:         


• Nested Fermi surface with nesting vectors      :         

ρ(ϵ) = ̂ρ0 ln(ϵ/T)

M1, M2, M3 ϵ( ⃗k + Mi) ≈ − ϵ( ⃗k)



particle-particle = U2 T∑
iω

∫ ⃗k
G(iω, ⃗k)G(−iω, − ⃗k)

= U2 ∫ ⃗k

1 − nF(ϵ ⃗k) − nF(ϵ− ⃗k)
ϵ ⃗k + ϵ− ⃗k

= U2 ∫ ⃗k

1 − nF(ϵ ⃗k) − nF(ϵ ⃗k)
2ϵ ⃗k

= U2 ∫ dϵρ(ϵ)
1 − 2nF(ϵ)

2ϵ
= U2 ̂ρ0

W ∫ ln ( ϵ
T ) 1 − 2nF(ϵ)

2ϵ
∼ ln2 W

T

k

−k

p

−p

p′￼

−p′￼

Fermi-surface instabilities from amplified interactions K1 K2

M1

M2

M3

M1

• Density of states at Van-Hove filling:         


• Nested Fermi surface with nesting vectors      :         

ρ(ϵ) = ̂ρ0 ln(ϵ/T)

M1, M2, M3 ϵ( ⃗k + Mi) ≈ − ϵ( ⃗k)

• Sum particle-particle channel (pp ladder diagrams)

= = + =
U

1 + U
W

̂ρ0 ln2 W
T

effective interaction in pp channel

+ + + … 

Cooper instability!



= U2 T∑
iω

∫ ⃗k
G(iω, ⃗k)G(iω, ⃗k + ⃗Mi)

= U2 ∫ ⃗k

nF(ϵ ⃗k) − nF(ϵ ⃗k+ ⃗Mi
)

ϵ ⃗k − ϵ ⃗k+ ⃗Mi

= U2 ∫ ⃗k

2nF(ϵ ⃗k) − 1
2ϵ ⃗k

∼ − ln2 W
T

kp

p + Mi

p

p + MiMi + k

Fermi-surface instabilities from amplified interactions K1 K2

M1

M2

M3

M1

• Density of states at Van-Hove filling:         


• Nested Fermi surface with nesting vectors      :         

ρ(ϵ) = ̂ρ0 ln(ϵ/T)

M1, M2, M3 ϵ( ⃗k + Mi) ≈ − ϵ( ⃗k)

particle-hole

• Sum particle-hole channel (analoguously to pp-ladder)

= + =
U

1 − U
W

̂ρ0 ln2 W
T

effective interaction in ph channel (Generalized) Stoner instability!



K1 K2

M1

M2

M3

M1

particle-hole = + = U

1 − U
W

̂ρ0 ln2 W
T

particle-particle = + = U

1 + U
W

̂ρ0 ln2 W
T

• Instabilities/singularities upon lowering temperature (! sign)  

                                      


• Correlations grow strong at signature for spontaneous symmetry breaking / ordering transition


‣ U<0: superconductivity


‣ U>0: density wave with wave vector 

1 =
|U |
W

̂ρ0 ln2 W
T

⇒ Tc = W exp −
W

|U | ̂ρ0

Tc →

⃗Mi

• Summary

Fermi-surface instabilities at van-Hove filling



• Instabilities appear in several channels: competing instabilities/orders 


• Cannot be considered separately 


• For example: unconventional pairing mechanism


1. start with repulsive interaction


2. ph fluctuations grow strong  tendency to density wave instability


3. at the same time: ph fluctuations mediate attraction in pairing channel


4. pp fluctuations can overcome ph channel  tendency to superconductivity 

• Who wins at the end?

→

→

Fermi-surface instabilities from amplified interactions

SC 1

Magn.SC 2

QAH
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Chapter III: Functional renormalization group 

‣ Physics of scales and renormalization group concept

‣ Functional renormalization for correlated fermions

‣ Truncations and approximations

‣ Implementation
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Metzner et al., RMP (2012)
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• quantum field theory:  

framework for systems with a large number of coupled degrees of freedom


• renormalization group (RG):  

mathematical procedure to study changes of a physical system when viewed at different scales k (T)

Γk flowing action

k∂kΓk[Φ] =
1
2

STr ( k∂kRk

Γ(2)
k [Φ] + Rk )‣ exact functional RG flow equation

Wetterich (1992)

quantum effective action (generates 1PI correlation fcts)Γ

microscopic actionS

‣ allows for non-perturbative truncations and/or systematic approximations…


• dynamical generation of mass gaps


• unbiased detection of ordering tendencies


• (quantum) critical exponents, ...

Quantum fields and renormalization



• Preliminary consideration:


‣ ladders can also be expressed as differential equations


‣ define         


‣ then write for an effective interaction : 


‣ with : 

V

V(T = W) = U

• Diff. eq. can be derived from Wilson RG  integrate out fast modes in momentum shell 


• Also possible to account for coupling of different channels in this way 


• FRG provides formalism and generalization… 

→

Functional renormalization group for correlated electrons

V =
U

1 ∓ U
W

̂ρ0 ln2 W
T

y =
̂ρ0

W
ln2 W

T
d
dy

V = ± V2 ⇒ V = ∓
1

y + c

= + + + … 



G0(k0,k) =
1

ik0 � ⇠k
, ⇠k = ✏k � µ‣ bare propagator:

S[ ,  ̄] = �( ̄, G�1
0  ) + V [ ,  ̄]‣ system of interacting fermions:

�[�, �̄] = (⌘̄,�) + (�̄, ⌘) + G[⌘, ⌘̄], � = �@G
@⌘̄

, �̄ =
@G
@⌘‣ effective action (generates 1PI correlators):

G[⌘, ⌘̄] = � ln

Z
D D ̄ eS[ , ̄]e(⌘̄, )+( ̄,⌘)‣ generating functional (connected Green fcts):

‣ modify bare propagator by IR cutoff 
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Figure 3. (a) Cuto↵ function ⇥✏ (full line) and corresponding scale-derivative @⇤⇥✏ (dashed line). (b)
Momentum shells (gray) representing the finite support of the single-scale propagator S⇤ at an energy
scale ⇤ away from the Fermi surface (blue).

intuitive understanding of renormalization, they also involve serious drawbacks.
One is the violation of Ward identities at any finite cuto↵ value [46, 47] (see also
Appendix 6.1), as also the non-uniform treatment of particle-hole processes within
the momentum-cuto↵ scheme. In order to explain the latter issue, we first write
down the one-loop particle-hole fluctuations arising in elementary perturbation
theory,

�p�h(k, q) =
nF (⇠b(k))� nF (⇠b(k + q))

⇠b(k)� ⇠b(k + q)
. (30)

During the flow, these contributions are taken into account successively within the
trace (23)

tr
�
S⇤U⇤G⇤U⇤

�
⇠ tr

⇣
�p�h(k, q) · @⇤(✓

⇤
✏ (k)✓

⇤
✏ (k + q)) · . . .

⌘
, (31)

where we, for the simplicity of the argument, neglected frequency dependences and
self-energy insertion. If we now consider particle-hole fluctuations with vanishing
momentum transfer, i.e. �p�h(k, q ! 0), it turns out that the only nonzero con-
tribution in (30) comes from modes k in a small energy region (⇠ T ) around the
Fermi surface. However, due to the cuto↵ function ✓⇤✏ (k), these modes are not taken
into account until ⇤ ⇡ T . On the other hand, particle-hole fluctuations with large
momentum transfer are already taken into account right from the beginning. The
cuto↵-scheme, therefore, treats particle-hole fluctuations in a non-uniform way, and
it may happen that other channels already indicate a singularity at cuto↵ values
⇤ > T , whereas the small q particle-hole fluctuations have not yet contributed.
In order to avoid this issue, we can exploit the flexibility in the parameter de-

pendence of �⇤ and regard the temperature itself as flow parameter. However, we
first have to shift the temperature dependences towards the quadratic part of the
action (1), and we therefore write out all temperature prefactors

S( , ) = �T

Z

k,k0
Qk,k0 k k0 + T 3

Z

k1,k2,k0
1,k

0
2

Uk1,k2,k0
1,k

0
2
 k1

 k2
 k0

1
 k0

2

and rescale the field variables according to

 k = T�3/4�k,  k = T�3/4�k. (32)

G⇤
0 (k0,k) =

⇥✏(|⇠k|� ⇤)

ik0 � ⇠k

‣ define above quantities with modified propagator → variation w.r.t to scale

Functional renormalization group for correlated electrons



@

@⇤
�⇤[�, �̄] = Tr


G⇤

0
@(G⇤

0 )
�1

@⇤

�
� Tr

"✓
�2�⇤[�, �̄]

����̄
+ (G⇤

0 )
�1

◆�1
@(G⇤

0 )
�1

@⇤

#

• exact RG equation

Functional renormalization group for correlated electrons

‣ exact RG equation has one-loop structure


‣ removing cutoff (  ) yields the full effective action


‣ lowering cutoff corresponds to momentum-shell integration


‣ cannot be solved exactly!

Λ → 0
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intuitive understanding of renormalization, they also involve serious drawbacks.
One is the violation of Ward identities at any finite cuto↵ value [46, 47] (see also
Appendix 6.1), as also the non-uniform treatment of particle-hole processes within
the momentum-cuto↵ scheme. In order to explain the latter issue, we first write
down the one-loop particle-hole fluctuations arising in elementary perturbation
theory,

�p�h(k, q) =
nF (⇠b(k))� nF (⇠b(k + q))
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where we, for the simplicity of the argument, neglected frequency dependences and
self-energy insertion. If we now consider particle-hole fluctuations with vanishing
momentum transfer, i.e. �p�h(k, q ! 0), it turns out that the only nonzero con-
tribution in (30) comes from modes k in a small energy region (⇠ T ) around the
Fermi surface. However, due to the cuto↵ function ✓⇤✏ (k), these modes are not taken
into account until ⇤ ⇡ T . On the other hand, particle-hole fluctuations with large
momentum transfer are already taken into account right from the beginning. The
cuto↵-scheme, therefore, treats particle-hole fluctuations in a non-uniform way, and
it may happen that other channels already indicate a singularity at cuto↵ values
⇤ > T , whereas the small q particle-hole fluctuations have not yet contributed.
In order to avoid this issue, we can exploit the flexibility in the parameter de-

pendence of �⇤ and regard the temperature itself as flow parameter. However, we
first have to shift the temperature dependences towards the quadratic part of the
action (1), and we therefore write out all temperature prefactors
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and rescale the field variables according to

 k = T�3/4�k,  k = T�3/4�k. (32)

Platt, Hanke, Thomale (2013)



Functional renormalization group for correlated electrons

‣ neglect 6-point and higher vertices


‣ neglect self-energy feedback

Salmhofer & Honerkamp (2001)

• exact RG equation

‣ starting point for systematic approximations (vertex expansion)

… infinite hierarchy of flow equations!

exact RG equation

We now derive explicitly the first two flow equations from
the hierarchy. Comparing coefficients of quadratic contribu-
tions (proportional to !c c ) to the exact flow equation yields

d

d"
Að2Þ" ¼ $ð !c ; _Q"

0 c Þ $ trðS" !@@Að4Þ"Þ: (49)

Inserting Eq. (41), and using #ð2Þ" ¼ Q"
0 $$", one obtains

the flow equation for the self-energy,

d

d"
$"ðx0; xÞ ¼

X

y;y0
S"ðy; y0Þ#ð4Þ"ðx0; y0; x; yÞ: (50)

Comparing coefficients of quartic contributions [proportional
to ð !c c Þ2] yields

d

d"
Að4Þ" ¼ 1

2
trðS" !@@Að4Þ"G" !@@Að4Þ"

þ S"t@ !@Að4Þ"G"t@ !@Að4Þ"Þ

$ 1

2
trðS" !@ !@Að4Þ"G"t@@Að4Þ"

þ S"t@@Að4Þ"G" !@ !@Að4Þ"Þ
$ trðS" !@@Að6Þ"Þ: (51)

Inserting Eq. (41), one obtains the flow equation for the
two-particle vertex,

d

d"
#ð4Þ"ðx01; x02; x1; x2Þ

¼
X

y1;y
0
1

X

y2;y
0
2

G"ðy1; y01ÞS"ðy2; y02Þ

& f#ð4Þ"ðx01; x02; y1; y2Þ#ð4Þ"ðy01; y02; x1; x2Þ
$ ½#ð4Þ"ðx01; y02; x1; y1Þ#ð4Þ"ðy01; x02; y2; x2Þ
þ ðy1 $ y2; y

0
1 $ y02Þ( þ ½#ð4Þ"ðx02; y02; x1; y1Þ

& #ð4Þ"ðy01; x01; y2; x2Þ þ ðy1 $ y2; y
0
1 $ y02Þ(g

$
X

y;y0
S"ðy; y0Þ#ð6Þ"ðx01; x02; y0; x1; x2; yÞ: (52)

Note that there are several distinct contributions involving
two two-particle vertices, corresponding to the familiar

particle-particle, direct particle-hole, and crossed particle-
hole channels, respectively, as shown diagrammatically in
Fig. 4. Similarly, one can obtain the flow equation for #ð6Þ

and all higher vertices.
Since #½c ; !c ( at c ¼ !c ¼ 0 is essentially (up to a factor

T) the grand canonical potential %, the flow equation (35),
evaluated at vanishing fields, yields also a flow equation for
the grand canonical potential:

d

d"
%" ¼ $T trð _Q"

0 G
"Þ: (53)

The flow equation (35) and the ensuing equations for the
vertex functions can be easily generalized to cases with U(1)-
symmetry breaking by allowing for off-diagonal elements in
the matrices Q"

0 , G
", and S".

2. Truncations

The exact hierarchy of flow equations for the vertex func-
tions can be solved only for systems which can also be solved
more directly, that is, without using flow equations. Usually
truncations are unavoidable. A natural truncation is to neglect
the flow of all vertices #ð2mÞ" beyond a certain order m0. We
call this the level-m0 truncation. The structure of the resulting
equations and general properties of their solution will be
discussed in Sec. II.E. Note that the level-m0 truncation
contains all perturbative contributions to order m0 in the
bare two-particle interaction.

In practice, in applications to physically interesting sys-
tems, vertices #ð2mÞ" with m> 3 have so far been neglected,
and the contributions from #ð6Þ" to the flow of #ð4Þ" are
usually restricted to self-energy corrections (see below) or
discarded completely. In particular, the analysis of competing
instabilities (see Sec. III) is based entirely on a level-2
truncation given by the flow equation (52) for the two-particle
vertex, with #ð6Þ" replaced by zero, where the self-energy
feedback is also neglected. This seemingly simple approxi-
mation captures the complex interplay of fluctuations in the
particle-particle and particle-hole channel, which leads to
interesting effects such as the generation of d-wave super-
conductivity from antiferromagnetic fluctuations. In the
quantum transport phenomena reviewed in Sec. VI, the
self-energy as given by the flow equation (50) plays a crucial
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FIG. 4. Contributions to the flow of the two-particle vertex with
particle-particle and particle-hole channels written explicitly, with-
out the contribution from #ð6Þ".

d
ΣΛ

d Λ

dΛ
d Γ (4)Λ

dΛ
d Γ (6)Λ

= Γ

SΛ

(4)Λ

S

GΛ

+

Λ

Γ (6)ΛΓΓ (4)Λ

=
(4)Λ

+
SΛ

+

Γ (6)Λ

=

Γ (4)Λ

Γ (4)Λ

Γ (4)Λ

SΛ

SΛ

Γ (8)Λ
GΛΓ (4)Λ

GΛ

SΛ
GΛ

FIG. 3 (color online). Diagrammatic representation of the flow
equations for the self-energy $", the two-particle vertex #ð4Þ", and
the three-particle vertex #ð6Þ" in the one-particle irreducible version
of the functional RG. Lines with a dash correspond to the single-
scale propagator S", and the other lines to the full propagator G".
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The e↵ective action �[ ̄, ], generating the one-particle
irreducible correlation functions [79], is then defined with
G

⇤

0
and hence becomes scale dependent, i.e. � ! �⇤.

Taking the derivative of �⇤ with respect to ⇤ yields
the exact RG flow equation [50]

@

@⇤
�⇤=�( ̄, (Ġ⇤

0
)�1

 )�
1

2
Tr

⇣
(Ġ⇤

0
)�1(�(2)⇤)�1

⌘
, (6)

where (G⇤

0
)�1 = diag((G⇤

0
)�1

, (G⇤t
0
)�1) and the trace

includes the matrix of second functional derivatives of �⇤

with respect to  and  ̄, i.e. �(2)⇤ = �(2)⇤[ ̄, ]. The
inital condition of Eq. (6) is defined at ultraviolet scale
⇤0 and corresponds to the microscopic action �⇤0 = S.
For ⇤!0 the full e↵ective action is restored �⇤!0 = �.

For practical calculations on the basis of Eq. (6), we
need to truncate �⇤. The truncation employed here is
based on a vertex expansion, reading

�⇤[ ,  ̄] =
1X

i=0

(�1)i

(i!)2

X

K1,...,Ki

K0
1,...,K

0
i

�(2i)⇤(K 0
1
, ...,K

0
i,K1, ...,Ki)

⇥  ̄(K 0
1
)... ̄(K 0

i) (Ki)... (K1) , (7)

where K = (�, k) carries spin indices � and multi-indices

k = (!,~k) collecting Matsubara frequencies and wavevec-
tors. This ansatz is inserted into Eq. (6), generating a
hierarchy of RG flow equations for the one-particle irre-
ducible vertex functions �(2i)⇤. Following earlier work,
we truncate the tower of flow equations at the second
level i = 2 and neglect self-energy feedback [80, 81] so
that we exclusively consider the RG evolution of the
two-particle vertex �(4)⇤, which determines the e↵ective
interaction dressed by multiple scattering events. This
truncation scheme accurately resolves the wave-vector
dependence of the two-particle vertex, which allows us to
determine Fermi liquid instabilities in an unbiased way.

B. Spin-invariant FRG flow equations

We can utilize the spin invariance of our model Eq. (1)
in the FRG equation for the two-particle vertex. For
SU(2) symmetric systems it can be written as

�(4)⇤

�1�2�3�4
= V

⇤
��1�3��2�4 � Ṽ

⇤
��1�4��2�3 , (8)

with e↵ective interaction V
⇤ = V

⇤(k1, k2, k3, k4) and
Ṽ

⇤ = V
⇤(k1, k2, k4, k3). For later convenience, we also

explicitly introduce the e↵ective interaction as it appears
in the action, i.e.

�⇤

V =
1

2

Z

k1,k2,k3,k4

V
⇤(k1, k2, k3, k4)�(k1+k2�k3�k4)
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X

s,s0

 ̄s(k1) ̄s0(k2) s0(k4) s(k3) , (9)

where
R
k = A

�1

BZ
T
R
BZ

dk
P

i! and k = (k,!). ABZ is
the area of the BZ. In the following, we omit the fourth
momentum argument which is fixed by momentum con-
servation unless it is important for the discussion.
For the investigation of Fermi-surface instabilities, we

are interested in analyzing the most singular part of V ⇤,
which comes from the smallest Matsubara frequency and
we therefore exclusively consider this one. With these
preliminaries, the RG evolution of V

⇤ can be derived
from the exact flow equation, Eq. (6), and it reads

d

d⇤
V

⇤ = ⌧pp + ⌧ph,c + ⌧ph,d . (10)

This RG flow equation is composed of three contribu-
tions, i.e. the particle-particle (pp) contribution
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the crossed particle-hole (ph,c) contribution
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q
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and the direct particle-hole (ph,d) contribution
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⇤
. (13)

By solving the flow equation (10) using Eqs. (11)–(13) we
can identify Fermi-surface instabilities in terms of singu-
lar contributions to V

⇤(k1,k2,k3). We use this set of
equations as the basis for an implementation of the com-
putationally e�cient TUFRG scheme.

C. Truncated-Unity FRG

The singular behavior of Fermi-surface instabilities
in correlated-electron systems typically occurs in the
transfer momenta in the three loop contributions in
Eq. (10) [82]. To facilitate a high resolution of the
transfer momenta, we introduce a singular-momentum
description of the RG evolution equations reparameteriz-
ing the vertices in Eqs. (11)–(13) by introducing di↵erent
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q

d

d⇤
[G⇤

0
(i!, q + k1 � k4)G

⇤

0
(i!, q)]

⇥ V
⇤(k1, q, q+k1� k4)

⇥ V
⇤(q + k1 � k4,k2,k3) , (12)

and the direct particle-hole (ph,d) contribution

⌧ph,d =�

Z

q

d

d⇤
[G⇤

0
(i!, q + k1 � k3)G

⇤

0
(i!, q)]

⇥
V

⇤(k1, q, q+k1�k3)V
⇤(q+k1�k3,k2, q)

+ V
⇤(k1, q,k3)V

⇤(q+k1�k3,k2,k4)

� 2V ⇤(k1, q,k3)V
⇤(q+k1�k3,k2, q)

⇤
. (13)

By solving the flow equation (10) using Eqs. (11)–(13) we
can identify Fermi-surface instabilities in terms of singu-
lar contributions to V

⇤(k1,k2,k3). We use this set of
equations as the basis for an implementation of the com-
putationally e�cient TUFRG scheme.

C. Truncated-Unity FRG

The singular behavior of Fermi-surface instabilities
in correlated-electron systems typically occurs in the
transfer momenta in the three loop contributions in
Eq. (10) [82]. To facilitate a high resolution of the
transfer momenta, we introduce a singular-momentum
description of the RG evolution equations reparameteriz-
ing the vertices in Eqs. (11)–(13) by introducing di↵erent

@

@⇤
�⇤[�, �̄] = Tr


G⇤

0
@(G⇤

0 )
�1

@⇤

�
� Tr

"✓
�2�⇤[�, �̄]

����̄
+ (G⇤

0 )
�1

◆�1
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0 )
�1
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the absence of the topological Mott insulator state in the
phase diagram and the appearance of charge-modulated
states in the large V2 regime. On the other hand, we
do not find any sign for an incommensurable charge-
modulated state reported in Ref. 41. This would require
a much higher wavevector resolution. This is beyond the
applicability of the present multi-patch approach as it
requires a much higher numerical cost.

To summarize, an independent variation of the inter-
action parameters for the onsite, nearest-neighbor and
next-nearest-neighbor repulsions does not reveal any spot
in the tentative weak-coupling phase diagram, where the
interaction-driven QSH state represents the leading in-
stability. Also, for interaction profiles inspired by ab ini-
tio parameters for graphene no indication for an topo-
logical Mott insulator state is found. Instead, we iden-
tified large parts of the phase diagram where a charge-
modulated density wave order is the leading instability
and we have found evidence for a competition between
the spin correlations and the charge correlations.
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Appendix A: fRG flow equations

The connected correlation functions of a system of in-
teracting fermions are given by the generating functional
for the fully connected correlation functions48,

G[⌘̄,⌘] = − ln� D D ̄ e
−S[ ̄, ]+(⌘̄, )+( ̄,⌘)

. (A1)

In the fRG approach28–30, we consider the generating
functional for the one-particle irreducible (1PI) corre-
lation functions or e↵ective action �[ ,  ̄] = (⌘̄, ) +
( ̄,⌘) + G[⌘̄,⌘], which is the Legendre transform G[⌘̄,⌘]
and the field arguments in � are given by  = −@G�@⌘̄
and  ̄ = @G�@⌘. Note that we use  for both, the fields
in the micrscopic action as well as for the field arguments
of the e↵ective action for notational convenience.

