カイラル相互作用に基づく 現実的殻模型の進展

福井 徳朗

理化学研究所 仁科加速器科学研究センター

7/Dec./2021

Collaborators

INFN-Napoli & Univ. Campania "Luigi Vanvitelli"

Peking Univ. & South China Normal Univ.

State-of-the-art nuclear force

Motivation

Weinberg, PA **96**, 327 (1979) Machleidt & Entem, PR **503**, 1 (2011)

Unveil nuclear systems with chiral EFT (πN dynamics)

Shell-model studies of chiral 3NF

Oxygen-drip line and 3NF

Otsuka +, PRL **105**, 032501 (2010)

The 3NF qualitatively accounts for the oxygen-drip line (24O).

Shell evolution on pf-shell

Holt +, PRC 90, 024312 (2014)

A crucial role played by 3NF for Ca isotopes.

3NF contributions need to be clarified further

In particular the 3NF-magicity relation

Motivation Why chiral EFT and 3NF?

Significance

Hierarchical structure Many-body forces on an equal footing Precise and hence realistic

I expect to **deepen** and **shed new light on** the understanding of nuclear force and properties of nuclei.

This presentation

- 1. Spin-orbit splitting and 3NF
- 2. Drip line of Ca/Ti isotopes
- 3. Perspectives

Our theoretical framework Realistic shell model

Realistic shell model (RSM)

= Shell model with a realistic force

Valence-space diagonalization

Our theoretical framework | Shell-model Hamiltonian

Realistic Hamiltonian (starting point)

$$H = \frac{H_{1\mathrm{B}}}{H_{1\mathrm{B}}} + H_{2\mathrm{B}} + H_{3\mathrm{B}}$$

Single-particle energy

Chiral 2NF at N³LO + Coulomb 3-body matrix elements

Fukui +, PRC 98, 044305 (2018)

Optional

Renormalization Normal-order approx.

Shell-model framework

Chiral 3BMEs | Harmonic-oscillator (HO) bases

How to compute 3-body matrix elements (3BMEs)

Chiral 3BMEs Nonlocal regulator

High-momentum truncation by regulator with cutoff Λ

Nonlocal 3BMEs with HO bases

Pioneering work Navrátil, FBS 41, 117 (2007)

Only for the 1π +contact and contact terms.

Present work Fukui +, PRC 98, 044305 (2018)

New formalism for 2π terms: Triple-fold multipole expansion (brute force method)

Chiral 3BMEs 2π terms

3BMEs of 2\pi terms

Fukui +, PRC **98**, 044305 (2018)

Computationally heavy!

MPI + OpenMP parallelization

MARCONI (CINECA, Italy)

aiy)		# of MEs	Time	Memory
	<i>p</i> -shell	~800	~30 sec w/ 4 nodes_48 threads	~500 MB
	sd-shell	~20,000	~10 min w/ 60 nodes, 272 threads	~3 GB
	<i>pf</i> -shell	~200,000	~5 h w/ 60 nodes, 272 threads	~30 GB

RSM calculations Numerical details

Low-energy constants ($\Lambda = 500$ MeV)

2NF (N³LO): Determined from *NN* scattering up to 300 MeV

Entem & Machleidt, PRC 68, 041001(R) (2003)

3NF (N²LO): Determined from ³H- and ³He binding energies

Navrátil +, PRL 99, 042501 (2007)

Model space

Standard 1-major shell

(+ a lowest orbit of higher shell if necessary)

Many-body perturbation theory (degenerate)

 $H \to H_{\rm eff}$

2NF: Up to 3rd-order folded-diagram expansion **3NF**: Up to 1st-order (normal-order approx.)

Coraggio + AP **327**, 2125 (2012) Roth +, PRL **109**, 052501 (2012)

Closure property *p*-shell nuclei

Effective single-particle energies

Fukui +, PRC 98, 044305 (2018)

= SPE modified by average 2NF (+3NF)

Closure property *pf*-shell nuclei

Ca isotopes

Even 2NF reasonably accounts for experimental behavior.

Ni isotopes

2NF fails but 3NF plays an important role to explain experimental data.

Ma +, PRC 100, 034324 (2019)

Spin-orbit splitting and 3NF

Why is the 3NF effect drastic in Ni and not in Ca?

Naively...

Neutron-proton interaction induced by the 2π term in Ni is more relevant than that in Ca. The c_4 term of 2π exchange has the operator

$$[oldsymbol{ au}_a imes oldsymbol{ au}_b] \cdot oldsymbol{ au}_c$$

which vanishes for identical particles.

