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State-of-the-art nuclear force

Chiral effective field theory
R. Machleidt, D.R. Entem / Physics Reports 503 (2011) 1–75 15

Fig. 1. Hierarchy of nuclear forces in ChPT. Solid lines represent nucleons and dashed lines pions. Small dots, large solid dots, solid squares, and solid
diamonds denote vertices of index � = 0, 1, 2, and 4, respectively. Further explanations are given in the text.

forces (4NF) start at this order. Since the leading 4NF come into existence one order higher than the leading 3NF, 4NF are
weaker than 3NF. Thus, ChPT provides a straightforward explanation for the empirically known fact that 2NF� 3NF� 4NF
. . . .

4. Two-nucleon interactions

The last section was just an overview. In this section, we will fill in all the details involved in the ChPT development of
the NN interaction; and 3NF and 4NF will be discussed in Section 5. We start by talking about the various pion-exchange
contributions.

4.1. Pion-exchange contributions in ChPT

Based upon the effective pion Lagrangians of Section 2.2, we will now derive the pion-exchange contributions to the NN
interaction order by order.

As noted before, there are infinitely many pion-exchange contributions to the NN interaction and, thus, we need to get
organized. First, we arrange the various pion-exchange contributions according to the number of pions being exchanged
between the two nucleons:

V⇡ = V1⇡ + V2⇡ + V3⇡ + · · · , (4.1)
where the meaning of the subscripts is obvious and the ellipsis represents 4⇡ and higher pion exchanges. Second, for each
of the above terms, we assume a low-momentum expansion:

V1⇡ = V (0)
1⇡ + V (2)

1⇡ + V (3)
1⇡ + V (4)

1⇡ + · · · (4.2)

V2⇡ = V (2)
2⇡ + V (3)

2⇡ + V (4)
2⇡ + · · · (4.3)

V3⇡ = V (4)
3⇡ + · · · , (4.4)

where the superscript denotes the order ⌫ and the ellipses stand for contributions of fifth and higher orders. Due to parity
and time reversal, there are no first order contributions. Moreover, since n pions create L = n � 1 loops, the leading order
for n-pion exchange occurs at ⌫ = 2n � 2 [cf. Eq. (3.5)].

In the following subsections, we will discuss V1⇡ , V2⇡ , and V3⇡ , one by one and order by order.
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Shell-model studies of chiral 3NF
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The 3NF qualitatively accounts for the oxygen-drip line (24O).
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FIG. 4. (Color online) Calculated ground-state energies of calcium isotopes in (a) pf shell and (b) pfg9/2 shell compared with experimental
data (solid points) and AME2012 extrapolated values (open circles) [59]. Calculations are performed in the extended pfg9/2 valence space and
based on NN forces only, NN + 3N forces with empirical SPEs, and NN + 3N forces with calculated (MBPT) SPEs.

This takes into account the effects of the additional orbitals
nonperturbatively, so that the general strategy is to make the
valence space for diagonalization as large as possible and
include the contributions beyond the valence space in MBPT,
which converges better for larger valence spaces.

In this work, we perform calculations in both the 0f7/2,
1p3/2, 0f5/2, 1p1/2 valence space (pf shell) and the extended
space including the 0g9/2 orbit (pfg9/2 valence space), in
both cases on top of a 40Ca core. We take two approaches
with respect to SPEs: in all pf -shell calculations we use the
empirical GXPF1A SPEs, while for the pfg9/2 space we either
use the GXPF1A values (setting g9/2 = −1.0 MeV), or the
MBPT SPEs calculated consistently, as shown in Table I. The
shell model codes ANTOINE [19,56] and NATHAN [19] have
been used throughout this work.

The pfg9/2 space consists of orbitals beyond one-major
harmonic-oscillator shell, which means that the center-of-mass
(c.m.) motion of the valence nucleons will not factorize
in general. Following Refs. [57,58], we have investigated
possible c.m. contamination in our calculations by adding
a c.m. Hamiltonian, βHc.m., with β = 0.5, to our original
Hamiltonian. This has a modest impact on excitation spectra,
where states can be affected up to ∼200 keV. This difference
can be understood because the nonzero c.m. two-body matrix
elements are also relevant matrix elements of the MBPT
calculation, and a clear separation between these two effects
is difficult. Similarly, we find non-negligible 〈Hc.m.〉 values,
which point to possible c.m. admixture and/or non-negligible
occupancies of the g9/2 orbital.