The modification of the microscopic action by means
of the regulator function, cf. Eq. (5), in the action en-
tering the functional integral yields the scale-dependent
e↵ective action �⇤. The functional flow equation for this
version of the e↵ective action is obtained upon the vari-
ation of �⇤ with respect to ⇤ and reads

@

@⇤
�⇤[ ̄, ] = − ( ̄, Ġ

−1
0
 )

− 1

2
Tr�(Ġ⇤

0
)−1 ��(2)⇤[ ̄, ]�

−1
� , (A2)

where (G0
⇤)−1 = diag((G⇤

0
)−1, (G⇤t

0
)−1) and

�(2)⇤[ ̄, ] =
�
�

@2
�
⇤

@ ̄@ 
@2

�
⇤

@ ̄@ ̄
@2

�
⇤

@ @ 
@2

�
⇤

@ @ ̄

�
�

. (A3)

The initial condition at the scale ⇤UV reads �⇤

UV
= S,

where ⇤UV is typically chosen as the bandwidth of the
model. In the limit ⇤→ 0 one successively integrates out
all fermionic fluctuations and obtains the full quantum
e↵ective action.

Appendix B: Truncation and approximations

We expand the e↵ective action �⇤ in fields,

�⇤[ ,  ̄] =
∞
�
i=0

(−1)i

(i!)2 �
k1,...ki

k′1,...k′i

�(2i)⇤(k′
1
, ...k

′
i, k1, ...ki)

×  ̄(k′
1
)... ̄(k′i) (ki)... (k1) , (B1)

and insert it into the flow equation (A2). Then one ob-
tains an infinite hierarchy of flow equations for the 1PI
vertex functions. To use these equations in applications
and integrate the flow equations numerically one has to
truncate the tower of equations at a certain level and em-
ploy approximations. For our analysis we follow the RG-
scale dependence of the two-particle interaction �(4)⇤

only, which carries spin indices �i and a multi-index k

gathering Matsubara frequencies ! as well as wavevectors
k and the band index b. For our spin-rotation invariant
system, we can write the two-particle interaction as

�(4)⇤�1,�2,�3,�4
= V

⇤
��1�3��2�4 − V

⇤
��1�4��2�3 , (B2)

where we have suppressed the ki and introduced the ef-
fective interaction vertex V

⇤ = V
⇤(k1, k2, k3, b4).

Appendix C: Flow of the e↵ective interaction vertex

The flow equation for the vertex is given in Eq. (6) and
the particle-particle channel the explicitely reads

�pp =�� V
⇤(k1, k2, k, b

′)L⇤(k, qpp)V ⇤(k, qpp, k3, b4)
(C1)

with ∑∫ = −A−1BZ
T ∑! ∫ d2

k∑b,b′ . The direct and crossed
particle-hole channels are given by

�ph,d =�� [−2V
⇤(k1, k, k3, b

′)L⇤(k, qd)V ⇤(qd, k2, k, b4)

+ V
⇤(k, k1, k3, b

′)L⇤(k, qd)V ⇤(qd, k2, k, b4)
+ V

⇤(k1, k, k3, b
′)L⇤(k, qd)V ⇤(k2, qd, k, b4)] ,

(C2)

�ph,cr =�� V
⇤(k, k2, k3, b

′)L⇤(k, qcr)V ⇤(k1, qcr, k, b4) ,
(C3)

and we define qpp = −k + k1 + k2, qd = k + k1 − k3 and
qcr = k+k2−k3. ABZ denotes the are of the first Brillouin
zone and the loop kernel reads

L
⇤(k, k

′) = d

d⇤
�G⇤

0
(k)G⇤

0
(k′)� (C4)

with the free propagator G0 due to the neglect of the
self-energy.
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tonian for the simplest one-band Hubbard model reads

H = −
∑

i,j,s

ti−jc
†
i,scj,s + U

∑

i

ni,↑ni,↓ (107)

where ti−j = tj−i is the hopping amplitude between sites
i and j and U is the Hubbard on-site repulsion. We
consider here mainly the case with only nearest-neighbor
hopping t and next-to-nearest neighbor hopping t′ on a
square lattice. Additional hopping terms can be added
if a more detailed description of the band structure is
required, and other interaction terms may be added. The
chemical potential µ and t and t′ determine the band
structure ξk = −2t(coskx+cos ky)− 4t′ cos kx cos ky −µ,
and hence the shape of the Fermi surface.
Resummations of perturbation theory in U suggest

singularities in different channels, arising from Fermi
surface nesting and Van Hove singularities (Schulz,
1987), hence competing effects, which are best treated
by RG methods. After two-patch studies, which pro-
vided a very crude approximation to the momentum
dependence of the four-point vertex (Dzyaloshinskii,
1987; Furukawa et al., 1998; Gonzalez et al., 1996;
Lederer et al., 1987; Schulz, 1987), more careful

analyses with momentum-dependent vertices were
done using the Polchinski (Zanchi and Schulz, 1997,
1998, 2000), the Wick ordered (Halboth and Metzner,
2000a,b), and the one-particle irreducible flow equations
(Honerkamp et al., 2001), all with a momentum space
regulator. To include ferromagnetism, the tempera-
ture flow was introduced by Honerkamp and Salmhofer
(2001a,b) and Honerkamp (2001), and further devel-
oped by Katanin and Kampf (2003). The results of
these studies at Van Hove filling were confirmed using
a refined parametrization of the wavevector dependence
(Husemann and Salmhofer, 2009). The decoupling of the
various ordering tendencies in the limit of small U very
close to the instability and the influence of non-local in-
teractions were discussed by Binz et al. (2002, 2003).

In the general RG setup of Section II, the fermion fields
now carry a spin index s and a multiindex K consisting
of Matsubara frequencies ω, wavevectors k, and possibly
a band index b. To avoid bias, the action is required to
retain all symmetries of the initial action. This implies
(see Honerkamp et al. (2001); Salmhofer and Honerkamp
(2001)) that

Γ(4)Λ
s1s2s3s4(K1,K2;K3,K4) = V Λ(K1,K2;K3,K4)δs1s3δs2s4 − V Λ(K2,K1;K3,K4)δs1s4δs2s3 (108)

for a spin-rotation invariant system. By lattice- and time-translation invariance, K4 is fixed by K1,K2 and K3 in the
one-band model (in multiband models, the fourth band index b4 still remains free). We therefore abbreviate notation
to V Λ(K1,K2,K3). In the truncation Γ(6)Λ = 0, the flow equations for the self-energy and for the coupling function
become

d
dΛΣ

Λ(K) = −
∫

dK ′ [2V Λ(K,K ′,K)− V Λ(K,K ′,K ′)
]

SΛ(K ′) , d
dΛV

Λ = T Λ
PP + T Λ

PH,d + T Λ
PH,cr (109)

with the particle-particle term T Λ
PP and the direct and crossed particle-hole terms T Λ

PH,d and T Λ
PH,cr:

T Λ
PP (K1,K2;K3,K4) =

∫

dK V Λ(K1,K2,K) LΛ(K,−K +K1 +K2)V
Λ(K,−K +K1 +K2,K3) , (110)

T Λ
PH,d(K1,K2;K3,K4) =

∫

dK

[

−2V Λ(K1,K,K3)L
Λ(K,K +K1 −K3)V

Λ(K +K1 −K3,K2,K)

+V Λ(K1,K,K +K1 −K3)L
Λ(K,K +K1 −K3)V

Λ(K +K1 −K3,K2,K)

+V Λ(K1,K,K3)L
Λ(K,K +K1 −K3)V

Λ(K2,K +K1 −K3,K)

]

, (111)

T Λ
PH,cr(K1,K2;K3,K4) =

∫

dK V Λ(K1,K +K2 −K3,K)LΛ(K,K +K2 −K3)V
Λ(K,K2,K3) . (112)

Here LΛ(K,K ′) = SΛ(K)GΛ(K ′) +GΛ(K)SΛ(K ′) is the product of single-scale propagators SΛ and full propagators
GΛ with momentum assignments corresponding to the diagrams in Fig. 8.

For the Hubbard Hamiltonian (107), the initial condi-
tion is V Λ0(K1,K2,K3) = U . Other interactions can be
dealt with by modifying this initial condition. The trun-
cation Γ(6)Λ = 0 is justified only for a sufficiently small

bare coupling, since a contribution to Γ(6)Λ is generated
at third order in the two-particle interaction, which leads
to third order contributions to the flow of V Λ (see Sec. II).
In most studies the self-energy feedback into the flow of

d

d⇤
V ⇤(K1,K2;K3,K4) =

+

+

with L⇤(K,K 0) =
d

d⇤
[G⇤

0 (K)G⇤
0 (K

0)]
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the absence of the topological Mott insulator state in the
phase diagram and the appearance of charge-modulated
states in the large V2 regime. On the other hand, we
do not find any sign for an incommensurable charge-
modulated state reported in Ref. 41. This would require
a much higher wavevector resolution. This is beyond the
applicability of the present multi-patch approach as it
requires a much higher numerical cost.

To summarize, an independent variation of the inter-
action parameters for the onsite, nearest-neighbor and
next-nearest-neighbor repulsions does not reveal any spot
in the tentative weak-coupling phase diagram, where the
interaction-driven QSH state represents the leading in-
stability. Also, for interaction profiles inspired by ab ini-
tio parameters for graphene no indication for an topo-
logical Mott insulator state is found. Instead, we iden-
tified large parts of the phase diagram where a charge-
modulated density wave order is the leading instability
and we have found evidence for a competition between
the spin correlations and the charge correlations.

Acknowledgments We thank C. Honerkamp, J. Licht-
enstein, D. Sánchez de la Peña for useful discussions.
D.D.S. acknowledges support by the Villum Foundation.
M.M.S. is supported by Grant No. ERC-AdG-290623 and
DFG Grant No. SCHE 1855/1-1.

Appendix A: fRG flow equations

The connected correlation functions of a system of in-
teracting fermions are given by the generating functional
for the fully connected correlation functions48,

G[⌘̄,⌘] = − ln� D D ̄ e
−S[ ̄, ]+(⌘̄, )+( ̄,⌘)

. (A1)

In the fRG approach28–30, we consider the generating
functional for the one-particle irreducible (1PI) corre-
lation functions or e↵ective action �[ ,  ̄] = (⌘̄, ) +
( ̄,⌘) + G[⌘̄,⌘], which is the Legendre transform G[⌘̄,⌘]
and the field arguments in � are given by  = −@G�@⌘̄
and  ̄ = @G�@⌘. Note that we use  for both, the fields
in the micrscopic action as well as for the field arguments
of the e↵ective action for notational convenience.

The modification of the microscopic action by means
of the regulator function, cf. Eq. (5), in the action en-
tering the functional integral yields the scale-dependent
e↵ective action �⇤. The functional flow equation for this
version of the e↵ective action is obtained upon the vari-
ation of �⇤ with respect to ⇤ and reads

@

@⇤
�⇤[ ̄, ] = − ( ̄, Ġ

−1
0
 )

− 1

2
Tr�(Ġ⇤

0
)−1 ��(2)⇤[ ̄, ]�

−1
� , (A2)

where (G0
⇤)−1 = diag((G⇤

0
)−1, (G⇤t

0
)−1) and

�(2)⇤[ ̄, ] =
�
�

@2
�
⇤
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�
⇤

@ ̄@ ̄
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⇤

@ @ 
@2

�
⇤

@ @ ̄

�
�

. (A3)

The initial condition at the scale ⇤UV reads �⇤

UV
= S,

where ⇤UV is typically chosen as the bandwidth of the
model. In the limit ⇤→ 0 one successively integrates out
all fermionic fluctuations and obtains the full quantum
e↵ective action.

Appendix B: Truncation and approximations

We expand the e↵ective action �⇤ in fields,

�⇤[ ,  ̄] =
∞
�
i=0

(−1)i

(i!)2 �
k1,...ki

k′1,...k′i

�(2i)⇤(k′
1
, ...k

′
i, k1, ...ki)

×  ̄(k′
1
)... ̄(k′i) (ki)... (k1) , (B1)

and insert it into the flow equation (A2). Then one ob-
tains an infinite hierarchy of flow equations for the 1PI
vertex functions. To use these equations in applications
and integrate the flow equations numerically one has to
truncate the tower of equations at a certain level and em-
ploy approximations. For our analysis we follow the RG-
scale dependence of the two-particle interaction �(4)⇤

only, which carries spin indices �i and a multi-index k

gathering Matsubara frequencies ! as well as wavevectors
k and the band index b. For our spin-rotation invariant
system, we can write the two-particle interaction as

�(4)⇤�1,�2,�3,�4
= V

⇤
��1�3��2�4 − V

⇤
��1�4��2�3 , (B2)

where we have suppressed the ki and introduced the ef-
fective interaction vertex V

⇤ = V
⇤(k1, k2, k3, b4).

Appendix C: Flow of the e↵ective interaction vertex

The flow equation for the vertex is given in Eq. (6) and
the particle-particle channel the explicitely reads

�pp =�� V
⇤(k1, k2, k, b

′)L⇤(k, qpp)V ⇤(k, qpp, k3, b4)
(C1)

with ∑∫ = −A−1BZ
T ∑! ∫ d2

k∑b,b′ . The direct and crossed
particle-hole channels are given by

�ph,d =�� [−2V
⇤(k1, k, k3, b

′)L⇤(k, qd)V ⇤(qd, k2, k, b4)

+ V
⇤(k, k1, k3, b

′)L⇤(k, qd)V ⇤(qd, k2, k, b4)
+ V

⇤(k1, k, k3, b
′)L⇤(k, qd)V ⇤(k2, qd, k, b4)] ,

(C2)

�ph,cr =�� V
⇤(k, k2, k3, b

′)L⇤(k, qcr)V ⇤(k1, qcr, k, b4) ,
(C3)

and we define qpp = −k + k1 + k2, qd = k + k1 − k3 and
qcr = k+k2−k3. ABZ denotes the are of the first Brillouin
zone and the loop kernel reads

L
⇤(k, k

′) = d

d⇤
�G⇤

0
(k)G⇤

0
(k′)� (C4)

with the free propagator G0 due to the neglect of the
self-energy.
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V ⇤(K1,K2;K3,K4) = +

Cooper Peierls

+ + +

screening vertex corrections

‣ corresponds to infinite order summation of one-loop pp and ph terms (ladder summations)


‣ takes into account competition between various interaction channels


‣ flow to strong coupling (  for ) indicates ordering transition -- but which one?VΛ ≫ W T → Tc > 0
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V Λ was also neglected, since it also affects the flow only
at third order in V Λ.
The coupling function V Λ(K1,K2,K3) depends on

three wavevectors and three Matsubara frequencies, so
that the RG equation for a two-dimensional system is a
differential equation in a 9-dimensional space. As dis-
cussed in Section II.E, its most singular part sits at
zero Matsubara frequency. Hence one may neglect the
frequency dependence. Then V Λ defines an effective
Hamiltonian. Similarly, the k-dependence is most im-
portant in the angular direction along the Fermi sur-
face. This dependence can then be taken into account
by a discretization, i.e. by devising patches in the
Brillouin zone in which the coupling function is kept
constant. Feldman et al. (1992) showed that using N
patches leads to a natural N -vector model in two dimen-
sions. Zanchi and Schulz (1998, 2000) were the first to
use it in studies of the Hubbard model.
Usually one forms elongated patches that extend

roughly perpendicular to the Fermi surface but are rather
narrow parallel to the Fermi surface (see Fig. 9). The
coupling function is then computed for wavevectors k1

to k3 at the Fermi surface in the center of the patches.
We label the patches by κi = 1, . . .N . The function
V Λ is thus approximated by O(N3) interpatch couplings
V Λ(κ1,κ2,κ3). Even if k1,k2 and k3 are on the Fermi
surface, k4 can be anywhere. In the calculation of
the loop integrals it is however necessary to assign a
patch number κ4 to k4, which amounts to an approx-
imation of projecting k4 on the Fermi surface. Note
that this projectedN -patch discretized coupling function
V Λ(κ1,κ2,κ3) then has fewer symmetries; for instance
V Λ(κ1,κ2,κ3) != V Λ(κ2,κ1,κ4) in general, as in the lat-
ter object k3 is not necessarily on the Fermi surface. For
sufficiently large N , this discretization captures the an-
gular variation of the coupling function along the Fermi
surface with good precision.
The results obtained within this approximation,

described in the following, have been found to
be robust when the dependence on frequencies ωi

(Honerkamp et al., 2007; Klironomos and Tsai, 2006)
and the component of ki transversal to the Fermi sur-
face (Halboth and Metzner, 2000a; Honerkamp, 2001;
Honerkamp et al., 2004) are included. Katanin (2009)
performed a flow to third order in the scale-dependent
four-point-vertex (see Section II.E.3), with the fre-
quency dependence in the same approximation as
Honerkamp and Salmhofer (2003).

B. Results for the two-dimensional Hubbard model

Starting from the initial condition given by the Hub-
bard model, the flow is run from Λ0 down to a charac-
teristic scale Λ∗, where the largest coupling reaches some
multiple α of the bandwidth. The choice of α varies
widely in the literature; the discussion here is based on
the comparably cautious choice α = 2 or 3, as well as

s′, K1

s, K2 s, K3

s′, K4

T Λ
PP

T Λ
PH,cr

T Λ
PH,d

FIG. 8 Top row: The coupling function V Λ(K1,K2,K3) with
the spin convention, and the diagrams entering in the flow
equation for the self-energy (middle and right diagram). Mid-
dle and bottom row: The diagrams for the flow of the coupling
function. The internal lines are either full propagators GΛ or
single-scale propagators SΛ.

FIG. 9 (Color online) N-patch discretization of the Brillouin
zone for the one-band Hubbard model on the 2D square lat-
tice. The colored region is a patch in which the coupling
function is approximated as a constant.

on the consistency check that the results do not change
drastically as α is changed. The characteristic scale Λ∗
corresponds to a temperature T∗. If T is clearly above
T∗, the flow can be integrated to scale zero without any
instabilities. T∗ is only an upper bound for the tempera-
ture where ordering can set in because of order parameter
fluctuations at scales below Λ∗. In two dimensions they
are so strong that long-range order that breaks continu-
ous symmetries does not occur at any T > 0, thus “or-
dering” is to mean either short-range order with a very

‣ momentum arguments include frequency, wavevector and orbital/band indices


‣ ground-state properties: 

set external frequencies to zero (neglect frequency dependence)
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V Λ was also neglected, since it also affects the flow only
at third order in V Λ.
The coupling function V Λ(K1,K2,K3) depends on

three wavevectors and three Matsubara frequencies, so
that the RG equation for a two-dimensional system is a
differential equation in a 9-dimensional space. As dis-
cussed in Section II.E, its most singular part sits at
zero Matsubara frequency. Hence one may neglect the
frequency dependence. Then V Λ defines an effective
Hamiltonian. Similarly, the k-dependence is most im-
portant in the angular direction along the Fermi sur-
face. This dependence can then be taken into account
by a discretization, i.e. by devising patches in the
Brillouin zone in which the coupling function is kept
constant. Feldman et al. (1992) showed that using N
patches leads to a natural N -vector model in two dimen-
sions. Zanchi and Schulz (1998, 2000) were the first to
use it in studies of the Hubbard model.
Usually one forms elongated patches that extend

roughly perpendicular to the Fermi surface but are rather
narrow parallel to the Fermi surface (see Fig. 9). The
coupling function is then computed for wavevectors k1

to k3 at the Fermi surface in the center of the patches.
We label the patches by κi = 1, . . .N . The function
V Λ is thus approximated by O(N3) interpatch couplings
V Λ(κ1,κ2,κ3). Even if k1,k2 and k3 are on the Fermi
surface, k4 can be anywhere. In the calculation of
the loop integrals it is however necessary to assign a
patch number κ4 to k4, which amounts to an approx-
imation of projecting k4 on the Fermi surface. Note
that this projectedN -patch discretized coupling function
V Λ(κ1,κ2,κ3) then has fewer symmetries; for instance
V Λ(κ1,κ2,κ3) != V Λ(κ2,κ1,κ4) in general, as in the lat-
ter object k3 is not necessarily on the Fermi surface. For
sufficiently large N , this discretization captures the an-
gular variation of the coupling function along the Fermi
surface with good precision.
The results obtained within this approximation,

described in the following, have been found to
be robust when the dependence on frequencies ωi

(Honerkamp et al., 2007; Klironomos and Tsai, 2006)
and the component of ki transversal to the Fermi sur-
face (Halboth and Metzner, 2000a; Honerkamp, 2001;
Honerkamp et al., 2004) are included. Katanin (2009)
performed a flow to third order in the scale-dependent
four-point-vertex (see Section II.E.3), with the fre-
quency dependence in the same approximation as
Honerkamp and Salmhofer (2003).

B. Results for the two-dimensional Hubbard model

Starting from the initial condition given by the Hub-
bard model, the flow is run from Λ0 down to a charac-
teristic scale Λ∗, where the largest coupling reaches some
multiple α of the bandwidth. The choice of α varies
widely in the literature; the discussion here is based on
the comparably cautious choice α = 2 or 3, as well as
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the spin convention, and the diagrams entering in the flow
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function. The internal lines are either full propagators GΛ or
single-scale propagators SΛ.

FIG. 9 (Color online) N-patch discretization of the Brillouin
zone for the one-band Hubbard model on the 2D square lat-
tice. The colored region is a patch in which the coupling
function is approximated as a constant.

on the consistency check that the results do not change
drastically as α is changed. The characteristic scale Λ∗
corresponds to a temperature T∗. If T is clearly above
T∗, the flow can be integrated to scale zero without any
instabilities. T∗ is only an upper bound for the tempera-
ture where ordering can set in because of order parameter
fluctuations at scales below Λ∗. In two dimensions they
are so strong that long-range order that breaks continu-
ous symmetries does not occur at any T > 0, thus “or-
dering” is to mean either short-range order with a very

‣ wavevector dependence from discretization of BZ in N patches:

‣ interaction constant within one patch


‣ finite set of coupled flow equations for components of VΛ


‣ VΛ has Nb4N3 components

equation for a two-dimensional system is a differential equa-
tion in a nine-dimensional space. As discussed in Sec. II.E, its
most singular part sits at zero Matsubara frequency. Hence
one may neglect the frequency dependence. Then V! defines
an effective Hamiltonian. Similarly, the k dependence is most
important in the angular direction along the Fermi surface.
This dependence can then be taken into account by a discre-
tization, i.e., by devising patches in the Brillouin zone in
which the coupling function is kept constant. Feldman et al.
(1992) showed that using N patches leads to a natural
N-vector model in two dimensions. Zanchi and Schulz
(1998, 2000) were the first to use it in studies of the
Hubbard model.

Usually one forms elongated patches that extend roughly
perpendicular to the Fermi surface but are rather narrow
parallel to the Fermi surface (see Fig. 9). The coupling
function is then computed for wave vectors k1 to k3 at the
Fermi surface in the center of the patches. We label the
patches by !i ¼ 1; . . . ; N. The function V! is thus approxi-
mated by OðN3Þ interpatch couplings V!ð!1;!2;!3Þ. Even if
k1, k2, and k3 are on the Fermi surface, k4 can be anywhere.
In the calculation of the loop integrals it is however necessary
to assign a patch number !4 to k4, which amounts to an
approximation of projecting k4 on the Fermi surface. Note
that this projected N-patch discretized coupling function
V!ð!1;!2;!3Þ then has fewer symmetries; for instance,
V!ð!1;!2;!3Þ ! V!ð!2;!1;!4Þ in general, as in the latter
object k3 is not necessarily on the Fermi surface. For suffi-
ciently large N, this discretization captures the angular varia-
tion of the coupling function along the Fermi surface with
good precision.

