カイラル相互作用に基づく現実的殻模型の進展

福井 徳朗

理化学研究所 仁科加速器科学研究センター

7／Dec．／2021

Collaborators

INFN-Napoli \& Univ. Campania "Luigi Vanvitelli"

A. Gargano

Peking Univ. \& South China Normal Univ.

F. R. Xu

State-of-the-art nuclear force

Motivation

Unveil nuclear systems with chiral EFT (πN dynamics)

"circle of history is closing"

Machleidt \& Entem, PR 503, 1 (2011)

Yukawa: Meson theory

1935

1980's

1960's

Chiral effective field theory

Shell-model studies of chiral 3NF

Oxygen-drip line and 3NF Otsula , PRL 105, , $32501($ (2010)

The 3NF qualitatively accounts for the oxygen-drip line $\left({ }^{24} \mathrm{O}\right)$.

Chiral N2LO 3NF

Shell evolution on pf-shell Holt , PRC 90, 024312 (2014)

A crucial role played by 3NF for Ca isotopes.

3NF contributions need to be clarified further

In particular the 3NF-magicity relation

Motivation | Why chiral EFT and 3NF?

Significance

Hierarchical structure
Many-body forces on an equal footing
Precise and hence realistic

I expect to deepen and shed new light on the understanding of nuclear force and properties of nuclei.

This presentation

1. Spin-orbit splitting and 3NF
2. Drip line of $\mathrm{Ca} / \mathrm{Ti}$ isotopes
3. Perspectives

Our theoretical framework | Realistic shell model

Realistic shell model (RSM)

= Shell model with a realistic force

Valence-space diagonalization

Our theoretical framework | Shell-model Hamiltonian

Realistic Hamiltonian (starting point)

 + Coulomb$$
H=H_{1 \mathrm{~B}}+H_{2 \mathrm{~B}}+H_{3 \mathrm{~B}}
$$

Single-particle energy

Chiral 2NF at $\mathrm{N}^{3} \mathrm{LO}$

3-body matrix elements
(a) Our new formalism
(a) Parallelized code for HPC

Fukui +, PRC 98, 044305 (2018)

Optional
(a) Renormalization

Normal-order approx.

Shell-model framework

RSM:
Our framework

Diagonalization

Eigenvalues Eigenvectors

No empirical inputs for shell-model calc.

Chiral 3BMEs | Harmonic-oscillator (HO) bases

How to compute 3-body matrix elements (3BMEs)

3BMEs

Chiral 3BMEs | Nonlocal regulator

High-momentum truncation by regulator with cutoff Λ

Nonlocal regulator
Epelbaum +, PRC 66, 064001 (2002)

$$
u_{\nu}(k, K, \Lambda)=\exp \left[-\left(\frac{k^{2}+K^{2}}{2 \Lambda^{2}}\right)^{\nu}\right]
$$

Nonlocal 3BMEs with HO basesPioneering work Navrátil, FBS 41, 117 (2007)
Only for the $1 \pi+$ contact and contact terms.

(a3) Present work Fukui +, PRC 98, 044305 (2018)
New formalism for 2π terms:
Triple-fold multipole expansion (brute force method)

Chiral 3BMEs | 2π terms

3BMEs of $\mathbf{2 \pi}$ terms

$$
\begin{aligned}
& \langle | W_{3 N}^{(2 \pi)} \mid \\
& =\sum_{n}(\text { coeff. }) \iiint \int d k d k^{\prime} d K d K^{\prime} g_{n}\left(k, k^{\prime}, K, K^{\prime}\right) \\
& 23 \text { sums } 26 \text { 3nj symbols, etc. } \quad \propto \text { Triple-fold integration }
\end{aligned}
$$

Computationally heavy!