There are several directions in progress to investigate
this further in both the pfg9/2 and sdf7/2p3/2 [30] spaces.
We will carry out a nonperturbative Okubo–Lee–Suzuki–
Okamoto transformation [60,61] into the standard one-major-
shell space, which is free of c.m. spurious states. This will
keep the treatment of the orbitals within the extended space
nonperturbative, while treating the MBPT configurations
perturbatively. We will also apply the IMSRG [37] to extended

valence spaces, tailoring the evolution so that the cross-shell
matrix elements have small values: 〈Hc.m.〉 → 0. Finally, we
will explore different valence spaces, choosing the core of
the calculations so that the c.m. factorizes. For instance, for
the neutron-rich calcium isotopes a 48Ca core can be used.
Here, we follow the calculations of ground-state energies of
Refs. [9,10,32] and present results for the spectra for the same
interactions.

III. RESULTS

A. Ground-state energies

The calculated ground-state energies for calcium isotopes
are shown for both the pf and pfg9/2 shells in Fig. 4.
These are the same as for the predictions of the neutron-rich
51–54Ca reported in Refs. [9,10]. They update the results of
Ref. [28], where 3N forces where included only to first order
in MBPT. The repulsive effect of normal-ordered 3N forces
[28,29] is evident in both valence spaces, and there is only a
small difference between the calculations with empirical and
calculated (MBPT) SPEs, which reflects the similar values
shown in Table I.

While the pf and pfg9/2 spaces give similar absolute
ground-state energies, detailed comparisons to recent experi-
mental two-neutron separation energies [9,10] and three-point
mass differences [9,32] highlight the good agreement found
with the pfg9/2-shell results. Beyond 60Ca, the ground-state
energies evolve very flatly with A, which makes a precise
prediction of the dripline difficult. Moreover, for masses
beyond 54Ca, CC calculations indicate that continuum degrees
of freedom play an important role in lowering the 1d5/2 and
2s1/2 orbitals, which are not included in our calculations.
As a result these orbitals may become degenerate with 0g9/2
near 60Ca, and further lowering of the ground-state energies
beyond 60Ca is expected [33]. Therefore, to explore reliably the
neutron-rich region towards the dripline, continuum degrees
of freedom and larger valence spaces are necessary.
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FIG. 7. (Color online) Excitation energies of bound excited states
in 48Ca compared with experiment [62] and phenomenological
interactions (labels are as in Fig. 6).

physics necessary to reproduce the spectrum is not adequately
captured; the excited states are too compressed and with
incorrect ordering. It is only in the NN + 3N calculations
in the extended pfg9/2 space that we observe a reasonable
description of the 49Ca spectrum.

The ground state in 49Ca is dominated by the single-particle
configuration of a p3/2 particle on top of 48Ca. Therefore, the
first excited 1/2−

1 state, predicted in very good agreement with
experiment, reflects the effective p3/2-p1/2 gap for this nucleus.
Also the location of the lowest 7/2−

1 state is in reasonable
agreement with the tentatively assigned experimental level
(it lies some 500 keV lower), and with predictions from
the phenomenological interactions. This state is dominated
by a 2p-1h(f7/2)−1(p3/2)2 configuration on top of 48Ca and
therefore reflects the effective f7/2-p3/2 gap plus correlations
discussed for the closure of 48Ca.
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FIG. 8. (Color online) Excitation energies of bound excited states
in 49Ca compared with experiment [18,62] and phenomenological
interactions (labels are as in Fig. 6).
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FIG. 9. (Color online) Excitation energies of bound excited states
in 50Ca compared with experiment [18,62] and phenomenological
interactions (labels are as in Fig. 6).

However, in our calculations we observe that the 5/2−
1 state

is quite low compared with experiment and the phenomenolog-
ical interactions. This is indicative of a small effective p3/2-f5/2
gap in this region. We also note that the spin of the fourth
excited state has not been experimentally identified, but that
our calculations, as in phenomenology, predict it as a 7/2−

state.

4. 50Ca

In Fig. 9 we see that, for 50Ca, the location of the first
excited 2+

1 state is overpredicted in all MBPT calculations by
∼500 keV. The 0+ ground state and the 2+

1 state are dominated
by (p3/2)2 configurations. Therefore, the increased 2+

1 energy
is related to the low excited 0+ state found in 48Ca.