The results obtained within this approximation, described
in the following, have been found to be robust when the
dependence on frequencies !i (Klironomos and Tsai, 2006;
Honerkamp, Fu, and Lee, 2007) and the component of ki

transversal to the Fermi surface (Halboth and Metzner,
2000a; Honerkamp, 2001; Honerkamp et al., 2004) are
included. Katanin (2009) performed a flow to third order in

the scale-dependent four-point vertex (see Sec. II.E.3), with
the frequency dependence in the same approximation as
Honerkamp and Salmhofer (2003).

B. Results for the two-dimensional Hubbard model

Starting from the initial condition given by the Hubbard
model, the flow is run from !0 down to a characteristic scale
!$, where the largest coupling reaches some multiple " of the
bandwidth. The choice of " varies widely in the literature;
the discussion here is based on the comparably cautious
choice " ¼ 2 or 3, as well as on the consistency check that
the results do not change drastically as " is changed. The
characteristic scale !$ corresponds to a temperature T$. If T
is clearly above T$, the flow can be integrated to scale zero
without any instabilities. T$ is only an upper bound for the
temperature where ordering can set in because of order
parameter fluctuations at scales below !$. In two dimensions
they are so strong that long-range order that breaks continu-
ous symmetries does not occur at any T > 0, thus ‘‘ordering’’
means either short-range order with a large correlation length,
or ordering in a related system with a small coupling in the
third direction, as is present in most materials.

1. Antiferromagnetism and superconductivity

The results discussed here are obtained with a slightly
smeared-out step function as cutoff on k (no cutoff on the
frequencies) and by dropping the self-energy.

a. Antiferromagnetism

For t0 ¼ 0 and # ¼ 0, the band is half filled, and the Fermi
surface is a perfect square. Every vector connecting parallel
sides of the Fermi surface is a nesting vector, and r$k ¼ 0 at
ð%; 0Þ and ð0;%Þ. This strongly enhances particle-hole terms
at wave vector Q ¼ ð%;%Þ. A random-phase approximation
summation of these bubbles results in a divergent static spin
susceptibility at Q for any U > 0 at sufficiently low T,
indicating the formation of an antiferromagnetic (AF) spin-
density wave (SDW), in accordance with mean-field studies
(Fulde, 1991). The basic RG results at low T are shown for
U ¼ 2t in Fig. 10. The labeling of the N ¼ 32 patches along
the Fermi surface can be read off Fig. 10(a). Figure 10(b)
shows V! as a function of the patch indices !1 and !2, at
!$ % 0:16t and with !3 ¼ 1 [i.e., k3 near ð&%; 0Þ]. Strongly
enhanced repulsive interactions appear as a vertical line at
!2 ¼ 24 (i.e., for k2 & k3 ¼ Q), almost !1 independent, and
as a horizontal line at !1 ¼ 24 (corresponding to k1 & k3 ¼
Q) with only a weak dependence on !2, roughly half as large
as the vertical feature. In an extrapolation where the regular
profiles are narrowed down to delta functions with an appro-
priate prefactor J, V!ð!1;!2;!3Þ ¼ ðJ=4Þð2&k2&k3;Q þ
&k1&k3;QÞ, corresponding to a mean-field AF-spin interaction

Hamiltonian J
P

hi;jie
iQ(ðRi&RjÞSi ( Sj, with Si ¼ 1

2 c
þ
i !ci. The

effective Hamiltonian consisting of the low-scale hopping
term and this interaction exhibits AF long-range order at
sufficiently low T. An analysis of the flow of susceptibilities
(Halboth and Metzner, 2000a; Honerkamp et al., 2001) as
described in Sec. II.F confirms this picture.

FIG. 9 (color online). N-patch discretization of the Brillouin zone
for the one-band Hubbard model on the 2D square lattice. The
colored region is a patch in which the coupling function is approxi-
mated as a constant.
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‣ largest contribution due to external momenta on Fermi surface


‣ Exclusively resolve momentum dependence on Fermi surface!


‣ facilitates efficient numerical implementation!



• Case of hexagonal Brillouin zone with nesting


• introduce patches with magnitude on FS and describe angular dependence 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• Fermi-surface instability:  

correlations grow + sharp structures develop for certain momentum combinations 

 long-ranged correlations in real space


• Extract type of correlations, e.g., SC or (spin) density wave
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V Λ was also neglected, since it also affects the flow only
at third order in V Λ.
The coupling function V Λ(K1,K2,K3) depends on

three wavevectors and three Matsubara frequencies, so
that the RG equation for a two-dimensional system is a
differential equation in a 9-dimensional space. As dis-
cussed in Section II.E, its most singular part sits at
zero Matsubara frequency. Hence one may neglect the
frequency dependence. Then V Λ defines an effective
Hamiltonian. Similarly, the k-dependence is most im-
portant in the angular direction along the Fermi sur-
face. This dependence can then be taken into account
by a discretization, i.e. by devising patches in the
Brillouin zone in which the coupling function is kept
constant. Feldman et al. (1992) showed that using N
patches leads to a natural N -vector model in two dimen-
sions. Zanchi and Schulz (1998, 2000) were the first to
use it in studies of the Hubbard model.
Usually one forms elongated patches that extend

roughly perpendicular to the Fermi surface but are rather
narrow parallel to the Fermi surface (see Fig. 9). The
coupling function is then computed for wavevectors k1

to k3 at the Fermi surface in the center of the patches.
We label the patches by κi = 1, . . .N . The function
V Λ is thus approximated by O(N3) interpatch couplings
V Λ(κ1,κ2,κ3). Even if k1,k2 and k3 are on the Fermi
surface, k4 can be anywhere. In the calculation of
the loop integrals it is however necessary to assign a
patch number κ4 to k4, which amounts to an approx-
imation of projecting k4 on the Fermi surface. Note
that this projectedN -patch discretized coupling function
V Λ(κ1,κ2,κ3) then has fewer symmetries; for instance
V Λ(κ1,κ2,κ3) != V Λ(κ2,κ1,κ4) in general, as in the lat-
ter object k3 is not necessarily on the Fermi surface. For
sufficiently large N , this discretization captures the an-
gular variation of the coupling function along the Fermi
surface with good precision.
The results obtained within this approximation,

described in the following, have been found to
be robust when the dependence on frequencies ωi

(Honerkamp et al., 2007; Klironomos and Tsai, 2006)
and the component of ki transversal to the Fermi sur-
face (Halboth and Metzner, 2000a; Honerkamp, 2001;
Honerkamp et al., 2004) are included. Katanin (2009)
performed a flow to third order in the scale-dependent
four-point-vertex (see Section II.E.3), with the fre-
quency dependence in the same approximation as
Honerkamp and Salmhofer (2003).

B. Results for the two-dimensional Hubbard model

Starting from the initial condition given by the Hub-
bard model, the flow is run from Λ0 down to a charac-
teristic scale Λ∗, where the largest coupling reaches some
multiple α of the bandwidth. The choice of α varies
widely in the literature; the discussion here is based on
the comparably cautious choice α = 2 or 3, as well as
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FIG. 8 Top row: The coupling function V Λ(K1,K2,K3) with
the spin convention, and the diagrams entering in the flow
equation for the self-energy (middle and right diagram). Mid-
dle and bottom row: The diagrams for the flow of the coupling
function. The internal lines are either full propagators GΛ or
single-scale propagators SΛ.

FIG. 9 (Color online) N-patch discretization of the Brillouin
zone for the one-band Hubbard model on the 2D square lat-
tice. The colored region is a patch in which the coupling
function is approximated as a constant.

on the consistency check that the results do not change
drastically as α is changed. The characteristic scale Λ∗
corresponds to a temperature T∗. If T is clearly above
T∗, the flow can be integrated to scale zero without any
instabilities. T∗ is only an upper bound for the tempera-
ture where ordering can set in because of order parameter
fluctuations at scales below Λ∗. In two dimensions they
are so strong that long-range order that breaks continu-
ous symmetries does not occur at any T > 0, thus “or-
dering” is to mean either short-range order with a very

Veff(p, p′￼, q)
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V Λ was also neglected, since it also affects the flow only
at third order in V Λ.
The coupling function V Λ(K1,K2,K3) depends on

three wavevectors and three Matsubara frequencies, so
that the RG equation for a two-dimensional system is a
differential equation in a 9-dimensional space. As dis-
cussed in Section II.E, its most singular part sits at
zero Matsubara frequency. Hence one may neglect the
frequency dependence. Then V Λ defines an effective
Hamiltonian. Similarly, the k-dependence is most im-
portant in the angular direction along the Fermi sur-
face. This dependence can then be taken into account
by a discretization, i.e. by devising patches in the
Brillouin zone in which the coupling function is kept
constant. Feldman et al. (1992) showed that using N
patches leads to a natural N -vector model in two dimen-
sions. Zanchi and Schulz (1998, 2000) were the first to
use it in studies of the Hubbard model.
Usually one forms elongated patches that extend

roughly perpendicular to the Fermi surface but are rather
narrow parallel to the Fermi surface (see Fig. 9). The
coupling function is then computed for wavevectors k1

to k3 at the Fermi surface in the center of the patches.
We label the patches by κi = 1, . . .N . The function
V Λ is thus approximated by O(N3) interpatch couplings
V Λ(κ1,κ2,κ3). Even if k1,k2 and k3 are on the Fermi
surface, k4 can be anywhere. In the calculation of
the loop integrals it is however necessary to assign a
patch number κ4 to k4, which amounts to an approx-
imation of projecting k4 on the Fermi surface. Note
that this projectedN -patch discretized coupling function
V Λ(κ1,κ2,κ3) then has fewer symmetries; for instance
V Λ(κ1,κ2,κ3) != V Λ(κ2,κ1,κ4) in general, as in the lat-
ter object k3 is not necessarily on the Fermi surface. For
sufficiently large N , this discretization captures the an-
gular variation of the coupling function along the Fermi
surface with good precision.
The results obtained within this approximation,

described in the following, have been found to
be robust when the dependence on frequencies ωi

(Honerkamp et al., 2007; Klironomos and Tsai, 2006)
and the component of ki transversal to the Fermi sur-
face (Halboth and Metzner, 2000a; Honerkamp, 2001;
Honerkamp et al., 2004) are included. Katanin (2009)
performed a flow to third order in the scale-dependent
four-point-vertex (see Section II.E.3), with the fre-
quency dependence in the same approximation as
Honerkamp and Salmhofer (2003).

B. Results for the two-dimensional Hubbard model

Starting from the initial condition given by the Hub-
bard model, the flow is run from Λ0 down to a charac-
teristic scale Λ∗, where the largest coupling reaches some
multiple α of the bandwidth. The choice of α varies
widely in the literature; the discussion here is based on
the comparably cautious choice α = 2 or 3, as well as
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FIG. 8 Top row: The coupling function V Λ(K1,K2,K3) with
the spin convention, and the diagrams entering in the flow
equation for the self-energy (middle and right diagram). Mid-
dle and bottom row: The diagrams for the flow of the coupling
function. The internal lines are either full propagators GΛ or
single-scale propagators SΛ.

FIG. 9 (Color online) N-patch discretization of the Brillouin
zone for the one-band Hubbard model on the 2D square lat-
tice. The colored region is a patch in which the coupling
function is approximated as a constant.

on the consistency check that the results do not change
drastically as α is changed. The characteristic scale Λ∗
corresponds to a temperature T∗. If T is clearly above
T∗, the flow can be integrated to scale zero without any
instabilities. T∗ is only an upper bound for the tempera-
ture where ordering can set in because of order parameter
fluctuations at scales below Λ∗. In two dimensions they
are so strong that long-range order that breaks continu-
ous symmetries does not occur at any T > 0, thus “or-
dering” is to mean either short-range order with a very
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Fig. 4. The level-2 truncation of the 1PI hierarchy, for an SU(2)-spin and U(1)-charge invariant ansatz for the effec-
tive action. Spin is conserved along the heavy particle lines. Left: (a) the particle–particle contribution, (b) the crossed 
particle-hole contribution, (c) the particle-hole contributions. Right: the contributions to the fermionic self-energy.
(Figure taken from [64].)

3.5. RG equation for the many-fermion system

For a many-fermion system of spin- 1
2 fermions, such as the Hubbard model, and under the 

assumption that U(1) × SU(2)-invariance is unbroken,

γ "
1 (K,K ′) = δα,α′ (ik0 − E(k) − %"(k)χ"(k)) (33)

(Here χ" is the regulator function used to define the flow, specified in our applications below.) 
Similarly, U(1) × SU(2)-symmetry implies that γ "

2 (K1, . . . , K4) is determined by the vertex 
v"(k1, k2, k3) that describes the interaction of particles with spin conservation (for details and a 
derivation, see [64]). They satisfy the flow equation

%̇"(p) = 1
2

∫
dl S"(l)

(
v"(p, l,p) − 2v"(p, l, l)

)
,

v̇"(p1, ..., p4) = (Tpp + Tph,cr + Tph,d)(p1, ..., p4),

(34)

where

Tpp(p1, ..., p4) = −1
2

∫
dl L"(l,p1 + p2 − l) v"(p1,p2, l) v"(p1 + p2 − l, l,p3),

Tph,cr (p1, ..., p4) = −1
2

∫
dl L"(l,p1 − p3 + l) v"(p1, l,p3) v"(p1 − p3 + l, p2, l),

Tph,d(p1, ..., p4) = 1
2

∫
dl L"(l,p2 − p3 + l)

(
2v"(p1,p2 − p3 + l, l) v"(l,p2,p3)

− v"(p1,p2 − p3 + l, l) v"(l,p2,p2 − p3 + l)

− v"(p1,p2 − p3 + l, p4) v"(l,p2,p3)
)

.

Here L"(p1, p2) = ∂
∂"

(
G"(p1)G"(p2)

)
.

Graphically, the terms on the right hand side of these equations can be represented by the 
diagrams shown in Fig. 4.

Because of their structure, these equations are also called “one-loop” RG equations. It should 
be noted, however, that this is slightly deceptive – the form of L used here already involves par-
ticular two-loop contributions, which are essential for fulfilling Ward identities from the global 
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• sharp diagonal features


‣ indicate large effective interaction for incoming momenta that 

lie on opposite sides of the Fermi surface!


‣ pronounced pairing interaction with  and 


‣ indicates superconducting instability


‣ additional modulation on diagonal features: unconventional SC!

⃗k − ⃗k
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• Chapter I: From 2D moiré materials to frustrated superlattice Hubbard models


• Chapter II: Interaction effects in hexagonal superlattice Hubbard models


• Chapter III: Functional renormalization group


• Chapter IV: Functional renormalization group for moiré materials


• Chapter V: Further developments and outlook



Chapter IV: Functional renormalization group for moiré WSe2/MoS2 

‣ Functional renormalization group for extended Hubbard model on the triangular lattice


‣ Functional RG instabilities for WSe2/MoS2 model


‣ Pairing symmetry and topological superconductivity
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‣ full range of band fillings accessible by electrical gating


‣ van Hove singularities at 3/4 hole doping
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➡ complex interplay between electronic interactions and geometric frustration


➡ strongly-correlated phases (MIT, spin liquids, magnetism,… e.g. @ half filling)

U1 U2

U3

U0

‣ tunable strength & range of e--e- interactions → sizable non-local terms

Extended Hubbard model on triangular lattice for moiré WSe2/MoS2



• Extended Hubbard model on triangular lattice with accurate hoppings 


 

• Consider Van Hove filling


• Interactions up to  sizable! 


• What is their effect on Van Hove scenario & in particular superconductivity?
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Van Hove filling in moiré WSe2/MoS2 

H = ∑
v=±

∑⃗
R , ⃗R ′￼
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⃗R ,v
c ⃗R ′￼,v +

1
2 ∑

v,v′￼

∑⃗
R , ⃗R ′￼

U( ⃗R ′￼− ⃗R )c†
⃗R v
c†

⃗R ′￼v′￼

c ⃗R ′￼v′￼
c ⃗R v

t1 ≈ − 2.5 meV, t2 ≈ 0.5 meV, t3 ≈ 0.25 meV, U/ | t1 | = 3,4,5, V2/V1 ≈ 0.36, V3/V1 ≈ 0.26
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FRG phase diagram for moiré TMDs — overview



• at Van-Hove filling  peaks at nesting momenta


‣ valley density wave:                                                                                            


• in vicinity: fragile i-wave pairing 

→

HVDW = VVDW ∑
i

⃗T Mi
⋅ ⃗T −Mi

with ⃗T q = ∑
k

c†
kα ⃗ταβck+Mβ (analogue of SDW)

FRG phase diagram for moiré TMDs — only onsite U



• no strong effect on VDW


• change of pairing symmetry: robust g+ig regime


• fluctuations of VDW mediate attraction in singlet pairing channel
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FRG phase diagram for moiré TMDs — inclusion of V1, V2, V3



• no strong effect on VDW


• change of pairing symmetry: robust g+ig regime


• fluctuations of VDW mediate attraction in singlet pairing channel


• g-wave supported by Vi
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FRG phase diagram for moiré TMDs — inclusion of V1, V2, V3



• generalized BCS theory: 


‣ determine eigensystem of pairing i.a. 


‣ largest  from largest eigenvalue 


• extract pairing symmetry  fit lattice harmonics to eigenfunctions

V( ⃗k, − ⃗k, ⃗k′￼, − ⃗k′￼ )

Tc Tc ∼ exp(− W/λ ̂ρ0)

→

• here: largest eigenvalue 2-fold degenerate 


• fitted well by 2nd-nearest-neighbor lattice harmonics 
 
 

     
g1( ⃗k) = 8/9[−cos(3kx /2)cos( 3ky/2) + cos( 3ky)]

g2( ⃗k) = 8/(3 3)sin(3kx /2)sin( 3ky/2)
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Pairing symmetry



• symmetry classified with irreducible representations of point group C6v


• within irrep  lattice harmonics with different angular momentum can mix→

C6v A1 A2 B1 B2 E1 E2

“orbital" s-wave i-wave f-wave f-wave p-wave d-wave

g-wave

encode behavior under sym ops

Pairing symmetry



• 2nd-nn harmonics  belong to 2D irrep E2


• same symmetry properties under  as 1st-nn E2 harmonics 

• why 2nd nn (and not 1st)?


‣ overcome longer-ranged repulsion  


‣ pairing pushed outwards 

g1, g2
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Vi
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• effect on properties of superconducting phase?

• can we distinguish  vs   if symmetries are the same?


• number of nodes different!

d1, d2 g1, g2
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• 2 degenerate pairing solutions 


‣ ground state is generally a linear combination


‣ minimize Landau functional

→ Δ( ⃗k) = Δ1 g1( ⃗k) + Δ2 g2( ⃗k)

ℒ=α( |Δ1 |2+|Δ2 |2 )+β( |Δ1 |2+|Δ2 |2 )2+γ |Δ2
1+Δ2

2 |2

Δi Δ*j

ΔkΔ*l

‣ get  by integrating out fermions with FRG data 

 

 minimizes  




‣  has no nodes


‣ arg  winds 4 times around FS

α, β, γ

⇒ γ > 0

⇒ Δ2 = ± iΔ1 ℒ

⇒ Δ( ⃗k) = Δ̂ [g1( ⃗k) ± ig2( ⃗k)]
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FRG post-processing: superconducting gap Δ



• spontaneous breaking of TRS:  vs.  

‣ define “pseudo-spin”

g1+ig2 g1−ig2

𝒩=
1

4π ∫BZ
d2k ⃗m ⋅(∂ ⃗m

∂kx
×

∂ ⃗m
∂ky)

⃗m =
1

(ϵ ⃗k − μ)2 + Δ2
⃗k

ReΔ ⃗k

ImΔ ⃗k
ϵ ⃗k − μ

𝒩 = − 4

‣ topological invariant  winding number→

same symmetries under  but different topological states!C6v
‣ g+ig: 


‣ d+id: 

𝒩 = ± 4

𝒩 = ± 2 }

‣ spin Hall conductance 


‣ thermal Hall conductance 

σs
xy = 𝒩ℏ/(8π)

κ = 𝒩πk2
B/(6ℏ)

•  chiral edge modes  enhanced quantized Hall responses!𝒩 →

Properties of g+ig superconductivity



• model stronger coupling  include superexchange → J∑
⟨i,j⟩

⃗Si ⋅ ⃗Sj
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‣ for intermediate  d+id-wave contributes


‣ topological transition when attraction from  overcomes repulsion  

J/U

J/U

J Vi

• g+ig SC occupies extended region in phase diagram


‣ checked for  U/t = 3,4,5 ✓

Robustness of g+ig state



Outline

• Chapter I: From 2D moiré materials to frustrated superlattice Hubbard models


• Chapter II: Interaction effects in hexagonal superlattice Hubbard models


• Chapter III: Functional renormalization group


• Chapter IV: Functional renormalization group for moiré materials


• Chapter V: Further developments and outlook



Chapter V: Further developments and outlook 

‣ Improvement of the FRG method


‣ Applications to related (moiré) materials

Gneist, Classen, Scherer, PRB (2022)

Klebl et al., arxiv:2204.00648 (2021)



High-momentum resolution with truncated-unity FRG

• channel decomposition VΛ =

6
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FIG. 5. Momentum mesh and form-factor geometry.
Top: Momentum resolution Nq of the BZ in the transfer mo-
menta. Only a subset (red) of the momentum mesh needs to
be calculated. The remaining ones are obtained from symme-
tries. Bottom: Numbering of form factors. The shades of red
indicate the distance to the origin. The site with number 1 is
the onsite form factor, 2–7 are the nearest-neighbor form fac-
tors, 10,11,14,15,18,19 are second-nearest-neighbor form fac-
tors and 8,9,12,13,16,17 are third-nearest-neighbor form fac-
tors. The form factor shells are defined as all the form factors
sitting on the s-th blue hexagon.

where the area of the Brillouin zone is absorbed in the
momentum integral:

R
k = A

�1

BZ

R
dk.

For our implementation we use the momentum mesh
shown in Fig. 5 for Nq and plane-wave form factors
fl(k) = exp(ikRl), which reduce the numerical cost of
the projections (25)–(27). They also facilitate an in-
tuitive interpretation of form-factor e↵ects on the flow
equations in terms of distances in real space. We group
the fl into shells defined by hexagons of increasing size
around a central site, cf. Fig. 5. The shells are numbered
by Ns 2 N0 and we include up to Ns = 4, see App. B for
further details. In the next section we perform conver-
gence checks in the expansion parameters (Nq, Nl) and
show that a manageable number of transfer momenta and
form factors faithfully captures the relevant physics. The
initialization of the RG flow is discussed in App. C.

D. Analysis of pairing gaps

In the cases, where the FRG flow signals a pairing in-
stability, we further analyze the type of superconducting
pairing. To this end, we reconstruct the full supercon-
ducting pairing vertex from all form-factor contributions
to the P channel. We use the initial definition of the form
factor expansion of the vertices, cf. Eq. (18), explicitly
reading

�P (q,k,k0) =
X

l,l0

P
l,l0(q)fl(k)f

⇤
l0(k

0). (28)

While the divergence of the P channel can occur in dif-
ferent form factor sectors (l, l0) at once, the sharp peak is
always located � point of the BZ, i.e. q = 0. Therefore,
we can reconstruct the superconducting pairing vertex
by considering the q = 0 contribution

�P (q = 0,k,k0) := �P (k,k0) , (29)

and using the channel decomposition, Eq. (14).
We can then derive the superconducting interaction

from the definition of the e↵ective action. This can now
be treated employing a standard mean-field decoupling
within generalized BCS theory [83]. Close to the critical
temperature Tc for the superconducting transition, the
gap becomes small, allowing for linearization of the gap
equation, i.e.