MPI + OpenMP parallelization

MARCONI (CINECA, Italy)

	\# of MEs	Time	Memory
\boldsymbol{p}-shell	~ 800	$\sim 30 \mathrm{sec}$	$\sim 500 \mathrm{MB}$
sd-shell	$\sim 20,000$	w/ 60 nodes, 48 threads	
pf-shell 272 threads	$\sim 3 \mathrm{~GB}$		
$\sim 200,000$	w/ 60 nodes, 272 threads	$\sim 30 \mathrm{~GB}$	

RSM calculations | Numerical details

Low-energy constants ($\Lambda=500 \mathrm{MeV}$)
2NF (N3LO): Determined from
$N N$ scattering up to 300 MeV
Entem \& Machleidt, PRC 68, 041001(R) (2003)
3NF (N2LO): Determined from
${ }^{3} \mathrm{H}-$ and ${ }^{3} \mathrm{He}$ binding energies
Navrátil +, PRL 99, 042501 (2007)

Model space

Standard 1-major shell
(+ a lowest orbit of higher shell if necessary)

Many-body perturbation theory (degenerate)

$$
H \rightarrow H_{\mathrm{eff}}
$$

2NF: Up to 3rd-order folded-diagram expansion 3NF: Up to 1 st-order (normal-order approx.)

$$
\begin{aligned}
& \text { Coraggio + AP 327, } 2125 \text { (2012) } \\
& \text { Roth +, PRL 109, } 052501 \text { (2012) }
\end{aligned}
$$

Closure property $\left.\right|_{p \text {-shell nuclei }}$

Effective single-particle energies

$=$ SPE modified by average 2NF (+3NF)

Closure property $\left.\right|_{p f \text {-shell nuclei }}$

Ca isotopes

(a) Even 2NF reasonably
accounts for
experimental behavior.

Ni isotopes

(a) 2NF fails but 3NF plays an important role to explain experimental data.

Spin-orbit splitting and 3NF

Why is the 3NF effect drastic in Ni and not in Ca ?

Naively...
Neutron-proton interaction induced by the 2π term in Ni is more relevant than that in Ca .

The c_{4} term of 2π exchange has the operator

$$
\left[\boldsymbol{\tau}_{a} \times \boldsymbol{\tau}_{b}\right] \cdot \boldsymbol{\tau}_{c}
$$

which vanishes for identical particles.

Spin-orbit splitting stabilized by 3NF

2NF (SO + tensor) $+3 N F$ (tensor)

Tensor-force contribution of 3NF: Under investigation

Spin-orbit splitting and 3NF

Spin-Orbit Coupling in Heavy Nuclei

Jun-ichi FUJITA and Hironari MIYAZAWA
Department of Physics, University of Tokyo, Tokyo
(Received October 27, 1956)

In the preceding paper we have calculated the three-body forces in the static approximation. Using the result a strong spin-orbit coupling, compared with the Thomas term, is derived in this paper. Though it is not sufficient to explain the observed spin-orbit coupling for itself, we expect that a considerable part of the nuclear spin-orbit interaction should be due to the many-body forces.

Towards Ca-drip line | Beyond 1-major shell

Ground and low-lying structure

Consistent with experiment
Tarasov +, PRL 121, 022501 (2018)

Bound ${ }^{70} \mathrm{Ca}$:
Consistent with other predictions
(a) Density functional theories
(3) Bayesian analysis

We also predict bound ${ }^{70} \mathrm{Ti}$.
Coraggio+, Phys. Rev. C 104, 054304 (2021)

Kortelainen +, PRC 85, 024304 (2012), Goriely +, PRC 88, 024308 (2013), Wang +, PLB 734, 215 (2014) Neufcourt +, PRL 122, 062502 (2019), Stroberg +, PRL 126, 022501 (2021)

My daydream \mid Physics with Δ explicitly addressed

Why Δ isobar?

3NF contributes almost everywhere (already shown)

$3 N F$ is 2π-exchange dominant

\bigcirc In Δ-full chiral EFT, the 2π-exchange 3NF appears at lower order (NLO), separated from the contact terms.