Although most of the experimental spin and parity as-
signments are tentative, in our calculations with NN + 3N
forces in the pfg9/2 space, the remaining states are compatible
with experiment and comparable to the results with the
phenomenological interactions. In particular, the large 2 MeV
gap between the 2+

1 and 2+
2 states is not reproduced in our

other MBPT calculations. The location of the lowest 1+
1

state differs significantly in the three calculations, which are
otherwise consistent with the data, with the MBPT prediction
being 1 MeV and 500 keV above the GXPF1A and KB3G
predictions, respectively. A reliable assignment of the spin of
the third excited state in 50Ca at 3.53 MeV is needed to identify
this state and test the theoretical calculations.

5. 51Ca

In 51Ca there is no definite experimental information on the
spins of the excited states, only tentative assignments based
largely on inferences from phenomenological interactions
[14,17]. Therefore, we show in Fig. 10 only our NN + 3N
calculation in the extended pfg9/2 space and compare with
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physics necessary to reproduce the spectrum is not adequately
captured; the excited states are too compressed and with
incorrect ordering. It is only in the NN + 3N calculations
in the extended pfg9/2 space that we observe a reasonable
description of the 49Ca spectrum.

The ground state in 49Ca is dominated by the single-particle
configuration of a p3/2 particle on top of 48Ca. Therefore, the
first excited 1/2−

1 state, predicted in very good agreement with
experiment, reflects the effective p3/2-p1/2 gap for this nucleus.
Also the location of the lowest 7/2−

1 state is in reasonable
agreement with the tentatively assigned experimental level
(it lies some 500 keV lower), and with predictions from
the phenomenological interactions. This state is dominated
by a 2p-1h(f7/2)−1(p3/2)2 configuration on top of 48Ca and
therefore reflects the effective f7/2-p3/2 gap plus correlations
discussed for the closure of 48Ca.
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1 state

is quite low compared with experiment and the phenomenolog-
ical interactions. This is indicative of a small effective p3/2-f5/2
gap in this region. We also note that the spin of the fourth
excited state has not been experimentally identified, but that
our calculations, as in phenomenology, predict it as a 7/2−

state.

4. 50Ca

In Fig. 9 we see that, for 50Ca, the location of the first
excited 2+

1 state is overpredicted in all MBPT calculations by
∼500 keV. The 0+ ground state and the 2+

1 state are dominated
by (p3/2)2 configurations. Therefore, the increased 2+

1 energy
is related to the low excited 0+ state found in 48Ca.

Although most of the experimental spin and parity as-
signments are tentative, in our calculations with NN + 3N
forces in the pfg9/2 space, the remaining states are compatible
with experiment and comparable to the results with the
phenomenological interactions. In particular, the large 2 MeV
gap between the 2+

1 and 2+
2 states is not reproduced in our

other MBPT calculations. The location of the lowest 1+
1

state differs significantly in the three calculations, which are
otherwise consistent with the data, with the MBPT prediction
being 1 MeV and 500 keV above the GXPF1A and KB3G
predictions, respectively. A reliable assignment of the spin of
the third excited state in 50Ca at 3.53 MeV is needed to identify
this state and test the theoretical calculations.

5. 51Ca

In 51Ca there is no definite experimental information on the
spins of the excited states, only tentative assignments based
largely on inferences from phenomenological interactions
[14,17]. Therefore, we show in Fig. 10 only our NN + 3N
calculation in the extended pfg9/2 space and compare with
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In Fig. 2, we show the single-particle energies (SPEs) of
the neutron d5=2, s1=2 and d3=2 orbitals at subshell closures
N ¼ 8, 14, 16, and 20. The evolution of the SPEs is due to
interactions as neutrons are added. For the SPEs based on
NN forces in Fig. 2(a), the d3=2 orbital decreases rapidly as
neutrons occupy the d5=2 orbital, and remains well bound
from N ¼ 14 on. This leads to bound oxygen isotopes out
to N ¼ 20 and puts the neutron drip line incorrectly at 28O.
This result appears to depend only weakly on the renor-
malization method or the NN interaction used. We dem-
onstrate this by showing SPEs calculated in the G matrix
formalism [10], which sums particle-particle ladders, and
based on low-momentum interactions Vlow k [11] obtained
from chiral NN interactions at next-to-next-to-next-to-
leading order (N3LO) [12] using the renormalization
group. Both calculations include core polarization effects
perturbatively [including diagram Fig. 3(d) with the !
replaced by a nucleon and all other second-order diagrams]
and start from empirical SPEs [13] in 17O. The empirical
SPEs contain effects from the core and its excitations,
including effects due to 3N forces.