�(k) = �

X

k0

�P (k,k0)
�(k0)

2⇠k0
tanh

✓
⇠k0

2Tc

◆
, (30)

which represents an eigenvalue equation for �(k).
We can approximate its solution by diagonalizing
��P (k,k0), which is a Nq ⇥ Nq matrix in our TUFRG
implementation. The eigenvector corresponding to the
largest eigenvalue of ��P (k,k0) has the highest Tc and
therefore determines the structure of the superconduct-
ing pairing gap [83].

IV. EXTENDED HUBBARD MODEL

In this section, we investigate the paradigmatic ver-
sion of the triangular-lattice model that only includes
nearest-neighbor hopping t = t1 = 1 and all other hop-
ping amplitudes are set to zero, in particular, t2 = t3 = 0.
For the interactions, we take into account a local or on-
site Hubbard interaction U and we additionally consider
the e↵ect of including a sizable nearest-neighbor inter-
action V1. We study the Fermi-surface instabilities that
occur in the RG flow near van Hove filling, which for
this choice of hopping amplitudes is found at µ = 2t.
Furthermore, we establish convergence of the implemen-
tation with respect to the expansion in form-factor shells
and momentum resolution.

5

interaction channels. To that end, V ⇤ is decomposed as

V
⇤(k1,k2,k3,k4) = V

⇤,0(k1,k2,k3,k4)

+ �⇤,P (k1 + k2;�k2,�k4)

+ �⇤,C(k1 � k4;k4,k2)

+ �⇤,D(k1 � k3;k3,k2) , (14)

where V
⇤,0(k1,k2,k3,k4) takes care of the initial con-

dition. The other three contributions �⇤,X with X 2

{P,C,D} are the actual channels and in each case the
transfer momentum is the first argument, see Fig. 4. In-
serting Eq. (14) into Eq. (9) and rearranging the terms,
we find that each of these three channels describes a spe-
cific physical interaction, see also Fig. 4.

These channels can be defined via their respective RG
contributions in Eqs. (11)–(13), i.e., via the three flow
equations

d

d⇤
�P (k1 + k2;�k2,�k4) = ⌧pp(k1,k2,k3,k4) , (15)

d

d⇤
�C(k1 + k4;k4,k2) = ⌧ph,c(k1,k2,k3,k4) , (16)

d

d⇤
�D(k1 � k3;k3,k2) = ⌧ph,d(k1,k2,k3,k4) , (17)

where we have dropped the index ⇤ for convenience. The
first wave-vector argument in Eqs. (15)–(17) labels the
transfer momentum. The dependence on the other two
momenta can be expanded in a form-factor basis

�X(q,k,k0) =
X

l,l0

X
l,l0(q)fl(k)f

⇤
l0(k

0) . (18)

The above expansion holds for form factors forming a
unity with respect to l and k

A
�1

BZ

X

l

f
⇤
l (p)fl(k) = �(p� k) , (19)

A
�1

BZ

Z
dkf⇤

l (k)fl0(k) = �l,l0 . (20)

In the numerical implementation this expansion is trun-
cated, i.e. the l, l0 sum is restricted to a finite number Nl

of form factors to resolve the weaker momentum depen-
dence in k and k0. In contrast, the transfer momentum
q carrying a strong momentum dependence is discretized
in a momentum mesh in the BZ with resolution Nq.

The above decomposition of the vertex can be turned
into a computational advantage. This is because the first
description of the vertex V

⇤(k1,k2,k3) using a wavevec-
tor resolution Nk of the BZ, leads to a set of N3

k cou-
pled di↵erential equations. In contrast, the channel-
decomposed vertices scale with / Nq⇥N

2

l . Therefore, by
truncating the weaker wavevector dependence in Nl, we
can implement high resolutions of the important transfer
momentum at moderate numerical cost.
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X �k4 k2 k2

Flow contribution ⌧pp ⌧ph,c ⌧ph,d

FIG. 4. Channel decomposition of the vertex V ⇤. By
explicitly inserting the decomposition Eq. (14) into the vertex
Eq. (9) and relabeling the important momentum as qX and
the two remaining momenta as kX , k0

X , X 2 {P,C,D}, the
channels can be associated with superconducting, magnetic
and density fluctuations. Spin indices are as in the first line.

To obtain a set of flow equations for the form-factor
dependent channels, i.e. X l,l0(q) with X 2 {P,C,D}, we
take the derivative of the back-transformed form-factor
dependent vertex in Eq. (18) and insert two form-factor
resolved unities into the contributions in Eqs. (11)–(13).
The unities are inserted in such a way that the interac-
tions are separated from the loop kernel, yielding

d

d⇤
P

l,l0(q) =
X

l1,l2

V
P (q)l,l1Ḃ(q)(�)

l1,l2
V

P (q)l2,l0 , (21)

d
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C
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X
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V
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l1,l2
V

C(q)l2,l0 , (22)

d
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D

l,l0(q) =
X

l1,l2

⇥
V

C(q)l,l1Ḃ(q)(+)

l1,l2
V
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+ V
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l1,l2
V

C(q)l2,l0

� 2V D(q)l,l1Ḃ(q)(+)

l1,l2
V

D(q)l2,l0
⇤
, (23)

with the form-factor dependent particle-particle (�) and
particle-hole (+) bubble integrals

Ḃ(q)(±)

l,l0 = �

Z

p

d

d⇤
[G⇤

0
(i!, q + p)

⇥G
⇤

0
(±i!,±q)]fl(p)f

⇤
l0(p) , (24)

cf. App. A, and the cross-channel projections

V
P
l,l0(q)=

Z

k,k0
fl(k)f

⇤
l0(k

0)V ⇤(k+q,�k,k0+q,�k0), (25)

V
C
l,l0(q)=

Z

k,k0
fl(k)f

⇤
l0(k

0)V ⇤(k + q,k0
,k0 + q,k) , (26)

V
D
l,l0(q)=

Z

k,k0
fl(k)f

⇤
l0(k

0)V ⇤(k + q,k0
,k,k0 + q) , (27)
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The above decomposition of the vertex can be turned
into a computational advantage. This is because the first
description of the vertex V

⇤(k1,k2,k3) using a wavevec-
tor resolution Nk of the BZ, leads to a set of N3

k cou-
pled di↵erential equations. In contrast, the channel-
decomposed vertices scale with / Nq⇥N

2

l . Therefore, by
truncating the weaker wavevector dependence in Nl, we
can implement high resolutions of the important transfer
momentum at moderate numerical cost.

k1, s

k2, s� 

k3, s

k4, s� 

qP + kP

�kP

qP + k� P

�k� P

qC + kC

k� C

qC + k� C

kC

qD + kD

k� D

kD

qD + k� D

+ +=

V� �=

�P �C �D

Channel X P C D
Interaction type Pairing Magnetic Density

Transfer momentum qX k1 + k2 k1 � k4 k1 � k3

Momentum kX �k2 k4 k3

Momentum k0
X �k4 k2 k2

Flow contribution ⌧pp ⌧ph,c ⌧ph,d

FIG. 4. Channel decomposition of the vertex V ⇤. By
explicitly inserting the decomposition Eq. (14) into the vertex
Eq. (9) and relabeling the important momentum as qX and
the two remaining momenta as kX , k0

X , X 2 {P,C,D}, the
channels can be associated with superconducting, magnetic
and density fluctuations. Spin indices are as in the first line.

To obtain a set of flow equations for the form-factor
dependent channels, i.e. X l,l0(q) with X 2 {P,C,D}, we
take the derivative of the back-transformed form-factor
dependent vertex in Eq. (18) and insert two form-factor
resolved unities into the contributions in Eqs. (11)–(13).
The unities are inserted in such a way that the interac-
tions are separated from the loop kernel, yielding
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l1,l2
V

D(q)l2,l0

+ V
D(q)l,l1Ḃ(q)(+)
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with the form-factor dependent particle-particle (�) and
particle-hole (+) bubble integrals
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cf. App. A, and the cross-channel projections
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interaction channels. To that end, V ⇤ is decomposed as

V
⇤(k1,k2,k3,k4) = V

⇤,0(k1,k2,k3,k4)

+ �⇤,P (k1 + k2;�k2,�k4)

+ �⇤,C(k1 � k4;k4,k2)

+ �⇤,D(k1 � k3;k3,k2) , (14)

where V
⇤,0(k1,k2,k3,k4) takes care of the initial con-

dition. The other three contributions �⇤,X with X 2

{P,C,D} are the actual channels and in each case the
transfer momentum is the first argument, see Fig. 4. In-
serting Eq. (14) into Eq. (9) and rearranging the terms,
we find that each of these three channels describes a spe-
cific physical interaction, see also Fig. 4.

These channels can be defined via their respective RG
contributions in Eqs. (11)–(13), i.e., via the three flow
equations
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where we have dropped the index ⇤ for convenience. The
first wave-vector argument in Eqs. (15)–(17) labels the
transfer momentum. The dependence on the other two
momenta can be expanded in a form-factor basis
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⇤
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The above expansion holds for form factors forming a
unity with respect to l and k
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l (k)fl0(k) = �l,l0 . (20)

In the numerical implementation this expansion is trun-
cated, i.e. the l, l0 sum is restricted to a finite number Nl

of form factors to resolve the weaker momentum depen-
dence in k and k0. In contrast, the transfer momentum
q carrying a strong momentum dependence is discretized
in a momentum mesh in the BZ with resolution Nq.

The above decomposition of the vertex can be turned
into a computational advantage. This is because the first
description of the vertex V

⇤(k1,k2,k3) using a wavevec-
tor resolution Nk of the BZ, leads to a set of N3

k cou-
pled di↵erential equations. In contrast, the channel-
decomposed vertices scale with / Nq⇥N

2

l . Therefore, by
truncating the weaker wavevector dependence in Nl, we
can implement high resolutions of the important transfer
momentum at moderate numerical cost.
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FIG. 4. Channel decomposition of the vertex V ⇤. By
explicitly inserting the decomposition Eq. (14) into the vertex
Eq. (9) and relabeling the important momentum as qX and
the two remaining momenta as kX , k0

X , X 2 {P,C,D}, the
channels can be associated with superconducting, magnetic
and density fluctuations. Spin indices are as in the first line.

To obtain a set of flow equations for the form-factor
dependent channels, i.e. X l,l0(q) with X 2 {P,C,D}, we
take the derivative of the back-transformed form-factor
dependent vertex in Eq. (18) and insert two form-factor
resolved unities into the contributions in Eqs. (11)–(13).
The unities are inserted in such a way that the interac-
tions are separated from the loop kernel, yielding
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with the form-factor dependent particle-particle (�) and
particle-hole (+) bubble integrals
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cf. App. A, and the cross-channel projections

V
P
l,l0(q)=

Z

k,k0
fl(k)f

⇤
l0(k

0)V ⇤(k+q,�k,k0+q,�k0), (25)

V
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0)V ⇤(k + q,k0
,k0 + q,k) , (26)
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,k,k0 + q) , (27)
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FIG. 5. Momentum mesh and form-factor geometry.
Top: Momentum resolution Nq of the BZ in the transfer mo-
menta. Only a subset (red) of the momentum mesh needs to
be calculated. The remaining ones are obtained from symme-
tries. Bottom: Numbering of form factors. The shades of red
indicate the distance to the origin. The site with number 1 is
the onsite form factor, 2–7 are the nearest-neighbor form fac-
tors, 10,11,14,15,18,19 are second-nearest-neighbor form fac-
tors and 8,9,12,13,16,17 are third-nearest-neighbor form fac-
tors. The form factor shells are defined as all the form factors
sitting on the s-th blue hexagon.

where the area of the Brillouin zone is absorbed in the
momentum integral:

R
k = A

�1

BZ

R
dk.

For our implementation we use the momentum mesh
shown in Fig. 5 for Nq and plane-wave form factors
fl(k) = exp(ikRl), which reduce the numerical cost of
the projections (25)–(27). They also facilitate an in-
tuitive interpretation of form-factor e↵ects on the flow
equations in terms of distances in real space. We group
the fl into shells defined by hexagons of increasing size
around a central site, cf. Fig. 5. The shells are numbered
by Ns 2 N0 and we include up to Ns = 4, see App. B for
further details. In the next section we perform conver-
gence checks in the expansion parameters (Nq, Nl) and
show that a manageable number of transfer momenta and
form factors faithfully captures the relevant physics. The
initialization of the RG flow is discussed in App. C.

D. Analysis of pairing gaps

In the cases, where the FRG flow signals a pairing in-
stability, we further analyze the type of superconducting
pairing. To this end, we reconstruct the full supercon-
ducting pairing vertex from all form-factor contributions
to the P channel. We use the initial definition of the form
factor expansion of the vertices, cf. Eq. (18), explicitly
reading

�P (q,k,k0) =
X

l,l0

P
l,l0(q)fl(k)f

⇤
l0(k

0). (28)

While the divergence of the P channel can occur in dif-
ferent form factor sectors (l, l0) at once, the sharp peak is
always located � point of the BZ, i.e. q = 0. Therefore,
we can reconstruct the superconducting pairing vertex
by considering the q = 0 contribution

�P (q = 0,k,k0) := �P (k,k0) , (29)

and using the channel decomposition, Eq. (14).
We can then derive the superconducting interaction

from the definition of the e↵ective action. This can now
be treated employing a standard mean-field decoupling
within generalized BCS theory [83]. Close to the critical
temperature Tc for the superconducting transition, the
gap becomes small, allowing for linearization of the gap
equation, i.e.

�(k) = �

X

k0

�P (k,k0)
�(k0)

2⇠k0
tanh

✓
⇠k0

2Tc

◆
, (30)

which represents an eigenvalue equation for �(k).
We can approximate its solution by diagonalizing
��P (k,k0), which is a Nq ⇥ Nq matrix in our TUFRG
implementation. The eigenvector corresponding to the
largest eigenvalue of ��P (k,k0) has the highest Tc and
therefore determines the structure of the superconduct-
ing pairing gap [83].

IV. EXTENDED HUBBARD MODEL

In this section, we investigate the paradigmatic ver-
sion of the triangular-lattice model that only includes
nearest-neighbor hopping t = t1 = 1 and all other hop-
ping amplitudes are set to zero, in particular, t2 = t3 = 0.
For the interactions, we take into account a local or on-
site Hubbard interaction U and we additionally consider
the e↵ect of including a sizable nearest-neighbor inter-
action V1. We study the Fermi-surface instabilities that
occur in the RG flow near van Hove filling, which for
this choice of hopping amplitudes is found at µ = 2t.
Furthermore, we establish convergence of the implemen-
tation with respect to the expansion in form-factor shells
and momentum resolution.

‣ obtain flow equations for 
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interaction channels. To that end, V ⇤ is decomposed as

V
⇤(k1,k2,k3,k4) = V

⇤,0(k1,k2,k3,k4)

+ �⇤,P (k1 + k2;�k2,�k4)

+ �⇤,C(k1 � k4;k4,k2)

+ �⇤,D(k1 � k3;k3,k2) , (14)

where V
⇤,0(k1,k2,k3,k4) takes care of the initial con-

dition. The other three contributions �⇤,X with X 2

{P,C,D} are the actual channels and in each case the
transfer momentum is the first argument, see Fig. 4. In-
serting Eq. (14) into Eq. (9) and rearranging the terms,
we find that each of these three channels describes a spe-
cific physical interaction, see also Fig. 4.

These channels can be defined via their respective RG
contributions in Eqs. (11)–(13), i.e., via the three flow
equations

d

d⇤
�P (k1 + k2;�k2,�k4) = ⌧pp(k1,k2,k3,k4) , (15)
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�C(k1 + k4;k4,k2) = ⌧ph,c(k1,k2,k3,k4) , (16)

d

d⇤
�D(k1 � k3;k3,k2) = ⌧ph,d(k1,k2,k3,k4) , (17)

where we have dropped the index ⇤ for convenience. The
first wave-vector argument in Eqs. (15)–(17) labels the
transfer momentum. The dependence on the other two
momenta can be expanded in a form-factor basis

�X(q,k,k0) =
X

l,l0

X
l,l0(q)fl(k)f

⇤
l0(k

0) . (18)

The above expansion holds for form factors forming a
unity with respect to l and k
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f
⇤
l (p)fl(k) = �(p� k) , (19)

A
�1

BZ

Z
dkf⇤

l (k)fl0(k) = �l,l0 . (20)

In the numerical implementation this expansion is trun-
cated, i.e. the l, l0 sum is restricted to a finite number Nl

of form factors to resolve the weaker momentum depen-
dence in k and k0. In contrast, the transfer momentum
q carrying a strong momentum dependence is discretized
in a momentum mesh in the BZ with resolution Nq.

The above decomposition of the vertex can be turned
into a computational advantage. This is because the first
description of the vertex V

⇤(k1,k2,k3) using a wavevec-
tor resolution Nk of the BZ, leads to a set of N3

k cou-
pled di↵erential equations. In contrast, the channel-
decomposed vertices scale with / Nq⇥N

2

l . Therefore, by
truncating the weaker wavevector dependence in Nl, we
can implement high resolutions of the important transfer
momentum at moderate numerical cost.
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FIG. 4. Channel decomposition of the vertex V ⇤. By
explicitly inserting the decomposition Eq. (14) into the vertex
Eq. (9) and relabeling the important momentum as qX and
the two remaining momenta as kX , k0

X , X 2 {P,C,D}, the
channels can be associated with superconducting, magnetic
and density fluctuations. Spin indices are as in the first line.

To obtain a set of flow equations for the form-factor
dependent channels, i.e. X l,l0(q) with X 2 {P,C,D}, we
take the derivative of the back-transformed form-factor
dependent vertex in Eq. (18) and insert two form-factor
resolved unities into the contributions in Eqs. (11)–(13).
The unities are inserted in such a way that the interac-
tions are separated from the loop kernel, yielding

d

d⇤
P

l,l0(q) =
X

l1,l2

V
P (q)l,l1Ḃ(q)(�)

l1,l2
V

P (q)l2,l0 , (21)
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V
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V
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D

l,l0(q) =
X

l1,l2

⇥
V

C(q)l,l1Ḃ(q)(+)
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V
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V
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� 2V D(q)l,l1Ḃ(q)(+)

l1,l2
V

D(q)l2,l0
⇤
, (23)

with the form-factor dependent particle-particle (�) and
particle-hole (+) bubble integrals

Ḃ(q)(±)

l,l0 = �
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p

d

d⇤
[G⇤

0
(i!, q + p)

⇥G
⇤

0
(±i!,±q)]fl(p)f

⇤
l0(p) , (24)

cf. App. A, and the cross-channel projections

V
P
l,l0(q)=

Z

k,k0
fl(k)f

⇤
l0(k

0)V ⇤(k+q,�k,k0+q,�k0), (25)

V
C
l,l0(q)=

Z

k,k0
fl(k)f

⇤
l0(k

0)V ⇤(k + q,k0
,k0 + q,k) , (26)

V
D
l,l0(q)=

Z

k,k0
fl(k)f

⇤
l0(k

0)V ⇤(k + q,k0
,k,k0 + q) , (27)

fl(k) = eik⋅Rl



High-momentum resolution with truncated-unity FRG

t1 ≈ − 2.5 meV, t2 ≈ 0.5 meV, t3 ≈ 0.25 meV, U/ | t1 | = 4, V2/V1 ≈ 0.36, V3/V1 ≈ 0.26 10

bilayer of WSe2/MoS2 at vanishing twist angle. Here,
the highest spin-polarized valence band from WSe2 con-
tributes an isolated flat band at the Fermi level to the
moiré band structure [11]. This isolated band can be
accurately described by a tight-binding model with up
to third-nearest-neighbor hopping, t1 ⇡ �2.5meV, t2 ⇡

0.5meV, t3 ⇡ 0.25meV, cf. Sec. II. The resulting band
structure features a Van Hove singularity near �5.5meV
and the Fermi surface at that filling is approximately
nested. The interactions can be tuned in strength and
range using dielectric environments or screening layers.
Explicitly, the system can be tuned into the intermediate
interaction regime, which we associate roughly with an
onsite repulsion U/t ⇡ 4. To explore the e↵ect of tunabil-
ity in the range of the interactions, we vary V1 again but
additionally include the longer-ranged interactions V2

and V3, choosing fixed ratios with V1, i.e. V2/V1 ⇡ 0.357
and V3/V1 ⇡ 0.260 as estimated in Ref. [27].

In Fig. 11, we present the correlated phase dia-
gram that contains the instabilities we predict using the
TUFRG as function of µ and V1. It is qualitatively
very similar to the paradigmatic case in Sec. IV; directly
around Van Hove filling, we obtain a SDW instability
bounded by pairing instabilities. However, the additional
hoppings and interactions decrease the critical tempera-
ture and even completely suppress some pairing instabili-
ties at smaller V1. We now only find pairing states which
belong to the irrep E2 with the largest contribution com-
ing from second-nearest-neighbor harmonics, i.e. we can
classify them as g-wave based on their number of nodes
along the Fermi surface (as in Fig. 8). For µ > �5.5meV,
where the Fermi surface is closed around �, this confirms
the previous low-resolution FRG calculation [40] with the
exception that we do not find the i-wave pairing insta-
bility at Vi = 0 that was already marked as fragile in
Ref. 40. Instead, the i-wave pairing is destroyed when
more distanced hoppings t2, t3 are included. We extend
the phase diagram to µ < �5.5meV, where the Fermi
surface consists of pockets around K,K

0. We find the
same g-wave pairing instability as for µ > �5.5meV at
larger Vi, while the f -wave pairing for small V1 in Fig. 7
also disappears when t2 and t3 are included.

We emphasize that the g-wave pairing is a robust result
that we obtain with both models. This stronger momen-
tum dependence arises due to the inclusion of a sizable
nearest-neighbor interaction V1 > 0. It is based on pair-
ing between second-nearest neighbors as the classification
in terms of lattice harmonics shows so that on-site and
nearest-neighbor repulsion can be avoided.

VI. TOPOLOGICAL SUPERCONDUCTIVITY

If a superconducting state develops out of the g-wave
pairing instability, a specific linear combination of the
two pairing solutions is formed. It was argued that a
chiral linear combination g ± ig minimizes the Landau
free energy and thus makes up the ground state[40]. Such
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FIG. 11. Moiré TMD phase diagram of the e↵ective
extended triangular-lattice Hubbard model describing TMD
hetero-bilayers near 1/4 filling. The phase diagram includes
VDW (�), gSC (O), and metallic (⇥) phases.

a g ± ig state fully gaps the Fermi surface despite the
high number of nodes in the single pairing solutions. It
also breaks time-reversal symmetry and is topologically
non-trivial with a non-zero winding number which can
be defined via

N =
1

4⇡

Z

BZ

d
2
k ~m ·

✓
@m

@kx
⇥

@m

@ky

◆
, (31)

with the pseudo-spin vector

~m =
1

E~k

(Re�k, Im�k, ⇠k)
T
. (32)

We find that in the whole parameter range, where the
pairing gap in the E2 irrep occurs, the second-nearest
neighbor harmonics dominate. The implied g + ig state
results in a Chern number of |N | = 4. This is in con-
trast to |N | = 2 for a d + id state, which would be a
possible ground state if the nearest-neighbor harmonics
dominated. The Chern number is directly proportional
to the quantum spin and thermal Hall conductance in
such a topologically non-trivial superconducting state.
Therefore, the higher-harmonic gap function can mani-
fest itself experimentally by enhanced quantum spin and
thermal Hall responses [40].