Spin-orbit splitting stabilized by 3NF

Tensor-force contribution of 3NF: Under investigation

Why is the 3NE effect drastic in Ni and not in Ca?

366

Progress of Theoretical Physics, Vol. 17, No. 3, March 1957

Spin-Orbit Coupling in Heavy Nuclei

Jun-ichi FUJITA and Hironari MIYAZAWA

Department of Physics, University of Tokyo, Tokyo

(Received October 27, 1956)

In the preceding paper we have calculated the three-body forces in the static approximation. Using the result a strong spin-orbit coupling, compared with the Thomas term, is derived in this paper. Though it is not sufficient to explain the observed spin-orbit coupling for itself, we expect that a considerable part of the nuclear spin-orbit interaction should be due to the many-body forces.

Tensor-force contribution of 3NF: Under investigation

Towards Ca-drip line | Beyond 1-major shell

Ground and low-lying structure

Coraggio+, PRC **102**, 054326 (2020)

bound ⁷⁰Ti.

Coraggio+, Phys. Rev. C **104**, 054304 (2021) Kortelainen +, PRC **85**, 024304 (2012), Goriely +, PRC **88**, 024308 (2013), Wang +, PLB **734**, 215 (2014) Neufcourt +, PRL **122**, 062502 (2019), Stroberg +, PRL **126**, 022501 (2021) 16

My daydream | Physics with △ explicitly addressed

Why *A* isobar?

3NF contributes almost everywhere (already shown)

🔞 3NF is 2 π -exchange dominant

- In Δ -full chiral EFT, the 2π -exchange 3NF appears at lower order (NLO), separated from the contact terms.
- Confirmed numerically within the realistic shell model.

Fukui +, EPJWC 223, 01018 (2019)

 c_4

 c_1

2NF

Exp

6Li

 $E_{\rm g.s.}$ (MeV)

-2 -4

-6 -8

-10

-12

Ma +, PLB 802, 135257 (2020)

Fujita-Miyazawa force can approximate chiral-EFT 3NF

Fujita & Miyazawa, PTP **17**, 360 (1957) Tsunoda +, Nature **587**, 66 (2020)

17

My daydream | Physics with △ explicitly addressed

How does \varDelta contribute?

🚯 Δ -full chiral EFT (intermediate st.)

- Δ (1232): Relatively small excitation energy
- Unnaturally large LECs (c_1 , c_3 , c_4) move to reasonable values
- Improves convergence but contains more

Ordonez +, PRL **72**, 1982 (1994) Krebs +, EPJA **32**, 127 (2007)

Spectra of light nuclei

N²LO (2NF+3NF) +N3LO contacts in quantum Monte Carlo calculations

Nuclear-matter saturation

N²LO (2NF+3NF) in coupled-cluster calculations

∆ may be relevant!

My daydream Physics with Δ explicitly addressed

My daydream | Physics with △ explicitly addressed

∆ probability per nucleon

Theoretical studies

Shell model + meson potentials
⁴He: a few% (Δ), ~1% (ΔΔ)
¹⁶O: a few% (Δ), < 1% (ΔΔ)

Horlacher & Arenhövel, NPA 300, 348 (1978)

Anastasio +, NPA **322**, 369 (1979)

Coupled channels/Brueckner + meson potentials
Deuteron: < 1% (ΔΔ)

¹⁶O: a few% (Δ and $\Delta \Delta$)

Matter: a few% (Δ and $\Delta \Delta$) increasing with density

Experimental studies

Δ-knockout (inclusive) from ⁹Be
Amelin +, PLB 337, 261 (1994)
induced by 1-GeV-proton
⁹Be: < 1% (Δ)

(π, πp) at 500 MeV
¹²C, ¹³C, ⁹⁰Zr, ²⁰⁸Pb: a few% (Δ)

(γ, πp) at energy up to 1120 MeV ¹²C: < 1% (Δ) ³He: a few% (Δ)

Morris +, PLB **419**, 25 (1998)

Huber +, PRC, **62**, 044001 (2000) Bystritsky +, JETPL **73**, 453 (2001) Bystritsky +, NPA **705**, 55 (2002)

My daydream | Physics with △ explicitly addressed

△ probability per nucleon

Theoretical studies

Shell model + meson potentials

Horlacher & Arenhövel, NPA 300, 348 (1978)

\varDelta probability per nucleon

Theoretical studies

Realistic shell model with chiral EFT

Daydream