We next show in Fig. 2(b) the SPEs obtained from the
phenomenological forces SDPF-M [13] and USD-B [14]
that have been fit to reproduce experimental binding en-

ergies and spectra. This shows a striking difference com-
pared to Fig. 2(a): As neutrons occupy the d5=2 orbital, with
N evolving from 8 to 14, the d3=2 orbital remains almost at
the same energy and is not well bound out to N ¼ 20. The
dominant differences between Figs. 2(a) and 2(b) can be
traced to the two-body monopole components, which de-
termine the average interaction between two orbitals. The
monopole components of a general two-body interaction V
are given by an angular average over all possible orienta-
tions of the two nucleons in orbitals lj and l0j0 [15],

Vmono
j;j0 ¼

X

m;m0
hjmj0m0jVjjmj0m0i=

X

m;m0
1; (1)

where the sum over magnetic quantum numbers m and m0

can be restricted by antisymmetry (see [16,17] for details).
The SPE of the orbital j is effectively shifted by Vmono

j;j0

multiplied by the occupation number of the orbital j0. This
leads to the change in the SPE and determines shell struc-
ture and the location of the drip line [16–19].
The comparison of Figs. 2(a) and 2(b) suggests that the

monopole interaction between the d3=2 and d5=2 orbitals
obtained from NN theories is too attractive, and that the
oxygen anomaly can be solved by additional repulsive
contributions to the two-neutron monopole components,
which approximately cancel the average NN attraction on
the d3=2 orbital. With extensive studies based on NN
forces, it is unlikely that such a distinct property would
have been missed, and it has been argued that 3N forces
may be important for the monopole components [20].
Next, we show that 3N forces among two valence neu-

trons and one nucleon in the 16O core give rise to repulsive
monopole interactions between the valence neutrons.
While the contributions of the FM 3N force to other
quantities can be different, the shell-model configurations
composed of valence neutrons probe the long-range parts
of 3N forces. The repulsive nature of this 3N mechanism
can be understood based on the Pauli exclusion principle.
Figure 3(a) depicts the leading contribution to NN forces
due to the excitation of a !, induced by the exchange of
pions with another nucleon. Because this is a second-order
perturbation, its contribution to the energy and to the two-
neutron monopole components has to be attractive. This is
part of the attractive d3=2 " d5=2 monopole component
obtained from NN forces.
In nuclei, the process of Fig. 3(a) leads to a change of the

SPE of the j, m orbital due to the excitation of a core
nucleon to a !, as illustrated in Fig. 3(b) where the initial
valence neutron is virtually excited to another j0,m0 orbital.
As discussed, this lowers the energy of the j, m orbital
and thus increases its binding. However, in nuclei this
process is forbidden by the Pauli exclusion principle, if
another neutron occupies the same orbital j0, m0, as shown
in Fig. 3(c). The corresponding contribution must then be
subtracted from the SPE change due to Fig. 3(b). This is
taken into account by the inclusion of the exchange dia-
gram, Fig. 3(d), where the neutrons in the intermediate
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FIG. 2 (color online). Single-particle energies of the neutron
d5=2, s1=2 and d3=2 orbitals measured from the energy of 16O as a
function of neutron number N. (a) SPEs calculated from a G
matrix and from low-momentum interactions Vlow k. (b) SPEs
obtained from the phenomenological forces SDPF-M [13] and
USD-B [14]. (c),(d) SPEs including contributions from 3N
forces due to ! excitations and chiral EFT 3N interactions at
N2LO [25]. The changes due to 3N forces based on ! excitations
are highlighted by the shaded areas.
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state have been exchanged and this leads to the exchange of
the final (or initial) orbital labels j, m and j0, m0. Because
this process reflects a cancellation of the lowering of the
SPE, the contribution from Fig. 3(d) has to be repulsive for
two neutrons. Finally, we can rewrite Fig. 3(d) as the FM
3N force of Fig. 3(e), where the middle nucleon is summed
over core nucleons. The importance of the cancellation
between Figs. 3(a) and 3(e) was recognized for nuclear
matter in Ref. [21].