VII. CONCLUSION

In this work, we have taken recent developments in the
field of correlated moiré materials as motivation to revisit
the phase diagram of correlated electrons on the trian-
gular lattice with extended Hubbard interactions near
Van Hove filling. To that end, we implemented and care-
fully benchmarked the TUFRG scheme in a numerically
e�cient way. We studied two versions of the extended
Hubbard model: a minimal, paradigmatic one with only

VH filling
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hexagonal Brillouin zone of the two dimensional mono-
layer (see Fig. 1). The strong spin-orbit coupling implies
that the single-particle eigenstates have spin polarized
perpendicular to the plane. Because of the strong inver-
sion symmetry breaking, the highest-lying valence-band
states dispersing downwards from the ~K0 point have spin
up and the highest-lying valence band states dispersing
downwards from the ~K 0

0 point have spin down, with a
gap ⇠ 0.4 eV to the opposite spin states [12].

Twisted WSe2 is formed by stacking a second WSe2
layer with a small commensurate twist angle. The re-
sulting system is again a triangular lattice with a large
“moiré” unit cell and the corresponding “moiré” Brillouin
zone, with the ~K0 point of the top layer and the ~K 0

0 of
the bottom layer mapping onto the moiré Brillouin zone
~K point, and conversely the ~K 0

0 point in the top layer
and the ~K0 point in the bottom layer mapping onto the
moiré Brillouin zone ~K 0 point (see Fig. 1(a)).

The highest valence bands of tWSe2 may be under-
stood [1, 4] by taking the bands dispersing from the
monolayer ~K0/ ~K 0

0 points of each layer, back-folding them
into the moiré Brillouin zone and then hybridizing them
with a matrix element that is diagonal in moiré crystal
momentum ~k and in spin. Details are given in Appendix
A. The strong spin-momentum locking of the individual
layers and the momentum alignment, shown in Fig 1(a),
indicates that the spin up (down) states near the moiré ~K
point come predominantly from the top (bottom) layer.
The broken inversion symmetry of the individual layers
leads to inversion symmetry breaking in the the moiré
system, which however retains a C3 three-fold rotation
symmetry and, if the two layers are identical, a C2x two-
fold rotation symmetry that swaps the two layers. The
combination of C2x and time reversal symmetry leads to
a band degeneracy along high symmetry lines from ~� to
~K/ ~K 0 and ~K/ ~K 0 to ~M/ ~M 0, as seen in Fig. 1(b), upper
panel. Application of a transverse “displacement field”
(interlayer potential di↵erence tuned by the top and bot-
tom gate voltages, conventionally denoted as D) breaks
the C2x symmetry between planes, lifting the degeneracy
along these high symmetry directions and changing the
band structure significantly, as shown in Fig. 1(b), lower
panel.

Even for zero displacement field, D = 0, the moiré
single particle eigenstates at a general wavevector ~k are
non-degenerate [13, 14]. However, for small twist angle
(many atoms in the moiré unit cell) and weak interlayer
hybridization we may restrict our attention to monolayer
states very near the single layer ~K0/ ~K 0

0 points, so that
the single layer valence band may be approximated as a
parabola "~k = �(~k � ~K0)2/2m⇤ (“continuum model”).
In this approximation the moiré system has an emergent
inversion symmetry (E�(~k) = E�(�~k)) if the two individ-
ual layers are identical, so combining with time reversal
symmetry, at D = 0 the bands at any ~k point would
be spin degenerate. This degeneracy is broken by terms

FIG. 1. (a) Brillouin zones of the top (solid line) and bot-
tom (dashed line) layer components of a twisted WSe2 bi-
layer. Blue K0," (red K0

0,#) represents one valley with spin up
(down) band at the valence band edges. Small hexagons indi-
cate moiré Brillouin zones. (b) An illustrative band structure
based on the continuum model of tWSe2. We highlight the
top most valence bands that can be matched to the Hubbard
model. Blue solid (dashed) arrows represent the dominant

spin of the top (bottom) layer at the ~K0 valley. Green dotted
lines indicate the energy level of half filling of the topmost
valence bands.

of order |~k � ~K0|
3 in the monolayer band structure [15].

These cubic terms have e↵ects that are small by a factor
of the order of the inverse of the number of atoms in the
moiré unit cell. We neglect these small terms here, so
that the model we study is fully inversion symmetric at
D = 0 with inversion symmetry broken by the displace-
ment field.
The result of these considerations is that the one-

electron properties of the top of the valence band of
tWSe2 can be described by a tight binding model with
hopping c†

i,�
ti,j
�
cj,�, where ti,j

�
= |t|ei��ij . � indicates

spin and also valley due to the spin-valley locking, and
the phase � parametrizes the inversion symmetry break-
ing arising from a non-zero displacement field. Ref. [4]
shows that we need only to retain the nearest neighbor
hopping, with a second neighbor term ⇠ 20% of the first
neighbor term. Our convention for �ij for nearest neigh-
bor hopping is shown in Fig. 2(a). At zero displacement
field ti,j may be taken to be independent of � (up to terms
of order of the inverse of the number of atoms in the moiré
unit cell, which we neglect); as the displacement field is
increased, the spin dependence of t becomes more pro-
nounced and the magnitude of t changes. Previous work
also indicates that the important interaction e↵ects come
from an on-site repulsion, so the twisted bilayer material
is governed by the generalized “moiré” Hubbard Hamil-
tonian with only nearest neighbor hopping [1, 3]:

H = �

X

~k,~am,

�=±

2|t| cos(~k · ~am + ��)c†
~k,�

c~k,� + U
X

i

ni"ni#,

(1)

where ~am=1,2,3 are the lattice vectors, ~a1 =

aM (1, 0), ~a2 = aM (� 1
2 ,

p
3
2 ), ~a3 = aM (� 1

2 ,�
p
3
2 ), and

aM is the moiré cell lattice constant. From previous DFT
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hexagonal Brillouin zone of the two dimensional mono-
layer (see Fig. 1). The strong spin-orbit coupling implies
that the single-particle eigenstates have spin polarized
perpendicular to the plane. Because of the strong inver-
sion symmetry breaking, the highest-lying valence-band
states dispersing downwards from the ~K0 point have spin
up and the highest-lying valence band states dispersing
downwards from the ~K 0

0 point have spin down, with a
gap ⇠ 0.4 eV to the opposite spin states [12].

Twisted WSe2 is formed by stacking a second WSe2
layer with a small commensurate twist angle. The re-
sulting system is again a triangular lattice with a large
“moiré” unit cell and the corresponding “moiré” Brillouin
zone, with the ~K0 point of the top layer and the ~K 0

0 of
the bottom layer mapping onto the moiré Brillouin zone
~K point, and conversely the ~K 0

0 point in the top layer
and the ~K0 point in the bottom layer mapping onto the
moiré Brillouin zone ~K 0 point (see Fig. 1(a)).

The highest valence bands of tWSe2 may be under-
stood [1, 4] by taking the bands dispersing from the
monolayer ~K0/ ~K 0

0 points of each layer, back-folding them
into the moiré Brillouin zone and then hybridizing them
with a matrix element that is diagonal in moiré crystal
momentum ~k and in spin. Details are given in Appendix
A. The strong spin-momentum locking of the individual
layers and the momentum alignment, shown in Fig 1(a),
indicates that the spin up (down) states near the moiré ~K
point come predominantly from the top (bottom) layer.
The broken inversion symmetry of the individual layers
leads to inversion symmetry breaking in the the moiré
system, which however retains a C3 three-fold rotation
symmetry and, if the two layers are identical, a C2x two-
fold rotation symmetry that swaps the two layers. The
combination of C2x and time reversal symmetry leads to
a band degeneracy along high symmetry lines from ~� to
~K/ ~K 0 and ~K/ ~K 0 to ~M/ ~M 0, as seen in Fig. 1(b), upper
panel. Application of a transverse “displacement field”
(interlayer potential di↵erence tuned by the top and bot-
tom gate voltages, conventionally denoted as D) breaks
the C2x symmetry between planes, lifting the degeneracy
along these high symmetry directions and changing the
band structure significantly, as shown in Fig. 1(b), lower
panel.

Even for zero displacement field, D = 0, the moiré
single particle eigenstates at a general wavevector ~k are
non-degenerate [13, 14]. However, for small twist angle
(many atoms in the moiré unit cell) and weak interlayer
hybridization we may restrict our attention to monolayer
states very near the single layer ~K0/ ~K 0

0 points, so that
the single layer valence band may be approximated as a
parabola "~k = �(~k � ~K0)2/2m⇤ (“continuum model”).
In this approximation the moiré system has an emergent
inversion symmetry (E�(~k) = E�(�~k)) if the two individ-
ual layers are identical, so combining with time reversal
symmetry, at D = 0 the bands at any ~k point would
be spin degenerate. This degeneracy is broken by terms

FIG. 1. (a) Brillouin zones of the top (solid line) and bot-
tom (dashed line) layer components of a twisted WSe2 bi-
layer. Blue K0," (red K0

0,#) represents one valley with spin up
(down) band at the valence band edges. Small hexagons indi-
cate moiré Brillouin zones. (b) An illustrative band structure
based on the continuum model of tWSe2. We highlight the
top most valence bands that can be matched to the Hubbard
model. Blue solid (dashed) arrows represent the dominant

spin of the top (bottom) layer at the ~K0 valley. Green dotted
lines indicate the energy level of half filling of the topmost
valence bands.

of order |~k � ~K0|
3 in the monolayer band structure [15].

These cubic terms have e↵ects that are small by a factor
of the order of the inverse of the number of atoms in the
moiré unit cell. We neglect these small terms here, so
that the model we study is fully inversion symmetric at
D = 0 with inversion symmetry broken by the displace-
ment field.
The result of these considerations is that the one-

electron properties of the top of the valence band of
tWSe2 can be described by a tight binding model with
hopping c†

i,�
ti,j
�
cj,�, where ti,j

�
= |t|ei��ij . � indicates

spin and also valley due to the spin-valley locking, and
the phase � parametrizes the inversion symmetry break-
ing arising from a non-zero displacement field. Ref. [4]
shows that we need only to retain the nearest neighbor
hopping, with a second neighbor term ⇠ 20% of the first
neighbor term. Our convention for �ij for nearest neigh-
bor hopping is shown in Fig. 2(a). At zero displacement
field ti,j may be taken to be independent of � (up to terms
of order of the inverse of the number of atoms in the moiré
unit cell, which we neglect); as the displacement field is
increased, the spin dependence of t becomes more pro-
nounced and the magnitude of t changes. Previous work
also indicates that the important interaction e↵ects come
from an on-site repulsion, so the twisted bilayer material
is governed by the generalized “moiré” Hubbard Hamil-
tonian with only nearest neighbor hopping [1, 3]:

H = �

X

~k,~am,

�=±

2|t| cos(~k · ~am + ��)c†
~k,�

c~k,� + U
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where ~am=1,2,3 are the lattice vectors, ~a1 =
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aM is the moiré cell lattice constant. From previous DFT
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hexagonal Brillouin zone of the two dimensional mono-
layer (see Fig. 1). The strong spin-orbit coupling implies
that the single-particle eigenstates have spin polarized
perpendicular to the plane. Because of the strong inver-
sion symmetry breaking, the highest-lying valence-band
states dispersing downwards from the ~K0 point have spin
up and the highest-lying valence band states dispersing
downwards from the ~K 0

0 point have spin down, with a
gap ⇠ 0.4 eV to the opposite spin states [12].

Twisted WSe2 is formed by stacking a second WSe2
layer with a small commensurate twist angle. The re-
sulting system is again a triangular lattice with a large
“moiré” unit cell and the corresponding “moiré” Brillouin
zone, with the ~K0 point of the top layer and the ~K 0

0 of
the bottom layer mapping onto the moiré Brillouin zone
~K point, and conversely the ~K 0

0 point in the top layer
and the ~K0 point in the bottom layer mapping onto the
moiré Brillouin zone ~K 0 point (see Fig. 1(a)).

The highest valence bands of tWSe2 may be under-
stood [1, 4] by taking the bands dispersing from the
monolayer ~K0/ ~K 0

0 points of each layer, back-folding them
into the moiré Brillouin zone and then hybridizing them
with a matrix element that is diagonal in moiré crystal
momentum ~k and in spin. Details are given in Appendix
A. The strong spin-momentum locking of the individual
layers and the momentum alignment, shown in Fig 1(a),
indicates that the spin up (down) states near the moiré ~K
point come predominantly from the top (bottom) layer.
The broken inversion symmetry of the individual layers
leads to inversion symmetry breaking in the the moiré
system, which however retains a C3 three-fold rotation
symmetry and, if the two layers are identical, a C2x two-
fold rotation symmetry that swaps the two layers. The
combination of C2x and time reversal symmetry leads to
a band degeneracy along high symmetry lines from ~� to
~K/ ~K 0 and ~K/ ~K 0 to ~M/ ~M 0, as seen in Fig. 1(b), upper
panel. Application of a transverse “displacement field”
(interlayer potential di↵erence tuned by the top and bot-
tom gate voltages, conventionally denoted as D) breaks
the C2x symmetry between planes, lifting the degeneracy
along these high symmetry directions and changing the
band structure significantly, as shown in Fig. 1(b), lower
panel.

Even for zero displacement field, D = 0, the moiré
single particle eigenstates at a general wavevector ~k are
non-degenerate [13, 14]. However, for small twist angle
(many atoms in the moiré unit cell) and weak interlayer
hybridization we may restrict our attention to monolayer
states very near the single layer ~K0/ ~K 0

0 points, so that
the single layer valence band may be approximated as a
parabola "~k = �(~k � ~K0)2/2m⇤ (“continuum model”).
In this approximation the moiré system has an emergent
inversion symmetry (E�(~k) = E�(�~k)) if the two individ-
ual layers are identical, so combining with time reversal
symmetry, at D = 0 the bands at any ~k point would
be spin degenerate. This degeneracy is broken by terms

FIG. 1. (a) Brillouin zones of the top (solid line) and bot-
tom (dashed line) layer components of a twisted WSe2 bi-
layer. Blue K0," (red K0

0,#) represents one valley with spin up
(down) band at the valence band edges. Small hexagons indi-
cate moiré Brillouin zones. (b) An illustrative band structure
based on the continuum model of tWSe2. We highlight the
top most valence bands that can be matched to the Hubbard
model. Blue solid (dashed) arrows represent the dominant

spin of the top (bottom) layer at the ~K0 valley. Green dotted
lines indicate the energy level of half filling of the topmost
valence bands.

of order |~k � ~K0|
3 in the monolayer band structure [15].

These cubic terms have e↵ects that are small by a factor
of the order of the inverse of the number of atoms in the
moiré unit cell. We neglect these small terms here, so
that the model we study is fully inversion symmetric at
D = 0 with inversion symmetry broken by the displace-
ment field.
The result of these considerations is that the one-

electron properties of the top of the valence band of
tWSe2 can be described by a tight binding model with
hopping c†

i,�
ti,j
�
cj,�, where ti,j

�
= |t|ei��ij . � indicates

spin and also valley due to the spin-valley locking, and
the phase � parametrizes the inversion symmetry break-
ing arising from a non-zero displacement field. Ref. [4]
shows that we need only to retain the nearest neighbor
hopping, with a second neighbor term ⇠ 20% of the first
neighbor term. Our convention for �ij for nearest neigh-
bor hopping is shown in Fig. 2(a). At zero displacement
field ti,j may be taken to be independent of � (up to terms
of order of the inverse of the number of atoms in the moiré
unit cell, which we neglect); as the displacement field is
increased, the spin dependence of t becomes more pro-
nounced and the magnitude of t changes. Previous work
also indicates that the important interaction e↵ects come
from an on-site repulsion, so the twisted bilayer material
is governed by the generalized “moiré” Hubbard Hamil-
tonian with only nearest neighbor hopping [1, 3]:

H = �

X

~k,~am,
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FIG. 7. (a) Density of states versus filling calculated at U = 0.
Colors represent di↵erent choices of �. (b) Dispersion of spin
up electrons in the moiré Brillouin zone calculated at U = 0.
The dashed white line shows the constant energy surface that
intersects the energy saddle point. The labelled point in each
plot indicates one of the van Hove locations.
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where �1,2 are constants, and the factors of T arise be-
cause if all four S share the same wavevector then the cor-
responding diagram is ⇠ G(p)2G(p+Q)2 and is strongly
divergent at the nesting wavevector while if two di↵erent
wavevectors are involved then at most one pair of G can
be nested.

Minimizing Eqs. (5), (8) we find that the free energy
minimum corresponds to three x� y plane spirals, along
the three wavevectors ~Q�

0,±1, each of equal amplitude,
and with phases ✓l that are arbitrary. In the nearest
neighbor hopping model considered here the trio of spiral
states fully gaps the Fermi surface, leading to an insula-
tor at the corresponding nesting density. As the coupling
strength is increased, commensurability energies come in
to play and we expect that the physical state corresponds
to regions of commensurate order with discommensura-
tions that can trap charge carriers, in analogy to the
stripe states found in the square lattice Hubbard model
[27–30]. Therefore, there will be an insulator-metal tran-
sition as interaction increases. If further neighbor hop-
ping is included, the perfect nesting is spoiled and regions
of the Fermi surface could remain ungapped at weak cou-
pling.

FIG. 8. An illustrative sketch of occupied states. Blue (Red)
area represents the occupied Brillouin zone of spin up (down).
Blue (Red) dots are the van Hove locations of spin up (down).
The arrow indicates the wavevector that connects the perfect
nesting electrons between the same spins ( ~Q0,±1) and between

spin up and down ( ~Q�

0,±1).

We now consider the three special cases, beginning
with � = 0 at n = 1.5. For this � the spin up and spin
down Fermi surfaces coincide. The van Hove points are at
the M and M’ points of the moire Brillouin zones (density
n = 1.5), and the nesting vectors are at ~Q0 = ±(2⇡, 0)

and ~Q±1 = ±2⇡(� 1
2 ,±

p
3
2 ). The coincidence of spin

up and spin down Fermi surfaces mean that the near-
est neighbor model has SU(2) spin invariance, seen here
in the fact that the spin up Fermi surface nests with
both the spin up and spin down Fermi surfaces, and ± ~Ql

are both nesting vectors. The wavevector ~Q0 = (2⇡, 0)
means that the spiral has vanishing pitch, so the state is
a collinear stripe of form shown in Fig. 2(b). An analysis
similar to that sketched in Eqs. (5), (8) gives an SU(2)-
invariant theory with quadratic term

P
l
~S( ~Ql) · ~S( ~Ql)

and dominant quartic term
P

l

⇣
~S( ~Ql) · ~S(� ~Ql)

⌘2
so

that at this level the free energy is minimized by three
equal amplitude collinear stripes, with orthogonal spin
directions. As noted in Ref. [18], sixth order terms in the
free energy then fix the phase between the three stripes,
inducing a chirality. The chiral state is disfavored by the
spin orbit coupling appearing if further neighbor interac-
tions are considered.

As � increases from 0, we see from Fig. 8 that for
the same-spin nesting, the length of one nesting edge de-
creases continuously to zero, and the nesting vector is
separated from van Hove locations, implying a rapid de-
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FIG. 7. (a) Density of states versus filling calculated at U = 0.
Colors represent di↵erent choices of �. (b) Dispersion of spin
up electrons in the moiré Brillouin zone calculated at U = 0.
The dashed white line shows the constant energy surface that
intersects the energy saddle point. The labelled point in each
plot indicates one of the van Hove locations.
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where �1,2 are constants, and the factors of T arise be-
cause if all four S share the same wavevector then the cor-
responding diagram is ⇠ G(p)2G(p+Q)2 and is strongly
divergent at the nesting wavevector while if two di↵erent
wavevectors are involved then at most one pair of G can
be nested.

Minimizing Eqs. (5), (8) we find that the free energy
minimum corresponds to three x� y plane spirals, along
the three wavevectors ~Q�

0,±1, each of equal amplitude,
and with phases ✓l that are arbitrary. In the nearest
neighbor hopping model considered here the trio of spiral
states fully gaps the Fermi surface, leading to an insula-
tor at the corresponding nesting density. As the coupling
strength is increased, commensurability energies come in
to play and we expect that the physical state corresponds
to regions of commensurate order with discommensura-
tions that can trap charge carriers, in analogy to the
stripe states found in the square lattice Hubbard model
[27–30]. Therefore, there will be an insulator-metal tran-
sition as interaction increases. If further neighbor hop-
ping is included, the perfect nesting is spoiled and regions
of the Fermi surface could remain ungapped at weak cou-
pling.

FIG. 8. An illustrative sketch of occupied states. Blue (Red)
area represents the occupied Brillouin zone of spin up (down).
Blue (Red) dots are the van Hove locations of spin up (down).
The arrow indicates the wavevector that connects the perfect
nesting electrons between the same spins ( ~Q0,±1) and between

spin up and down ( ~Q�

0,±1).

We now consider the three special cases, beginning
with � = 0 at n = 1.5. For this � the spin up and spin
down Fermi surfaces coincide. The van Hove points are at
the M and M’ points of the moire Brillouin zones (density
n = 1.5), and the nesting vectors are at ~Q0 = ±(2⇡, 0)

and ~Q±1 = ±2⇡(� 1
2 ,±

p
3
2 ). The coincidence of spin

up and spin down Fermi surfaces mean that the near-
est neighbor model has SU(2) spin invariance, seen here
in the fact that the spin up Fermi surface nests with
both the spin up and spin down Fermi surfaces, and ± ~Ql

are both nesting vectors. The wavevector ~Q0 = (2⇡, 0)
means that the spiral has vanishing pitch, so the state is
a collinear stripe of form shown in Fig. 2(b). An analysis
similar to that sketched in Eqs. (5), (8) gives an SU(2)-
invariant theory with quadratic term

P
l
~S( ~Ql) · ~S( ~Ql)

and dominant quartic term
P

l

⇣
~S( ~Ql) · ~S(� ~Ql)

⌘2
so

that at this level the free energy is minimized by three
equal amplitude collinear stripes, with orthogonal spin
directions. As noted in Ref. [18], sixth order terms in the
free energy then fix the phase between the three stripes,
inducing a chirality. The chiral state is disfavored by the
spin orbit coupling appearing if further neighbor interac-
tions are considered.

As � increases from 0, we see from Fig. 8 that for
the same-spin nesting, the length of one nesting edge de-
creases continuously to zero, and the nesting vector is
separated from van Hove locations, implying a rapid de-

‣ Van-Hove singularities present in band dispersion!
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hexagonal Brillouin zone of the two dimensional mono-
layer (see Fig. 1). The strong spin-orbit coupling implies
that the single-particle eigenstates have spin polarized
perpendicular to the plane. Because of the strong inver-
sion symmetry breaking, the highest-lying valence-band
states dispersing downwards from the ~K0 point have spin
up and the highest-lying valence band states dispersing
downwards from the ~K 0

0 point have spin down, with a
gap ⇠ 0.4 eV to the opposite spin states [12].

Twisted WSe2 is formed by stacking a second WSe2
layer with a small commensurate twist angle. The re-
sulting system is again a triangular lattice with a large
“moiré” unit cell and the corresponding “moiré” Brillouin
zone, with the ~K0 point of the top layer and the ~K 0

0 of
the bottom layer mapping onto the moiré Brillouin zone
~K point, and conversely the ~K 0

0 point in the top layer
and the ~K0 point in the bottom layer mapping onto the
moiré Brillouin zone ~K 0 point (see Fig. 1(a)).