- Confirmed numerically within the realistic shell model.

$$
\text { Fukui +, EPJWC 223, } 01018 \text { (2019) }
$$

$\mathrm{Ma}+$, PLB 802, 135257 (2020)

Fujita-Miyazawa force can approximate chiral-EFT 3NF

Fujita \& Miyazawa, PTP 17, 360 (1957)
Tsunoda +, Nature 587, 66 (2020)

My daydream | Physics with Δ explicitly addressed

How does Δ contribute?

(a) Δ-full chiral EFT (intermediate st.)
$\Delta(1232)$: Relatively small excitation energy

- Unnaturally large LECs $\left(c_{1}, c_{3}, c_{4}\right)$

$$
2 \pi\left(c_{1}, c_{3}, c_{4}\right)
$$ move to reasonable values

- Improves convergence but contains more

```
Ordonez +, PRL 72, 1982 (1994)
Krebs +, EPJA 32, 127 (2007)
```

(13) Spectra of light nuclei N2LO (2NF+3NF) +N3LO contacts in quantum Monte Carlo calculations
(a) Nuclear-matter saturation N2LO (2NF+3NF) in coupled-cluster calculations
Δ may be relevant!

My daydream | Physics with Δ explicitly addressed

Inaccurate phase shift, and thus, very large χ^{2}

Nuclear-matter saturation

N2LO (2NF+3NF)
in coupled-cluster calculations

Ekström + , PRC 97, 024332 (2018)

My daydream | Physics with Δ explicitly addressed

Δ probability per nucleon

Theoretical studies

Shell model + meson potentials Horlacher \& Arenhövel, NPA 300, 348 (1978)
${ }^{4} \mathrm{He}$: a few\% (Δ), ~1\% ($\boldsymbol{\Delta} \boldsymbol{\Delta}$)
16O: a few\% (Δ), < 1\% ($\boldsymbol{\Delta} \boldsymbol{\Delta}$)

- Coupled channels/Brueckner + meson potentials Anastasio +, NPA 322, 369 (1979)

Deuteron: < 1\% ($\Delta \Delta$)
${ }^{16} \mathrm{O}: \quad$ a few $\% ~(\Delta$ and $\Delta \Delta)$
Matter: a few\% ($\boldsymbol{\Delta}$ and $\boldsymbol{\Delta} \boldsymbol{\Delta}$) increasing with density

Experimental studies

Δ-knockout (inclusive) from ${ }^{9} \mathrm{Be}$ induced by $1-G e V-$ proton
${ }^{9} \mathrm{Be}:<1 \%(\Delta)$

- $(\pi, \pi p)$ at 500 MeV
${ }^{12} \mathrm{C},{ }^{13} \mathrm{C},{ }^{90} \mathrm{Zr},{ }^{208 P b}$: a few\% (Δ)
- $(\gamma, \pi p)$ at energy up to 1120 MeV
${ }^{12} \mathrm{C}:<1 \%(\Delta)$
${ }^{3} \mathrm{He}$: a few\% ($\boldsymbol{\Delta}$)

```
Amelin +, PLB 337, 261 (1994)
```

Morris +, PLB 419, 25 (1998)
Huber +, PRC, 62, 044001 (2000)
Bystritsky +, JETPL 73, 453 (2001)
Bystritsky +, NPA 705, 55 (2002)

My daydream | Physics with Δ explicitly addressed

Δ probability per nucleon

(B) Theoretical studies

- Shell model + meson potentials Horlacher \& Arenhövel, NPA 300, 348 (1978)

My daydream \mid Physics with Δ explicitly addressed

Δ probability per nucleon

Theoretical studies

Experimental studies

Δ probability

Summary

Realistic shell model with chiral EFT

Spin-orbit splitting stabilized by 3NF

Ca- and Ti-drip line

Daydream