The process in Fig. 3(d) corresponds to a two-valence-
neutron monopole interaction, schematically illustrated in
Fig. 4(d). The resulting SPE evolution is shown in Fig. 2(c)

for the G matrix formalism, where a standard pion-N-!
coupling [22] was used and all 3N diagrams of the same
order as Fig. 3(d) are included. We observe that the repul-
sive FM 3N contributions become significant with increas-
ing N and the resulting SPE structure is similar to that of
phenomenological forces, where the d3=2 orbital remains
high. Next, we calculate the SPEs from chiral low-
momentum interactions Vlow k, including the changes due

to the leading (N2LO) 3N forces in chiral EFT [23], see
Figs. 3(f)–3(h). We consider also the SPEs where 3N-force
contributions are only due to ! excitations [24]. The lead-
ing chiral 3N forces include the long-range two-pion-
exchange part, Fig. 3(f), which takes into account the
excitation to a ! and other resonances, plus shorter-range
3N interactions, Figs. 3(g) and 3(h), that have been con-
strained in few-nucleon systems [25]. The resulting SPEs
in Fig. 2(d) demonstrate that the long-range contributions
due to ! excitations dominate the changes in the SPE
evolution and the effects of shorter-range 3N interactions
are smaller. We point out that 3N forces play a key role for
the magic number N ¼ 14 between d5=2 and s1=2 [26], and
that they enlarge theN ¼ 16 gap between s1=2 and d3=2 [5].
The contributions from Figs. 3(f)–3(h) (plus all ex-

change terms) to the monopole components take into ac-
count the normal-ordered two-body parts of 3N forces,
where one of the nucleons is summed over all nucleons
in the core. This is also motivated by recent coupled-cluster
calculations [27], where residual 3N forces between three
valence states were found to be small. In addition, the
effects of 3N forces among three valence neutrons should
be generally weaker due to the Pauli principle.
Finally, we take into account many-body correlations by

diagonalization in the valence space. The resulting ground-
state energies of the oxygen isotopes are presented in
Fig. 4. Figure 4(a) (based on phenomenological forces)
implies that many-body correlations do not change our
picture developed from the SPEs: The energy decreases
to N ¼ 16, but the d3=2 neutrons added out to N ¼ 20

FIG. 3 (color online). Processes involving 3N contributions.
The external lines are valence neutrons. The dashed and thick
lines denote pions and ! excitations, respectively. Nucleon-hole
lines are indicated by downward arrows. The leading chiral 3N
forces include the long-range two-pion-exchange parts, diagram
(f), which take into account the excitation to a ! and other
resonances, plus shorter-range one-pion exchange, diagram (g),
and 3N contact interactions, diagram (h).
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FIG. 4 (color online). Ground-state energies of oxygen isotopes measured from 16O, including experimental values of the bound 16–
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illustration of a two-valence-neutron interaction generated by 3N forces with a nucleon in the 16O core.
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Single-particle

energy

Chiral 2NF

at N3LO 
+ Coulomb

Shell-model framework

Renormalization

Normal-order approx.

Optional

Our new formalism

Parallelized code for HPC

3-body matrix elements

Fukui +, PRC 98, 044305 (2018)

Coraggio +, AP 327, 2125 (2012)

Many-body  
perturbation theory

Diagonalization 

Effective Hamiltonian
Eigenvalues 
Eigenvectors

Diagonalizationab initio NCSM

RSM:  
Our framework

No empirical inputs 
for shell-model calc.

Our theoretical framework | Shell-model Hamiltonian 7



Chiral 3BMEs | Harmonic-oscillator (HO) bases

How to compute 3-body matrix elements (3BMEs)

Talmi transformation Talmi, HPA 25, 185 (1952) 
Nogga +, PRC 73 , 064002 (2006)

Center-of-mass separation

Diagonalization of antisymmetrizer

Navrátil +, PRC 61, 044001 (2000)

Antisymmetrization

3BMEs

=
A

Dh⇥ ⇤ i

JT

���V3N

���
h⇥ ⇤ i

JT

E

A
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Pioneering work

Only for the 1!+contact and contact terms. 
 


Present work

New formalism for 2! terms: 
Triple-fold multipole expansion (brute force method)

Chiral 3BMEs | Nonlocal regulator

High-momentum truncation by regulator with cutoff Λ

Navrátil, FBS 41, 117 (2007)

Nonlocal 3BMEs with HO bases

Nonlocal regulator Epelbaum +, PRC 66, 064001 (2002)

Fukui +, PRC 98, 044305 (2018)
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Necessary to retain consistency of 2NF
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3BMEs of 2! terms

MARCONI (CINECA, Italy)

Fukui +, PRC 98, 044305 (2018)

Chiral 3BMEs | 2! terms

Computationally heavy!