The highest valence bands of tWSe2 may be under-
stood [1, 4] by taking the bands dispersing from the
monolayer ~K0/ ~K 0

0 points of each layer, back-folding them
into the moiré Brillouin zone and then hybridizing them
with a matrix element that is diagonal in moiré crystal
momentum ~k and in spin. Details are given in Appendix
A. The strong spin-momentum locking of the individual
layers and the momentum alignment, shown in Fig 1(a),
indicates that the spin up (down) states near the moiré ~K
point come predominantly from the top (bottom) layer.
The broken inversion symmetry of the individual layers
leads to inversion symmetry breaking in the the moiré
system, which however retains a C3 three-fold rotation
symmetry and, if the two layers are identical, a C2x two-
fold rotation symmetry that swaps the two layers. The
combination of C2x and time reversal symmetry leads to
a band degeneracy along high symmetry lines from ~� to
~K/ ~K 0 and ~K/ ~K 0 to ~M/ ~M 0, as seen in Fig. 1(b), upper
panel. Application of a transverse “displacement field”
(interlayer potential di↵erence tuned by the top and bot-
tom gate voltages, conventionally denoted as D) breaks
the C2x symmetry between planes, lifting the degeneracy
along these high symmetry directions and changing the
band structure significantly, as shown in Fig. 1(b), lower
panel.

Even for zero displacement field, D = 0, the moiré
single particle eigenstates at a general wavevector ~k are
non-degenerate [13, 14]. However, for small twist angle
(many atoms in the moiré unit cell) and weak interlayer
hybridization we may restrict our attention to monolayer
states very near the single layer ~K0/ ~K 0

0 points, so that
the single layer valence band may be approximated as a
parabola "~k = �(~k � ~K0)2/2m⇤ (“continuum model”).
In this approximation the moiré system has an emergent
inversion symmetry (E�(~k) = E�(�~k)) if the two individ-
ual layers are identical, so combining with time reversal
symmetry, at D = 0 the bands at any ~k point would
be spin degenerate. This degeneracy is broken by terms

FIG. 1. (a) Brillouin zones of the top (solid line) and bot-
tom (dashed line) layer components of a twisted WSe2 bi-
layer. Blue K0," (red K0

0,#) represents one valley with spin up
(down) band at the valence band edges. Small hexagons indi-
cate moiré Brillouin zones. (b) An illustrative band structure
based on the continuum model of tWSe2. We highlight the
top most valence bands that can be matched to the Hubbard
model. Blue solid (dashed) arrows represent the dominant

spin of the top (bottom) layer at the ~K0 valley. Green dotted
lines indicate the energy level of half filling of the topmost
valence bands.

of order |~k � ~K0|
3 in the monolayer band structure [15].

These cubic terms have e↵ects that are small by a factor
of the order of the inverse of the number of atoms in the
moiré unit cell. We neglect these small terms here, so
that the model we study is fully inversion symmetric at
D = 0 with inversion symmetry broken by the displace-
ment field.
The result of these considerations is that the one-

electron properties of the top of the valence band of
tWSe2 can be described by a tight binding model with
hopping c†

i,�
ti,j
�
cj,�, where ti,j

�
= |t|ei��ij . � indicates

spin and also valley due to the spin-valley locking, and
the phase � parametrizes the inversion symmetry break-
ing arising from a non-zero displacement field. Ref. [4]
shows that we need only to retain the nearest neighbor
hopping, with a second neighbor term ⇠ 20% of the first
neighbor term. Our convention for �ij for nearest neigh-
bor hopping is shown in Fig. 2(a). At zero displacement
field ti,j may be taken to be independent of � (up to terms
of order of the inverse of the number of atoms in the moiré
unit cell, which we neglect); as the displacement field is
increased, the spin dependence of t becomes more pro-
nounced and the magnitude of t changes. Previous work
also indicates that the important interaction e↵ects come
from an on-site repulsion, so the twisted bilayer material
is governed by the generalized “moiré” Hubbard Hamil-
tonian with only nearest neighbor hopping [1, 3]:

H = �

X

~k,~am,

�=±

2|t| cos(~k · ~am + ��)c†
~k,�

c~k,� + U
X

i

ni"ni#,

(1)

where ~am=1,2,3 are the lattice vectors, ~a1 =

aM (1, 0), ~a2 = aM (� 1
2 ,

p
3
2 ), ~a3 = aM (� 1

2 ,�
p
3
2 ), and

aM is the moiré cell lattice constant. From previous DFT
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FIG. 7. (a) Density of states versus filling calculated at U = 0.
Colors represent di↵erent choices of �. (b) Dispersion of spin
up electrons in the moiré Brillouin zone calculated at U = 0.
The dashed white line shows the constant energy surface that
intersects the energy saddle point. The labelled point in each
plot indicates one of the van Hove locations.

terms

F (4)
�

=
�1

4T 2

X

l

⇣
S+
Ql
S�
�Ql

⌘2
+

�2

4T

X

l 6=s

⇣
S+
Ql
S�
�Ql

⌘⇣
S+
Qs

S�
�Qs

⌘
(8)

where �1,2 are constants, and the factors of T arise be-
cause if all four S share the same wavevector then the cor-
responding diagram is ⇠ G(p)2G(p+Q)2 and is strongly
divergent at the nesting wavevector while if two di↵erent
wavevectors are involved then at most one pair of G can
be nested.

Minimizing Eqs. (5), (8) we find that the free energy
minimum corresponds to three x� y plane spirals, along
the three wavevectors ~Q�

0,±1, each of equal amplitude,
and with phases ✓l that are arbitrary. In the nearest
neighbor hopping model considered here the trio of spiral
states fully gaps the Fermi surface, leading to an insula-
tor at the corresponding nesting density. As the coupling
strength is increased, commensurability energies come in
to play and we expect that the physical state corresponds
to regions of commensurate order with discommensura-
tions that can trap charge carriers, in analogy to the
stripe states found in the square lattice Hubbard model
[27–30]. Therefore, there will be an insulator-metal tran-
sition as interaction increases. If further neighbor hop-
ping is included, the perfect nesting is spoiled and regions
of the Fermi surface could remain ungapped at weak cou-
pling.

FIG. 8. An illustrative sketch of occupied states. Blue (Red)
area represents the occupied Brillouin zone of spin up (down).
Blue (Red) dots are the van Hove locations of spin up (down).
The arrow indicates the wavevector that connects the perfect
nesting electrons between the same spins ( ~Q0,±1) and between

spin up and down ( ~Q�

0,±1).

We now consider the three special cases, beginning
with � = 0 at n = 1.5. For this � the spin up and spin
down Fermi surfaces coincide. The van Hove points are at
the M and M’ points of the moire Brillouin zones (density
n = 1.5), and the nesting vectors are at ~Q0 = ±(2⇡, 0)

and ~Q±1 = ±2⇡(� 1
2 ,±

p
3
2 ). The coincidence of spin

up and spin down Fermi surfaces mean that the near-
est neighbor model has SU(2) spin invariance, seen here
in the fact that the spin up Fermi surface nests with
both the spin up and spin down Fermi surfaces, and ± ~Ql

are both nesting vectors. The wavevector ~Q0 = (2⇡, 0)
means that the spiral has vanishing pitch, so the state is
a collinear stripe of form shown in Fig. 2(b). An analysis
similar to that sketched in Eqs. (5), (8) gives an SU(2)-
invariant theory with quadratic term

P
l
~S( ~Ql) · ~S( ~Ql)

and dominant quartic term
P

l

⇣
~S( ~Ql) · ~S(� ~Ql)

⌘2
so

that at this level the free energy is minimized by three
equal amplitude collinear stripes, with orthogonal spin
directions. As noted in Ref. [18], sixth order terms in the
free energy then fix the phase between the three stripes,
inducing a chirality. The chiral state is disfavored by the
spin orbit coupling appearing if further neighbor interac-
tions are considered.

As � increases from 0, we see from Fig. 8 that for
the same-spin nesting, the length of one nesting edge de-
creases continuously to zero, and the nesting vector is
separated from van Hove locations, implying a rapid de-
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crease in the strength of the divergence. On the other
hand, the nesting vector of opposite spins still connects
the van Hove locations, implying the rapid development
of an easy plane anisotropy.

At � = ⇡

6 , the same-spin nesting vectors disappear,
and the spin up (down) van Hove points merge at the high
symmetry points ~K ( ~K 0), producing a cubic van Hove
singularity (✏k ⇠ k3

x
� 3kxk2y). Such high order van Hove

singularity will lead to a power-law-divergent density of
states and �±, implying a stronger tendency towards or-
der [31–34]. The ordering wavevector ~Q�

0 = ( 4⇡3 , 0) is
equivalent to its C3 rotations (up to a reciprocal lattice
vector), so the three spiral states merge into one 120�

spiral in-plane order with a definite staggered chirality.
This state will gain substantial commensurability energy,
and it is likely that the general ~Q states found at other
values of the displacement field will evolve into defected
versions of the 120� state as the interaction is increased.

For ⇡

6 < � < ⇡

2 , the van Hove points move to the

interior of the zone along the ~� - ~K ( ~K 0) line, and the
opposite-spin nesting continues to exist at wavevectors
~Q�

0,± 2⇡
3

(see Fig. 8). At � = ⇡

2 , all van Hove singularities

merge into the third order singularity at ~� , there is no
nesting, and the predicted magnetic state is ferromag-
netic.

FIG. 9. (a) nvHs � � curve for 0 < � < ⇡

2 at U=0. The
blue points are extracted from the numerical density of states
calculation. nvHs is the density filling where the Fermi sur-
face intersects with the van Hove singularity. The orange line
is an empirical formula nvHs ⇡ cos(3�)/2 + 1 that fits the
numerical calculation well. (b) Sketch of the predicted phase
diagram with only nearest neighbor hopping in the weak cou-
pling limit.

To summarize, for weak coupling, the nearest neigh-
bor hopping model predicts magnetically ordered insu-
lating states along the line in the density-� plane shown
in Fig. 9(a). For most values of � the insulating states
correspond to a triple of x � y spirals with a fixed stag-
gered chirality (� dependent wavevector), but at � = 0

the state is the chiral tetrahedral ordered state and at
� = ⇡/2 the state is an x � y ferromagnet. If further
neighbor hopping is included, then the incomplete nest-
ing means the very weak coupling state is a magnetic
metal. At general �, the incommensurate value of the
spiral wavevector and the absence of any energetic term
fixing the relative phases of the spirals means that the
state is very susceptible to fluctuations. Also, as U is in-
creased other states may occur. For example, at n near
1.5 and � = 0, Hartree-Fock calculation indicates that
the tetrahedral state is replaced by a ferromagnetic state
as U is increased above a critical value ⇠ 3.5|t| [19]. For
� closer to ⇡/6 the commensurability energy gain of the
simple ~Q = (4⇡/3, 0) 120� spiral state suggests that at
intermediate and large U the state is likely to be a de-
fected 120� state. However, if weak coupling versions
of the material can be implemented, the lines of phase
transition noted here should be observed. In Fig. 9(b),
we show a sketch of the predicted phase diagram for the
nearest neighbor hopping model, where the insulator be-
havior could be found for general �, with the wavevector
of the insulating spiral state varying.

VI. CONCLUSION

FIG. 10. Hartree-Fock phase diagram at general fillings at
weak and strong couplings with nine commensurate orders
considered. Each color represents a di↵erent magnetic or-
der.“xy” indicates that the magnetic order is in the x � y
plane, and “z” represents the z direction. Regions filled by
more than one color are viewed as degenerate regions, where
the energy di↵erence between the two magnetic orders is
smaller than 10�3 from numerical calculations.

In this work, we present a comprehensive Hartree-Fock
study of the moiré Hubbard model believed to represent

‣ Van-Hove singularities present in band dispersion!
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hexagonal Brillouin zone of the two dimensional mono-
layer (see Fig. 1). The strong spin-orbit coupling implies
that the single-particle eigenstates have spin polarized
perpendicular to the plane. Because of the strong inver-
sion symmetry breaking, the highest-lying valence-band
states dispersing downwards from the ~K0 point have spin
up and the highest-lying valence band states dispersing
downwards from the ~K 0

0 point have spin down, with a
gap ⇠ 0.4 eV to the opposite spin states [12].

Twisted WSe2 is formed by stacking a second WSe2
layer with a small commensurate twist angle. The re-
sulting system is again a triangular lattice with a large
“moiré” unit cell and the corresponding “moiré” Brillouin
zone, with the ~K0 point of the top layer and the ~K 0

0 of
the bottom layer mapping onto the moiré Brillouin zone
~K point, and conversely the ~K 0

0 point in the top layer
and the ~K0 point in the bottom layer mapping onto the
moiré Brillouin zone ~K 0 point (see Fig. 1(a)).

The highest valence bands of tWSe2 may be under-
stood [1, 4] by taking the bands dispersing from the
monolayer ~K0/ ~K 0

0 points of each layer, back-folding them
into the moiré Brillouin zone and then hybridizing them
with a matrix element that is diagonal in moiré crystal
momentum ~k and in spin. Details are given in Appendix
A. The strong spin-momentum locking of the individual
layers and the momentum alignment, shown in Fig 1(a),
indicates that the spin up (down) states near the moiré ~K
point come predominantly from the top (bottom) layer.
The broken inversion symmetry of the individual layers
leads to inversion symmetry breaking in the the moiré
system, which however retains a C3 three-fold rotation
symmetry and, if the two layers are identical, a C2x two-
fold rotation symmetry that swaps the two layers. The
combination of C2x and time reversal symmetry leads to
a band degeneracy along high symmetry lines from ~� to
~K/ ~K 0 and ~K/ ~K 0 to ~M/ ~M 0, as seen in Fig. 1(b), upper
panel. Application of a transverse “displacement field”
(interlayer potential di↵erence tuned by the top and bot-
tom gate voltages, conventionally denoted as D) breaks
the C2x symmetry between planes, lifting the degeneracy
along these high symmetry directions and changing the
band structure significantly, as shown in Fig. 1(b), lower
panel.

Even for zero displacement field, D = 0, the moiré
single particle eigenstates at a general wavevector ~k are
non-degenerate [13, 14]. However, for small twist angle
(many atoms in the moiré unit cell) and weak interlayer
hybridization we may restrict our attention to monolayer
states very near the single layer ~K0/ ~K 0

0 points, so that
the single layer valence band may be approximated as a
parabola "~k = �(~k � ~K0)2/2m⇤ (“continuum model”).
In this approximation the moiré system has an emergent
inversion symmetry (E�(~k) = E�(�~k)) if the two individ-
ual layers are identical, so combining with time reversal
symmetry, at D = 0 the bands at any ~k point would
be spin degenerate. This degeneracy is broken by terms

FIG. 1. (a) Brillouin zones of the top (solid line) and bot-
tom (dashed line) layer components of a twisted WSe2 bi-
layer. Blue K0," (red K0

0,#) represents one valley with spin up
(down) band at the valence band edges. Small hexagons indi-
cate moiré Brillouin zones. (b) An illustrative band structure
based on the continuum model of tWSe2. We highlight the
top most valence bands that can be matched to the Hubbard
model. Blue solid (dashed) arrows represent the dominant

spin of the top (bottom) layer at the ~K0 valley. Green dotted
lines indicate the energy level of half filling of the topmost
valence bands.

of order |~k � ~K0|
3 in the monolayer band structure [15].

These cubic terms have e↵ects that are small by a factor
of the order of the inverse of the number of atoms in the
moiré unit cell. We neglect these small terms here, so
that the model we study is fully inversion symmetric at
D = 0 with inversion symmetry broken by the displace-
ment field.
The result of these considerations is that the one-

electron properties of the top of the valence band of
tWSe2 can be described by a tight binding model with
hopping c†

i,�
ti,j
�
cj,�, where ti,j

�
= |t|ei��ij . � indicates

spin and also valley due to the spin-valley locking, and
the phase � parametrizes the inversion symmetry break-
ing arising from a non-zero displacement field. Ref. [4]
shows that we need only to retain the nearest neighbor
hopping, with a second neighbor term ⇠ 20% of the first
neighbor term. Our convention for �ij for nearest neigh-
bor hopping is shown in Fig. 2(a). At zero displacement
field ti,j may be taken to be independent of � (up to terms
of order of the inverse of the number of atoms in the moiré
unit cell, which we neglect); as the displacement field is
increased, the spin dependence of t becomes more pro-
nounced and the magnitude of t changes. Previous work
also indicates that the important interaction e↵ects come
from an on-site repulsion, so the twisted bilayer material
is governed by the generalized “moiré” Hubbard Hamil-
tonian with only nearest neighbor hopping [1, 3]:

H = �

X

~k,~am,

�=±

2|t| cos(~k · ~am + ��)c†
~k,�

c~k,� + U
X

i

ni"ni#,

(1)

where ~am=1,2,3 are the lattice vectors, ~a1 =

aM (1, 0), ~a2 = aM (� 1
2 ,

p
3
2 ), ~a3 = aM (� 1

2 ,�
p
3
2 ), and

aM is the moiré cell lattice constant. From previous DFT
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FIG. 7. (a) Density of states versus filling calculated at U = 0.
Colors represent di↵erent choices of �. (b) Dispersion of spin
up electrons in the moiré Brillouin zone calculated at U = 0.
The dashed white line shows the constant energy surface that
intersects the energy saddle point. The labelled point in each
plot indicates one of the van Hove locations.
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where �1,2 are constants, and the factors of T arise be-
cause if all four S share the same wavevector then the cor-
responding diagram is ⇠ G(p)2G(p+Q)2 and is strongly
divergent at the nesting wavevector while if two di↵erent
wavevectors are involved then at most one pair of G can
be nested.

Minimizing Eqs. (5), (8) we find that the free energy
minimum corresponds to three x� y plane spirals, along
the three wavevectors ~Q�

0,±1, each of equal amplitude,
and with phases ✓l that are arbitrary. In the nearest
neighbor hopping model considered here the trio of spiral
states fully gaps the Fermi surface, leading to an insula-
tor at the corresponding nesting density. As the coupling
strength is increased, commensurability energies come in
to play and we expect that the physical state corresponds
to regions of commensurate order with discommensura-
tions that can trap charge carriers, in analogy to the
stripe states found in the square lattice Hubbard model
[27–30]. Therefore, there will be an insulator-metal tran-
sition as interaction increases. If further neighbor hop-
ping is included, the perfect nesting is spoiled and regions
of the Fermi surface could remain ungapped at weak cou-
pling.

FIG. 8. An illustrative sketch of occupied states. Blue (Red)
area represents the occupied Brillouin zone of spin up (down).
Blue (Red) dots are the van Hove locations of spin up (down).
The arrow indicates the wavevector that connects the perfect
nesting electrons between the same spins ( ~Q0,±1) and between

spin up and down ( ~Q�

0,±1).

We now consider the three special cases, beginning
with � = 0 at n = 1.5. For this � the spin up and spin
down Fermi surfaces coincide. The van Hove points are at
the M and M’ points of the moire Brillouin zones (density
n = 1.5), and the nesting vectors are at ~Q0 = ±(2⇡, 0)

and ~Q±1 = ±2⇡(� 1
2 ,±

p
3
2 ). The coincidence of spin

up and spin down Fermi surfaces mean that the near-
est neighbor model has SU(2) spin invariance, seen here
in the fact that the spin up Fermi surface nests with
both the spin up and spin down Fermi surfaces, and ± ~Ql

are both nesting vectors. The wavevector ~Q0 = (2⇡, 0)
means that the spiral has vanishing pitch, so the state is
a collinear stripe of form shown in Fig. 2(b). An analysis
similar to that sketched in Eqs. (5), (8) gives an SU(2)-
invariant theory with quadratic term

P
l
~S( ~Ql) · ~S( ~Ql)

and dominant quartic term
P

l

⇣
~S( ~Ql) · ~S(� ~Ql)

⌘2
so

that at this level the free energy is minimized by three
equal amplitude collinear stripes, with orthogonal spin
directions. As noted in Ref. [18], sixth order terms in the
free energy then fix the phase between the three stripes,
inducing a chirality. The chiral state is disfavored by the
spin orbit coupling appearing if further neighbor interac-
tions are considered.

As � increases from 0, we see from Fig. 8 that for
the same-spin nesting, the length of one nesting edge de-
creases continuously to zero, and the nesting vector is
separated from van Hove locations, implying a rapid de-
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FIG. 7. (a) Density of states versus filling calculated at U = 0.
Colors represent di↵erent choices of �. (b) Dispersion of spin
up electrons in the moiré Brillouin zone calculated at U = 0.
The dashed white line shows the constant energy surface that
intersects the energy saddle point. The labelled point in each
plot indicates one of the van Hove locations.
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where �1,2 are constants, and the factors of T arise be-
cause if all four S share the same wavevector then the cor-
responding diagram is ⇠ G(p)2G(p+Q)2 and is strongly
divergent at the nesting wavevector while if two di↵erent
wavevectors are involved then at most one pair of G can
be nested.

Minimizing Eqs. (5), (8) we find that the free energy
minimum corresponds to three x� y plane spirals, along
the three wavevectors ~Q�

0,±1, each of equal amplitude,
and with phases ✓l that are arbitrary. In the nearest
neighbor hopping model considered here the trio of spiral
states fully gaps the Fermi surface, leading to an insula-
tor at the corresponding nesting density. As the coupling
strength is increased, commensurability energies come in
to play and we expect that the physical state corresponds
to regions of commensurate order with discommensura-
tions that can trap charge carriers, in analogy to the
stripe states found in the square lattice Hubbard model
[27–30]. Therefore, there will be an insulator-metal tran-
sition as interaction increases. If further neighbor hop-
ping is included, the perfect nesting is spoiled and regions
of the Fermi surface could remain ungapped at weak cou-
pling.

FIG. 8. An illustrative sketch of occupied states. Blue (Red)
area represents the occupied Brillouin zone of spin up (down).
Blue (Red) dots are the van Hove locations of spin up (down).
The arrow indicates the wavevector that connects the perfect
nesting electrons between the same spins ( ~Q0,±1) and between

spin up and down ( ~Q�

0,±1).

We now consider the three special cases, beginning
with � = 0 at n = 1.5. For this � the spin up and spin
down Fermi surfaces coincide. The van Hove points are at
the M and M’ points of the moire Brillouin zones (density
n = 1.5), and the nesting vectors are at ~Q0 = ±(2⇡, 0)

and ~Q±1 = ±2⇡(� 1
2 ,±

p
3
2 ). The coincidence of spin

up and spin down Fermi surfaces mean that the near-
est neighbor model has SU(2) spin invariance, seen here
in the fact that the spin up Fermi surface nests with
both the spin up and spin down Fermi surfaces, and ± ~Ql

are both nesting vectors. The wavevector ~Q0 = (2⇡, 0)
means that the spiral has vanishing pitch, so the state is
a collinear stripe of form shown in Fig. 2(b). An analysis
similar to that sketched in Eqs. (5), (8) gives an SU(2)-
invariant theory with quadratic term

P
l
~S( ~Ql) · ~S( ~Ql)

and dominant quartic term
P

l

⇣
~S( ~Ql) · ~S(� ~Ql)

⌘2
so

that at this level the free energy is minimized by three
equal amplitude collinear stripes, with orthogonal spin
directions. As noted in Ref. [18], sixth order terms in the
free energy then fix the phase between the three stripes,
inducing a chirality. The chiral state is disfavored by the
spin orbit coupling appearing if further neighbor interac-
tions are considered.

As � increases from 0, we see from Fig. 8 that for
the same-spin nesting, the length of one nesting edge de-
creases continuously to zero, and the nesting vector is
separated from van Hove locations, implying a rapid de-

Zang, Wang, Cano, Millis, PRB (2021)

Twisted homobilayer WSe2



Hartree-Fock study of twisted homobilayer WSe2

• effective moiré Hubbard Hamiltonian

2

hexagonal Brillouin zone of the two dimensional mono-
layer (see Fig. 1). The strong spin-orbit coupling implies
that the single-particle eigenstates have spin polarized
perpendicular to the plane. Because of the strong inver-
sion symmetry breaking, the highest-lying valence-band
states dispersing downwards from the ~K0 point have spin
up and the highest-lying valence band states dispersing
downwards from the ~K 0

0 point have spin down, with a
gap ⇠ 0.4 eV to the opposite spin states [12].

Twisted WSe2 is formed by stacking a second WSe2
layer with a small commensurate twist angle. The re-
sulting system is again a triangular lattice with a large
“moiré” unit cell and the corresponding “moiré” Brillouin
zone, with the ~K0 point of the top layer and the ~K 0

0 of
the bottom layer mapping onto the moiré Brillouin zone
~K point, and conversely the ~K 0

0 point in the top layer
and the ~K0 point in the bottom layer mapping onto the
moiré Brillouin zone ~K 0 point (see Fig. 1(a)).

The highest valence bands of tWSe2 may be under-
stood [1, 4] by taking the bands dispersing from the
monolayer ~K0/ ~K 0

0 points of each layer, back-folding them
into the moiré Brillouin zone and then hybridizing them
with a matrix element that is diagonal in moiré crystal
momentum ~k and in spin. Details are given in Appendix
A. The strong spin-momentum locking of the individual
layers and the momentum alignment, shown in Fig 1(a),
indicates that the spin up (down) states near the moiré ~K
point come predominantly from the top (bottom) layer.
The broken inversion symmetry of the individual layers
leads to inversion symmetry breaking in the the moiré
system, which however retains a C3 three-fold rotation
symmetry and, if the two layers are identical, a C2x two-
fold rotation symmetry that swaps the two layers. The
combination of C2x and time reversal symmetry leads to
a band degeneracy along high symmetry lines from ~� to
~K/ ~K 0 and ~K/ ~K 0 to ~M/ ~M 0, as seen in Fig. 1(b), upper
panel. Application of a transverse “displacement field”
(interlayer potential di↵erence tuned by the top and bot-
tom gate voltages, conventionally denoted as D) breaks
the C2x symmetry between planes, lifting the degeneracy
along these high symmetry directions and changing the
band structure significantly, as shown in Fig. 1(b), lower
panel.

Even for zero displacement field, D = 0, the moiré
single particle eigenstates at a general wavevector ~k are
non-degenerate [13, 14]. However, for small twist angle
(many atoms in the moiré unit cell) and weak interlayer
hybridization we may restrict our attention to monolayer
states very near the single layer ~K0/ ~K 0

0 points, so that
the single layer valence band may be approximated as a
parabola "~k = �(~k � ~K0)2/2m⇤ (“continuum model”).
In this approximation the moiré system has an emergent
inversion symmetry (E�(~k) = E�(�~k)) if the two individ-
ual layers are identical, so combining with time reversal
symmetry, at D = 0 the bands at any ~k point would
be spin degenerate. This degeneracy is broken by terms

FIG. 1. (a) Brillouin zones of the top (solid line) and bot-
tom (dashed line) layer components of a twisted WSe2 bi-
layer. Blue K0," (red K0

0,#) represents one valley with spin up
(down) band at the valence band edges. Small hexagons indi-
cate moiré Brillouin zones. (b) An illustrative band structure
based on the continuum model of tWSe2. We highlight the
top most valence bands that can be matched to the Hubbard
model. Blue solid (dashed) arrows represent the dominant

spin of the top (bottom) layer at the ~K0 valley. Green dotted
lines indicate the energy level of half filling of the topmost
valence bands.

of order |~k � ~K0|
3 in the monolayer band structure [15].

These cubic terms have e↵ects that are small by a factor
of the order of the inverse of the number of atoms in the
moiré unit cell. We neglect these small terms here, so
that the model we study is fully inversion symmetric at
D = 0 with inversion symmetry broken by the displace-
ment field.
The result of these considerations is that the one-

electron properties of the top of the valence band of
tWSe2 can be described by a tight binding model with
hopping c†

i,�
ti,j
�
cj,�, where ti,j

�
= |t|ei��ij . � indicates

spin and also valley due to the spin-valley locking, and
the phase � parametrizes the inversion symmetry break-
ing arising from a non-zero displacement field. Ref. [4]
shows that we need only to retain the nearest neighbor
hopping, with a second neighbor term ⇠ 20% of the first
neighbor term. Our convention for �ij for nearest neigh-
bor hopping is shown in Fig. 2(a). At zero displacement
field ti,j may be taken to be independent of � (up to terms
of order of the inverse of the number of atoms in the moiré
unit cell, which we neglect); as the displacement field is
increased, the spin dependence of t becomes more pro-
nounced and the magnitude of t changes. Previous work
also indicates that the important interaction e↵ects come
from an on-site repulsion, so the twisted bilayer material
is governed by the generalized “moiré” Hubbard Hamil-
tonian with only nearest neighbor hopping [1, 3]:

H = �

X

~k,~am,

�=±

2|t| cos(~k · ~am + ��)c†
~k,�

c~k,� + U
X

i

ni"ni#,

(1)

where ~am=1,2,3 are the lattice vectors, ~a1 =

aM (1, 0), ~a2 = aM (� 1
2 ,

p
3
2 ), ~a3 = aM (� 1

2 ,�
p
3
2 ), and

aM is the moiré cell lattice constant. From previous DFT
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crease in the strength of the divergence. On the other
hand, the nesting vector of opposite spins still connects
the van Hove locations, implying the rapid development
of an easy plane anisotropy.

At � = ⇡

6 , the same-spin nesting vectors disappear,
and the spin up (down) van Hove points merge at the high
symmetry points ~K ( ~K 0), producing a cubic van Hove
singularity (✏k ⇠ k3

x
� 3kxk2y). Such high order van Hove

singularity will lead to a power-law-divergent density of
states and �±, implying a stronger tendency towards or-
der [31–34]. The ordering wavevector ~Q�

0 = ( 4⇡3 , 0) is
equivalent to its C3 rotations (up to a reciprocal lattice
vector), so the three spiral states merge into one 120�

spiral in-plane order with a definite staggered chirality.
This state will gain substantial commensurability energy,
and it is likely that the general ~Q states found at other
values of the displacement field will evolve into defected
versions of the 120� state as the interaction is increased.

For ⇡

6 < � < ⇡

2 , the van Hove points move to the

interior of the zone along the ~� - ~K ( ~K 0) line, and the
opposite-spin nesting continues to exist at wavevectors
~Q�

0,± 2⇡
3

(see Fig. 8). At � = ⇡

2 , all van Hove singularities

merge into the third order singularity at ~� , there is no
nesting, and the predicted magnetic state is ferromag-
netic.

FIG. 9. (a) nvHs � � curve for 0 < � < ⇡

2 at U=0. The
blue points are extracted from the numerical density of states
calculation. nvHs is the density filling where the Fermi sur-
face intersects with the van Hove singularity. The orange line
is an empirical formula nvHs ⇡ cos(3�)/2 + 1 that fits the
numerical calculation well. (b) Sketch of the predicted phase
diagram with only nearest neighbor hopping in the weak cou-
pling limit.

To summarize, for weak coupling, the nearest neigh-
bor hopping model predicts magnetically ordered insu-
lating states along the line in the density-� plane shown
in Fig. 9(a). For most values of � the insulating states
correspond to a triple of x � y spirals with a fixed stag-
gered chirality (� dependent wavevector), but at � = 0

the state is the chiral tetrahedral ordered state and at
� = ⇡/2 the state is an x � y ferromagnet. If further
neighbor hopping is included, then the incomplete nest-
ing means the very weak coupling state is a magnetic
metal. At general �, the incommensurate value of the
spiral wavevector and the absence of any energetic term
fixing the relative phases of the spirals means that the
state is very susceptible to fluctuations. Also, as U is in-
creased other states may occur. For example, at n near
1.5 and � = 0, Hartree-Fock calculation indicates that
the tetrahedral state is replaced by a ferromagnetic state
as U is increased above a critical value ⇠ 3.5|t| [19]. For
� closer to ⇡/6 the commensurability energy gain of the
simple ~Q = (4⇡/3, 0) 120� spiral state suggests that at
intermediate and large U the state is likely to be a de-
fected 120� state. However, if weak coupling versions
of the material can be implemented, the lines of phase
transition noted here should be observed. In Fig. 9(b),
we show a sketch of the predicted phase diagram for the
nearest neighbor hopping model, where the insulator be-
havior could be found for general �, with the wavevector
of the insulating spiral state varying.

VI. CONCLUSION

FIG. 10. Hartree-Fock phase diagram at general fillings at
weak and strong couplings with nine commensurate orders
considered. Each color represents a di↵erent magnetic or-
der.“xy” indicates that the magnetic order is in the x � y
plane, and “z” represents the z direction. Regions filled by
more than one color are viewed as degenerate regions, where
the energy di↵erence between the two magnetic orders is
smaller than 10�3 from numerical calculations.

In this work, we present a comprehensive Hartree-Fock
study of the moiré Hubbard model believed to represent



• effective moiré Hubbard Hamiltonian

2

hexagonal Brillouin zone of the two dimensional mono-
layer (see Fig. 1). The strong spin-orbit coupling implies
that the single-particle eigenstates have spin polarized
perpendicular to the plane. Because of the strong inver-
sion symmetry breaking, the highest-lying valence-band
states dispersing downwards from the ~K0 point have spin
up and the highest-lying valence band states dispersing
downwards from the ~K 0

0 point have spin down, with a
gap ⇠ 0.4 eV to the opposite spin states [12].

Twisted WSe2 is formed by stacking a second WSe2
layer with a small commensurate twist angle. The re-
sulting system is again a triangular lattice with a large
“moiré” unit cell and the corresponding “moiré” Brillouin
zone, with the ~K0 point of the top layer and the ~K 0

0 of
the bottom layer mapping onto the moiré Brillouin zone
~K point, and conversely the ~K 0

0 point in the top layer
and the ~K0 point in the bottom layer mapping onto the
moiré Brillouin zone ~K 0 point (see Fig. 1(a)).

The highest valence bands of tWSe2 may be under-
stood [1, 4] by taking the bands dispersing from the
monolayer ~K0/ ~K 0

0 points of each layer, back-folding them
into the moiré Brillouin zone and then hybridizing them
with a matrix element that is diagonal in moiré crystal
momentum ~k and in spin. Details are given in Appendix
A. The strong spin-momentum locking of the individual
layers and the momentum alignment, shown in Fig 1(a),
indicates that the spin up (down) states near the moiré ~K
point come predominantly from the top (bottom) layer.
The broken inversion symmetry of the individual layers
leads to inversion symmetry breaking in the the moiré
system, which however retains a C3 three-fold rotation
symmetry and, if the two layers are identical, a C2x two-
fold rotation symmetry that swaps the two layers. The
combination of C2x and time reversal symmetry leads to
a band degeneracy along high symmetry lines from ~� to
~K/ ~K 0 and ~K/ ~K 0 to ~M/ ~M 0, as seen in Fig. 1(b), upper
panel. Application of a transverse “displacement field”
(interlayer potential di↵erence tuned by the top and bot-
tom gate voltages, conventionally denoted as D) breaks
the C2x symmetry between planes, lifting the degeneracy
along these high symmetry directions and changing the
band structure significantly, as shown in Fig. 1(b), lower
panel.

Even for zero displacement field, D = 0, the moiré
single particle eigenstates at a general wavevector ~k are
non-degenerate [13, 14]. However, for small twist angle
(many atoms in the moiré unit cell) and weak interlayer
hybridization we may restrict our attention to monolayer
states very near the single layer ~K0/ ~K 0

0 points, so that
the single layer valence band may be approximated as a
parabola "~k = �(~k � ~K0)2/2m⇤ (“continuum model”).
In this approximation the moiré system has an emergent
inversion symmetry (E�(~k) = E�(�~k)) if the two individ-
ual layers are identical, so combining with time reversal
symmetry, at D = 0 the bands at any ~k point would
be spin degenerate. This degeneracy is broken by terms

FIG. 1. (a) Brillouin zones of the top (solid line) and bot-
tom (dashed line) layer components of a twisted WSe2 bi-
layer. Blue K0," (red K0

0,#) represents one valley with spin up
(down) band at the valence band edges. Small hexagons indi-
cate moiré Brillouin zones. (b) An illustrative band structure
based on the continuum model of tWSe2. We highlight the
top most valence bands that can be matched to the Hubbard
model. Blue solid (dashed) arrows represent the dominant

spin of the top (bottom) layer at the ~K0 valley. Green dotted
lines indicate the energy level of half filling of the topmost
valence bands.

of order |~k � ~K0|
3 in the monolayer band structure [15].

These cubic terms have e↵ects that are small by a factor
of the order of the inverse of the number of atoms in the
moiré unit cell. We neglect these small terms here, so
that the model we study is fully inversion symmetric at
D = 0 with inversion symmetry broken by the displace-
ment field.
The result of these considerations is that the one-

electron properties of the top of the valence band of
tWSe2 can be described by a tight binding model with
hopping c†

i,�
ti,j
�
cj,�, where ti,j

�
= |t|ei��ij . � indicates

spin and also valley due to the spin-valley locking, and
the phase � parametrizes the inversion symmetry break-
ing arising from a non-zero displacement field. Ref. [4]
shows that we need only to retain the nearest neighbor
hopping, with a second neighbor term ⇠ 20% of the first
neighbor term. Our convention for �ij for nearest neigh-
bor hopping is shown in Fig. 2(a). At zero displacement
field ti,j may be taken to be independent of � (up to terms
of order of the inverse of the number of atoms in the moiré
unit cell, which we neglect); as the displacement field is
increased, the spin dependence of t becomes more pro-
nounced and the magnitude of t changes. Previous work
also indicates that the important interaction e↵ects come
from an on-site repulsion, so the twisted bilayer material
is governed by the generalized “moiré” Hubbard Hamil-
tonian with only nearest neighbor hopping [1, 3]:

H = �

X

~k,~am,

�=±

2|t| cos(~k · ~am + ��)c†
~k,�

c~k,� + U
X

i

ni"ni#,

(1)

where ~am=1,2,3 are the lattice vectors, ~a1 =

aM (1, 0), ~a2 = aM (� 1
2 ,

p
3
2 ), ~a3 = aM (� 1

2 ,�
p
3
2 ), and

aM is the moiré cell lattice constant. From previous DFT
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FIG. 2. Momentum and spin structure of spin/density

wave phases. (a) Dominant transfer momentum of particle-
hole susceptibility color-coded for all DW instabilities in the
phase diagram. There are pronounced regions of commensu-
rate ordering vectors: � at ' = ⇡/2 (orange), K at ' = ⇡/6
(dark purple), and M at ' = ⇡/4 (blue). The connecting
regions in between show incommensurate ordering vectors.
Note the SU(2) symmetric point ' = 0 where M is the dom-
inant ordering vector. (b) Spin structure of particle-hole
susceptibility. The relative weight of the �xx (yellow), �xy

(green), and �zz (pink) components is shown for the same
DW instabilities as in (a). All other nonzero spin compo-
nents of the physical susceptibility are symmetry equivalent
to either �xx, �xy, or �zz. For zero electric field (i.e. ' = 0),
the system is isotropic in spin space thus showing perfect de-
generacy of the xx (yy) and zz components. Upon increasing
', the zz component is strengthened and then giving way to
a large region of xy-plane (xx, xy) ordering. At ' = ⇡/4,
the xy (yx) component is weakened and for slightly larger '
giving rise to zz ordering. For ' = ⇡/2, the system favors xx
(yy) and zz correlations.

vertex to the direct particle-hole channel at the criti-
cal scale ⇤ = ⇤c and contract with the non-interacting
particle-hole susceptibility �0,⇤

�1...�4
(q,k) [53] in order to

account for the cross-channel feedback generated during
the FRG flow.

To identify the leading order vector q̄, we sum out the
spin indices of the four-point susceptibility and make a
weighted average with the momentum transfer vector.
We complement the analysis of q̄ in Fig. 2 (a) with a
map of the dominant spin-spin correlations in Fig. 2 (b).
By symmetry only three inequivalent spin-spin correla-
tions can be nonzero: �xx = �

yy, �xy = ��yx, and �zz.
Moreover, we find that density-density correlations are
subleading across the phase diagram. For further details
on the averaging procedures, see Ref. 53.

We find that for the region close to ' = ⇡/2 the system
exhibits a leading ordering vector of q̄ = �, suggesting a
ferromagnetic ground state. The weight is almost equally
distributed in xx/yy and zz direction. Moving towards
smaller ' and following the VHS, the leading transfer
momentum continuously transitions to an extended re-

gion around ' ⇡ ⇡/3 where q̄ is incommensurate and
accompanied by a strong zz component. Lowering '

further to around ' . ⇡/4, the support for xx/yy cor-
relations is enhanced and the dominant ordering vector
is q̄ ⇠ M , indicating an instability consistent with the
stripe order found in Ref. 47 or with a more complex
superposition of the spin DWs with the three nonequiv-
alent M points as wave vectors [55, 56]. Approaching
the higher-order VHS at ' = ⇡/6 we see a leading mo-
mentum of q̄ = K and a change towards xy correlations.
Notably, for this choice of ', the wave-vector K (as well
as K 0) is a nesting vector connecting the spin-up with the
spin-down Fermi surface. These features signal a twofold
degenerate instability that supports the spiral 120�-order
found in Ref. 47. An analogous signature is visible in the
two small regions at minimal doping at ' ⇠ ⇡/4 and
' ⇠ 3⇡/8. Eventually, letting ' go to zero, the ordering
vector continuously approaches �, except for a very small
region around ' = 0, i.e. the limit of restored spin-SU(2)
invariance, where q̄ = M . The spin-spin correlations dis-
play a slightly more continuous transition towards xx/yy
and zz order at ' = 0, consistent with recovered SU(2)
symmetry. The feature at ' = 0 is in agreement with
previous results for the spin-SU(2) invariant triangular-
lattice Hubbard model [57–60].

Additionally, we observe that the regions in the phase
diagram characterized by a leading momentum of �,M ,
or K are connected by extended regions where the lead-
ing momentum is incommensurate. While the commen-
surate regions are in agreement with previous Hartree-
Fock studies [47], the unbiased identification of regions
with leading incommensurate momentum which can be
readily read o↵ from Fig. 2 (a) is one of the advantages of
our FRG approach featuring high momentum resolution.

Superconductivity. — In the vicinity of the DW or-
dered states, our FRG approach can detect pairing insta-
bilities driven by spin and charge fluctuations in an unbi-
ased way. The corresponding SC states may be classified
by the symmetry of the order parameter. We use a lin-
earized gap equation with the vertex at the critical scale
⇤ = ⇤c (and set the temperature to T = ⇤c) to obtain
the pairing gap functions and their respective amplitudes.
As for ' 6= 0 the system does not obey SU(2) symme-
try, we transform the gap ���0(k) to its singlet [ (k)]
and triplet [d(k)] components [61]. These are inherently
coupled giving rise to mixed-parity (singlet and triplet)
SC order. Spin rotational symmetry around the z axis
mandates that dx = dy = 0 for coupled singlet/triplet
instabilities.

Additionally, for mixed-parity SC, the singlet and
triplet components may describe pairing of di↵erent
length scales, such that, e.g., an extended s-wave (s0)
in  can be combined with an extended f -wave (f 0)
in dz (as long as the two transform in the same repre-
sentation). Therefore, we distinguish the mixed-parity
SC states by their irreducible representations of the C3v
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FIG. 1. FRG phase diagram of moiré-Hubbard model

for tWSe2. We plot the critical scale ⇤c of the FRG flow
that corresponds to an onset temperature of the correspond-
ing correlations and vary the filling factor ⌫ and e↵ective dis-
placement field '. The panels on the left display Fermi sur-
faces for ' 2 {0,⇡/6,⇡/4,⇡/3,⇡/2} (bottom to top), both
spin polarizations (left: � =", right: � =#), and three values
of ⌫ 2 {�0.6, 0, 0.6}. The employed FRG approach resolves
whether the system tends to order in a spin/density wave
(DW) or superconducting (SC) state, which is encoded as
color. Blue regions correspond to SC phases with high ⇤c and
red regions correspond to DW phases with high ⇤c. Yellow
regions show no ordering tendency within our approximations
and thus are predicted to remain metallic. The center of the
DW region corresponds to the position of the van-Hove sin-
gularity for each ', indicated by the dashed black line. SC
phases emerge upon doping slightly away from the DW states.

on the triangular moiré lattice with 120� nearest-
neighbor vectors am=1,2,3, describing moiré-band elec-

trons c
(†)
k,� with wave-vectors k and spin projection � 2

{", #}. The e↵ect of the displacement field is modeled via
a spin-dependent nearest-neighbor hopping t e

i�' with
absolute value t and phase '. The Hubbard interaction
U dominates the Coulomb interaction [49] and non-local
short-ranged interactions can be screened via substrate
engineering [51].

Method. — To study competing phases in this tri-
angular lattice moiré Hubbard model, we employ the
functional renormalization group (FRG) and identify
the leading Fermi-surface instabilities including di↵erent
types of density wave and superconducting instabilities
on equal footing. We use an approximation which exclu-
sively focuses on the FRG flow of the spin-dependent two-
particle interaction vertex �(4). Technically, the FRG
introduces a scale parameter ⇤ to interpolate smoothly
from the free theory at ⇤ = 1 to the interacting one
at ⇤ = 0. Ordering tendencies are indicated by a diver-
gence of �(4) at finite ⇤ = ⇤c, where, with our choice
of regulator, ⇤c corresponds to the onset temperature
of strong correlations. Using the e↵ective vertex at the
critical scale ⇤c we can classify the ordering tenden-
cies straightforwardly either as spin/charge density waves

(DW) or as superconductors (SC). For the present sys-
tem, we have extended the standard correlated-electron
FRG scheme [52]: (1) the Hamiltonian in Eq. (1) does not
possess an SU(2)-spin invariance and we have adapted
the FRG equations accordingly and (2) instead of the
widespread scheme of discretizing only wave-vectors on
the Fermi surface, we have employed a scheme in which
we finely resolve the full Brillouin zone (BZ). This facili-
tates to also resolve incommensurate density-wave order-
ing. We note that the latter extension requires a highly
e�cient numerical implementation to be able to handle
the ⇠3.06 ⇥ 109 coupled ordinary di↵erential equations
for the interaction vertex. For details of the FRG imple-
mentation and the analysis of phases, see [53].
Phase diagram. — Figure 1 summarizes the main re-

sults at intermediate interaction strength U = 6t . 0.7W
(with the bandwidth W ) as a function of the filling ⌫

and field-dependent phase '. Here ⌫ = �1 corresponds
to completely empty, ⌫ = 0 to half-filled, and ⌫ = 1 to
completely filled moiré bands. We adjust the filling by
adding a chemical potential term to the Hamiltonian and
the given values refer to the filling fraction of the single-
particle dispersion. Upon varying ', the DW instabilities
follow the location of the Van Hove singularity (VHS).
The DW region is most extended around ' = ⇡/6 and
⌫ = 0, where the system has a higher-order VHS [47, 54].
At the borders of the DW region, superconducting (SC)
order emerges. The size of the SC regions strongly varies
with ⌫ and '. Remarkably, for the ⌫ = 0 vertical line,
i.e. at half filling, we predict SC order for a substantial
fraction of values of ', interrupted by similarly dominant
DW regions. Our findings support the intuitive picture
that unconventional SC is driven by the strong spin and
charge fluctuations close to the DW instabilities, which
we can clearly see in the evolution of the vertex as a
function of the RG scale (see SM [53]).
Density-wave states. — The strong e↵ect of the dis-

placement field on the band structure also leads to a
changing Fermi surface with varying '. In turn, the sin-
gular scattering processes of the DW instabilities corre-
spond to modified wave-vector transfers. To resolve this
evolution in detail, we characterize the momentum and
spin structure of the DW states, see Fig. 2, and calculate
the particle-hole susceptibilities

�
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for all DW-state regions in Fig. 1. Here, �
D
�1,...,�4

de-
notes the four-point particle-hole susceptibility and �

ij

is its projection to the physical channels i, j 2 {0, x, y, z},
where 0 and x, y, z denote charge and spin, respectively.
In Eq. (2), we use the projection �D,⇤c of the four-point
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hexagonal Brillouin zone of the two dimensional mono-
layer (see Fig. 1). The strong spin-orbit coupling implies
that the single-particle eigenstates have spin polarized
perpendicular to the plane. Because of the strong inver-
sion symmetry breaking, the highest-lying valence-band
states dispersing downwards from the ~K0 point have spin
up and the highest-lying valence band states dispersing
downwards from the ~K 0

0 point have spin down, with a
gap ⇠ 0.4 eV to the opposite spin states [12].

Twisted WSe2 is formed by stacking a second WSe2
layer with a small commensurate twist angle. The re-
sulting system is again a triangular lattice with a large
“moiré” unit cell and the corresponding “moiré” Brillouin
zone, with the ~K0 point of the top layer and the ~K 0

0 of
the bottom layer mapping onto the moiré Brillouin zone
~K point, and conversely the ~K 0

0 point in the top layer
and the ~K0 point in the bottom layer mapping onto the
moiré Brillouin zone ~K 0 point (see Fig. 1(a)).

The highest valence bands of tWSe2 may be under-
stood [1, 4] by taking the bands dispersing from the
monolayer ~K0/ ~K 0

0 points of each layer, back-folding them
into the moiré Brillouin zone and then hybridizing them
with a matrix element that is diagonal in moiré crystal
momentum ~k and in spin. Details are given in Appendix
A. The strong spin-momentum locking of the individual
layers and the momentum alignment, shown in Fig 1(a),
indicates that the spin up (down) states near the moiré ~K
point come predominantly from the top (bottom) layer.
The broken inversion symmetry of the individual layers
leads to inversion symmetry breaking in the the moiré
system, which however retains a C3 three-fold rotation
symmetry and, if the two layers are identical, a C2x two-
fold rotation symmetry that swaps the two layers. The
combination of C2x and time reversal symmetry leads to
a band degeneracy along high symmetry lines from ~� to
~K/ ~K 0 and ~K/ ~K 0 to ~M/ ~M 0, as seen in Fig. 1(b), upper
panel. Application of a transverse “displacement field”
(interlayer potential di↵erence tuned by the top and bot-
tom gate voltages, conventionally denoted as D) breaks
the C2x symmetry between planes, lifting the degeneracy
along these high symmetry directions and changing the
band structure significantly, as shown in Fig. 1(b), lower
panel.

Even for zero displacement field, D = 0, the moiré
single particle eigenstates at a general wavevector ~k are
non-degenerate [13, 14]. However, for small twist angle
(many atoms in the moiré unit cell) and weak interlayer
hybridization we may restrict our attention to monolayer
states very near the single layer ~K0/ ~K 0

0 points, so that
the single layer valence band may be approximated as a
parabola "~k = �(~k � ~K0)2/2m⇤ (“continuum model”).
In this approximation the moiré system has an emergent
inversion symmetry (E�(~k) = E�(�~k)) if the two individ-
ual layers are identical, so combining with time reversal
symmetry, at D = 0 the bands at any ~k point would
be spin degenerate. This degeneracy is broken by terms

FIG. 1. (a) Brillouin zones of the top (solid line) and bot-
tom (dashed line) layer components of a twisted WSe2 bi-
layer. Blue K0," (red K0

0,#) represents one valley with spin up
(down) band at the valence band edges. Small hexagons indi-
cate moiré Brillouin zones. (b) An illustrative band structure
based on the continuum model of tWSe2. We highlight the
top most valence bands that can be matched to the Hubbard
model. Blue solid (dashed) arrows represent the dominant

spin of the top (bottom) layer at the ~K0 valley. Green dotted
lines indicate the energy level of half filling of the topmost
valence bands.

of order |~k � ~K0|
3 in the monolayer band structure [15].

These cubic terms have e↵ects that are small by a factor
of the order of the inverse of the number of atoms in the
moiré unit cell. We neglect these small terms here, so
that the model we study is fully inversion symmetric at
D = 0 with inversion symmetry broken by the displace-
ment field.
The result of these considerations is that the one-

electron properties of the top of the valence band of
tWSe2 can be described by a tight binding model with
hopping c†

i,�
ti,j
�
cj,�, where ti,j

�
= |t|ei��ij . � indicates

spin and also valley due to the spin-valley locking, and
the phase � parametrizes the inversion symmetry break-
ing arising from a non-zero displacement field. Ref. [4]
shows that we need only to retain the nearest neighbor
hopping, with a second neighbor term ⇠ 20% of the first
neighbor term. Our convention for �ij for nearest neigh-
bor hopping is shown in Fig. 2(a). At zero displacement
field ti,j may be taken to be independent of � (up to terms
of order of the inverse of the number of atoms in the moiré
unit cell, which we neglect); as the displacement field is
increased, the spin dependence of t becomes more pro-
nounced and the magnitude of t changes. Previous work
also indicates that the important interaction e↵ects come
from an on-site repulsion, so the twisted bilayer material
is governed by the generalized “moiré” Hubbard Hamil-
tonian with only nearest neighbor hopping [1, 3]:

H = �

X

~k,~am,

�=±

2|t| cos(~k · ~am + ��)c†
~k,�

c~k,� + U
X

i

ni"ni#,

(1)

where ~am=1,2,3 are the lattice vectors, ~a1 =

aM (1, 0), ~a2 = aM (� 1
2 ,

p
3
2 ), ~a3 = aM (� 1

2 ,�
p
3
2 ), and

aM is the moiré cell lattice constant. From previous DFT
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‣ FRG correlated phase diagram 


‣ general fillings and 


‣ numerically expensive FRG implementation


‣ full resolution of BZ 


✓ finds (incommensurate) magnetic orders!


- includes inter-channel feedback


- includes pp diagrams


➡ unconventional superconductivity!

U = 6t ≃ 0.7W
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FIG. 3. Properties of the superconducting phases. The
regions of superconducting (SC) order are color-coded by their
dominant gap symmetry, with cyan standing for d/p-wave SC
and orange for s/f -wave SC. Lower values of ⇤c are indicated
by increasing transparency. We plot the logarithmic ratio of
s/f -wave and d/p-wave eigenvalues of the linearized gap equa-
tion as a continuous color-bar to highlight regions of strong
competition (purple). The small area of bright green denotes
i-wave SC. In the gray region, FRG predicts spin/density
wave order. As for most parts of the phase diagram the system
is not SU(2) symmetric, singlet ( ) and triplet (dz) ampli-
tudes are intrinsically coupled. For remote regions of filling,
the system prefers s-wave gaps in the singlet channel and f -
wave gaps in the triplet channel (left inset). For fillings closer
to zero, two degenerate solutions with d-wave symmetry in
the  component and p-wave symmetry in the dz component
are found (right inset, two degenerate solutions).

symmetry group. We find that the SC phase diagram
(cf. Fig. 3) is mostly governed by instabilities transform-
ing in the A1 or E representations, which we label as
s/f - and d/p-wave, respectively. [62] To resolve the com-
petition between superconducting instabilities, we plot
the logarithm of the ratio of d/p-wave and s/f -wave am-
plitudes that the linearized gap equation provides as a
continuous color-map. The two insets show examples of
d/p-wave symmetric (right inset) and s/f -wave symmet-
ric gap functions in the singlet-triplet basis. The spin-
resolved gap functions on the Fermi surfaces are shown in
the supplemental material [53]. For all instabilities with a
dominant (two-fold degenerate) d/p-wave instability, the
free energy in a subsequent mean-field decoupling is mini-
mized by a chiral d+id/p+ip-wave superposition of order
parameters as it allows for a fully gapped Fermi surface.
In the SU(2) symmetric case, an i-wave symmetric gap
function is supported in a narrow filling window close to
the VHS [59] highlighted with green color in Fig. 3.

Interestingly, for most parts of the phase diagram in
Fig. 3, large filling values of |⌫| & 1/2 support s/f -wave
SC, whereas for small values |⌫| . 1/2, d/p-wave SC is
favored. The DW phases in Fig. 2, on the other hand,
have no clear dependence solely on ⌫. For example, there
are points of dominant in-plane spiral order at ⌫ ⇡ �1/2
and ' ⇡ 3⇡/8 as well as at ⌫ ⇡ 0 and ' ⇡ ⇡/4 [pur-

ple in Fig. 2 (a) and green in Fig. 2 (b)]. The adjacent
superconducting domes are of manifestly di↵erent paring
symmetry, e.g., s/f -wave in the former and d/p-wave in
the latter case (cf. Fig. 3). These observations shed light
on the mechanism responsible for the type of SC order:
The data suggest that the precise spin and momentum
structure of the dominant spin/charge fluctuations is ir-
relevant as long as it is present and instead, the topology
of the Fermi surfaces is responsible for the di↵erent sym-
metries of SC order parameter found, e.g., small pockets
around K,K

0 vs large closed lines around �. Finally, we
note that at ' = ⇡/3 an additional peak at q = K

(0) ap-
pears in the pairing susceptibility, indicative of enhanced
pair-density-wave correlations, which were also reported
recently in Ref. 46.
Discussion. — In this work we calculate the two-

particle interaction vertex �(4) within the FRG to study
the electronic phase diagram of a spin-orbit coupled
moiré Hubbard model on the triangular lattice. In the
group of twisted bilayer TMDs, this model is believed to
have various experimental realizations through di↵erent
AA-stacked homo-bilayer systems. Even more so, recent
measurements show that correlated insulating and possi-
ble superconducting states are in fact realized in twisted
WSe2 [36, 37]. Our work o↵ers an unbiased character-
ization of competing electronic correlations in twisted
WSe2. As a result of our large-scale simulations, we pro-
vide the FRG phase diagram as a function of filling ⌫

and displacement field ' in the intermediate coupling
regime (U = 6t). We firmly establish a beyond mean-
field characterization of intricate density-wave orderings
close to the van-Hove singularity of the system. Fur-
thermore, the FRG reveals pairing instabilities mediated
by spin and charge fluctuations so that the wide vari-
ety of DW phases is complemented by a relatively large
area of the phase diagram where superconducting corre-
lations dominate. For nonzero displacement field, the SC
orderings can be divided into d/p-wave order (including
higher harmonics) for weak doping and s/f -wave order
for strong doping. While both order parameters are un-
conventional in nature and caused by spin/charge fluc-
tuations, the s/f -wave is nodal and the d/p-wave chiral
(d + id/p + ip). Thus, we propose spectroscopy experi-
ments on WSe2 to verify the transition of a nodal to a
chiral (fully gapped) SC order. Time-reversal symmetry
breaking in the chiral state can also be detected via Kerr
rotation [63] or muon spin relaxation [64]. We also note
that the interplay with other nearby states can alterna-
tively yield nematic superconductivity [65, 66], which can
be detected by spatial anisotropies [67–70].

In future works, we are aiming towards extending
our studies on non-SU(2) and multi-orbital moiré sys-
tems with band structures and interactions closely mo-
tivated by materials. This includes, but is not lim-
ited to, systematic studies of longer range and cRPA-
dressed interactions as an input to the FRG. Further-



• effective moiré Hubbard Hamiltonian

2

hexagonal Brillouin zone of the two dimensional mono-
layer (see Fig. 1). The strong spin-orbit coupling implies
that the single-particle eigenstates have spin polarized
perpendicular to the plane. Because of the strong inver-
sion symmetry breaking, the highest-lying valence-band
states dispersing downwards from the ~K0 point have spin
up and the highest-lying valence band states dispersing
downwards from the ~K 0

0 point have spin down, with a
gap ⇠ 0.4 eV to the opposite spin states [12].

Twisted WSe2 is formed by stacking a second WSe2
layer with a small commensurate twist angle. The re-
sulting system is again a triangular lattice with a large
“moiré” unit cell and the corresponding “moiré” Brillouin
zone, with the ~K0 point of the top layer and the ~K 0

0 of
the bottom layer mapping onto the moiré Brillouin zone
~K point, and conversely the ~K 0

0 point in the top layer
and the ~K0 point in the bottom layer mapping onto the
moiré Brillouin zone ~K 0 point (see Fig. 1(a)).

The highest valence bands of tWSe2 may be under-
stood [1, 4] by taking the bands dispersing from the
monolayer ~K0/ ~K 0

0 points of each layer, back-folding them
into the moiré Brillouin zone and then hybridizing them
with a matrix element that is diagonal in moiré crystal
momentum ~k and in spin. Details are given in Appendix
A. The strong spin-momentum locking of the individual
layers and the momentum alignment, shown in Fig 1(a),
indicates that the spin up (down) states near the moiré ~K
point come predominantly from the top (bottom) layer.
The broken inversion symmetry of the individual layers
leads to inversion symmetry breaking in the the moiré
system, which however retains a C3 three-fold rotation
symmetry and, if the two layers are identical, a C2x two-
fold rotation symmetry that swaps the two layers. The
combination of C2x and time reversal symmetry leads to
a band degeneracy along high symmetry lines from ~� to
~K/ ~K 0 and ~K/ ~K 0 to ~M/ ~M 0, as seen in Fig. 1(b), upper
panel. Application of a transverse “displacement field”
(interlayer potential di↵erence tuned by the top and bot-
tom gate voltages, conventionally denoted as D) breaks
the C2x symmetry between planes, lifting the degeneracy
along these high symmetry directions and changing the
band structure significantly, as shown in Fig. 1(b), lower
panel.

Even for zero displacement field, D = 0, the moiré
single particle eigenstates at a general wavevector ~k are
non-degenerate [13, 14]. However, for small twist angle
(many atoms in the moiré unit cell) and weak interlayer
hybridization we may restrict our attention to monolayer
states very near the single layer ~K0/ ~K 0

0 points, so that
the single layer valence band may be approximated as a
parabola "~k = �(~k � ~K0)2/2m⇤ (“continuum model”).
In this approximation the moiré system has an emergent
inversion symmetry (E�(~k) = E�(�~k)) if the two individ-
ual layers are identical, so combining with time reversal
symmetry, at D = 0 the bands at any ~k point would
be spin degenerate. This degeneracy is broken by terms

FIG. 1. (a) Brillouin zones of the top (solid line) and bot-
tom (dashed line) layer components of a twisted WSe2 bi-
layer. Blue K0," (red K0

0,#) represents one valley with spin up
(down) band at the valence band edges. Small hexagons indi-
cate moiré Brillouin zones. (b) An illustrative band structure
based on the continuum model of tWSe2. We highlight the
top most valence bands that can be matched to the Hubbard
model. Blue solid (dashed) arrows represent the dominant

spin of the top (bottom) layer at the ~K0 valley. Green dotted
lines indicate the energy level of half filling of the topmost
valence bands.

of order |~k � ~K0|
3 in the monolayer band structure [15].

These cubic terms have e↵ects that are small by a factor
of the order of the inverse of the number of atoms in the
moiré unit cell. We neglect these small terms here, so
that the model we study is fully inversion symmetric at
D = 0 with inversion symmetry broken by the displace-
ment field.
The result of these considerations is that the one-

electron properties of the top of the valence band of
tWSe2 can be described by a tight binding model with
hopping c†

i,�
ti,j
�
cj,�, where ti,j

�
= |t|ei��ij . � indicates

spin and also valley due to the spin-valley locking, and
the phase � parametrizes the inversion symmetry break-
ing arising from a non-zero displacement field. Ref. [4]
shows that we need only to retain the nearest neighbor
hopping, with a second neighbor term ⇠ 20% of the first
neighbor term. Our convention for �ij for nearest neigh-
bor hopping is shown in Fig. 2(a). At zero displacement
field ti,j may be taken to be independent of � (up to terms
of order of the inverse of the number of atoms in the moiré
unit cell, which we neglect); as the displacement field is
increased, the spin dependence of t becomes more pro-
nounced and the magnitude of t changes. Previous work
also indicates that the important interaction e↵ects come
from an on-site repulsion, so the twisted bilayer material
is governed by the generalized “moiré” Hubbard Hamil-
tonian with only nearest neighbor hopping [1, 3]:

H = �

X

~k,~am,

�=±

2|t| cos(~k · ~am + ��)c†
~k,�

c~k,� + U
X

i

ni"ni#,

(1)

where ~am=1,2,3 are the lattice vectors, ~a1 =

aM (1, 0), ~a2 = aM (� 1
2 ,

p
3
2 ), ~a3 = aM (� 1
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p
3
2 ), and

aM is the moiré cell lattice constant. From previous DFT
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FIG. 1. FRG phase diagram of moiré-Hubbard model

for tWSe2. We plot the critical scale ⇤c of the FRG flow
that corresponds to an onset temperature of the correspond-
ing correlations and vary the filling factor ⌫ and e↵ective dis-
placement field '. The panels on the left display Fermi sur-
faces for ' 2 {0,⇡/6,⇡/4,⇡/3,⇡/2} (bottom to top), both
spin polarizations (left: � =", right: � =#), and three values
of ⌫ 2 {�0.6, 0, 0.6}. The employed FRG approach resolves
whether the system tends to order in a spin/density wave
(DW) or superconducting (SC) state, which is encoded as
color. Blue regions correspond to SC phases with high ⇤c and
red regions correspond to DW phases with high ⇤c. Yellow
regions show no ordering tendency within our approximations
and thus are predicted to remain metallic. The center of the
DW region corresponds to the position of the van-Hove sin-
gularity for each ', indicated by the dashed black line. SC
phases emerge upon doping slightly away from the DW states.

on the triangular moiré lattice with 120� nearest-
neighbor vectors am=1,2,3, describing moiré-band elec-

trons c
(†)
k,� with wave-vectors k and spin projection � 2

{", #}. The e↵ect of the displacement field is modeled via
a spin-dependent nearest-neighbor hopping t e

i�' with
absolute value t and phase '. The Hubbard interaction
U dominates the Coulomb interaction [49] and non-local
short-ranged interactions can be screened via substrate
engineering [51].

Method. — To study competing phases in this tri-
angular lattice moiré Hubbard model, we employ the
functional renormalization group (FRG) and identify
the leading Fermi-surface instabilities including di↵erent
types of density wave and superconducting instabilities
on equal footing. We use an approximation which exclu-
sively focuses on the FRG flow of the spin-dependent two-
particle interaction vertex �(4). Technically, the FRG
introduces a scale parameter ⇤ to interpolate smoothly
from the free theory at ⇤ = 1 to the interacting one
at ⇤ = 0. Ordering tendencies are indicated by a diver-
gence of �(4) at finite ⇤ = ⇤c, where, with our choice
of regulator, ⇤c corresponds to the onset temperature
of strong correlations. Using the e↵ective vertex at the
critical scale ⇤c we can classify the ordering tenden-
cies straightforwardly either as spin/charge density waves

(DW) or as superconductors (SC). For the present sys-
tem, we have extended the standard correlated-electron
FRG scheme [52]: (1) the Hamiltonian in Eq. (1) does not
possess an SU(2)-spin invariance and we have adapted
the FRG equations accordingly and (2) instead of the
widespread scheme of discretizing only wave-vectors on
the Fermi surface, we have employed a scheme in which
we finely resolve the full Brillouin zone (BZ). This facili-
tates to also resolve incommensurate density-wave order-
ing. We note that the latter extension requires a highly
e�cient numerical implementation to be able to handle
the ⇠3.06 ⇥ 109 coupled ordinary di↵erential equations
for the interaction vertex. For details of the FRG imple-
mentation and the analysis of phases, see [53].
Phase diagram. — Figure 1 summarizes the main re-

sults at intermediate interaction strength U = 6t . 0.7W
(with the bandwidth W ) as a function of the filling ⌫

and field-dependent phase '. Here ⌫ = �1 corresponds
to completely empty, ⌫ = 0 to half-filled, and ⌫ = 1 to
completely filled moiré bands. We adjust the filling by
adding a chemical potential term to the Hamiltonian and
the given values refer to the filling fraction of the single-
particle dispersion. Upon varying ', the DW instabilities
follow the location of the Van Hove singularity (VHS).
The DW region is most extended around ' = ⇡/6 and
⌫ = 0, where the system has a higher-order VHS [47, 54].
At the borders of the DW region, superconducting (SC)
order emerges. The size of the SC regions strongly varies
with ⌫ and '. Remarkably, for the ⌫ = 0 vertical line,
i.e. at half filling, we predict SC order for a substantial
fraction of values of ', interrupted by similarly dominant
DW regions. Our findings support the intuitive picture
that unconventional SC is driven by the strong spin and
charge fluctuations close to the DW instabilities, which
we can clearly see in the evolution of the vertex as a
function of the RG scale (see SM [53]).
Density-wave states. — The strong e↵ect of the dis-

placement field on the band structure also leads to a
changing Fermi surface with varying '. In turn, the sin-
gular scattering processes of the DW instabilities corre-
spond to modified wave-vector transfers. To resolve this
evolution in detail, we characterize the momentum and
spin structure of the DW states, see Fig. 2, and calculate
the particle-hole susceptibilities

�
D
�1...�4

(q) = �
0,⇤c
�1�2�10�20

(q,k)�D,⇤c
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for all DW-state regions in Fig. 1. Here, �
D
�1,...,�4

de-
notes the four-point particle-hole susceptibility and �

ij

is its projection to the physical channels i, j 2 {0, x, y, z},
where 0 and x, y, z denote charge and spin, respectively.
In Eq. (2), we use the projection �D,⇤c of the four-point



• moiré TMDs as quantum simulators for Hubbard model and other strongly-correlated electrons systems

‣ triangular lattice → geometric frustration


‣ band filling tunable by gating


‣ tunable strength and range of electron-electron interactions 
 

➡ complex interplay between electronic interactions and geometric frustration 
 

‣ plethora of strongly-correlated phases suggested (MIT, spin liquids, magnetism,...)


‣ recent experiments → confirmation of relevance of many-body interactions


‣ what about superconductivity...?
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Summary I



• simulate extended Hubbard model on triangular lattice w/ moiré TMDs


• sizeable non-local Coulomb interactions


• Van-Hove filling accessible


• resolve competing orders with FRG


‣ valley-density wave


‣ chiral (g+ig)-wave superconductivity


‣ breaks time-reversal


‣ fully gapped Fermi surface


‣ topological with Chern number |𝒩 | = 4

Summary II

Scherer, Kennes, Classen, npj Quant. Mat. (2022)

Gneist, Classen, Scherer, PRB (2022)

Klebl et al., arxiv:2204.00648 (2021)

• applications to related moiré materials, e.g., tWSe2