MPI + OpenMP parallelization

23 sums 26 3nj symbols, etc. Triple-fold integration

# of MEs Time Memory

p-shell ~800 ~30 sec 
w/ 4 nodes, 48 threads ~500 MB

sd-shell ~20,000 ~10 min

w/ 60 nodes, 272 threads
 ~3 GB

pf-shell ~200,000 ~5 h

w/ 60 nodes, 272 threads
 ~30 GB
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RSM calculations | Numerical details

Low-energy constants (  MeV)Λ = 500 Model space

Standard 1-major shell 
 

(+ a lowest orbit  
    of higher shell 
    if necessary)

Many-body perturbation theory (degenerate)

2NF: Up to 3rd-order folded-diagram expansion 
3NF: Up to 1st-order (normal-order approx.)

Coraggio + AP 327, 2125 (2012) 
Roth +, PRL 109 , 052501 (2012)

2NF (N3LO): Determined from 
                    NN scattering up to 300 MeV


3NF (N2LO): Determined from 
                    3H- and 3He binding energies

Navrátil +, PRL 99, 042501 (2007)

Entem & Machleidt, PRC 68, 041001(R) (2003)
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Closure property | p-shell nuclei

Effective single-particle energies

→ Better closure properties

Fukui +, PRC 98, 044305 (2018)
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      is almost constant.

0p1/2

0p3/2

      decreases with A, and  
the two orbits become inverted. 
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Even 2NF reasonably  
accounts for  
experimental behavior.

Ca isotopes

Ma +, PRC 100, 034324 (2019)

Closure property | pf-shell nuclei

Exp

2NF

2NF+3NF

13

Ni isotopes

Exp

2NF

2NF+3NF

2NF fails but 3NF plays  
an important role to explain  
experimental data. 



Spin-orbit splitting and 3NF

Tensor-force contribution of 3NF: Under investigation

0p1/2

0p3/2

60p

2NF (SO + tensor)
+ 3NF (tensor)

Neutron-proton interaction 
induced by the 2" term in Ni 

is more relevant than that in Ca.

Naively…

Why is the 3NF effect drastic in Ni and not in Ca?

Spin-orbit splitting stabilized by 3NF

The c4 term of 2" exchange has the operator

which vanishes for identical particles.

1p1/2
0f5/2

0f7/2

1p3/2280f

1p

2NF (SO + tensor)
+ 3NF (tensor)
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Ground and low-lying structure

Towards Ca-drip line | Beyond 1-major shell

5

III. RESULTS

In our previous study about nuclei belonging to 0f1p
shell, we have evidenced the crucial role played by the
NNN component of nuclear Hamiltonians derived by
way of ChPT, in order to provide SP energies and
TBMEs that may reproduce the shell evolution as ob-
served from the experiment [18]. We have seen that SP
energies and TBMEs of He↵ derived only from the NN

component own deficient monopole components, which
cannot provide the shell closures at N = 28 for both
48Ca and 56Ni.

On the above grounds, in our present work we are going
to deal only with He↵s that are derived with NN and
NNN components.
We start showing in Table II our calculated two-

neutron separation energies up to 70Ca, compared with
the available experimental data [10, 11, 40]. As previ-
ously mentioned, the neutron SP energies reported in
Table I are shifted to reproduce the experimental g.s.
energy of 41Ca with respect to 40Ca.

The results of our calculations, performed by way of
the shell-model code ANTOINE [36], are also presented
in Fig. 4 (black diamonds) to compare them with those
we have obtained in Ref. [18] where the model space we
have employed does not include the 0g9/2 orbital (blue
triangles). We report the experimental values as red dots.
We note that closure properties, related to the filling

of SP orbitals, are reflected in the behavior of both ex-
perimental and theoretical S2n.
As can be seen, data and calculated values show a

rather flat behavior up to N = 28, then a sudden drop
occurs at N = 30 that is a signature of the shell clo-
sure due to the 0f7/2 filling. Another decrease appears
at N = 34 because at that point the valence neutrons
start to occupy the 1p1/2 and 0f5/2 orbitals. Then, from
N = 36 on, the calculated curve is rather flat matching
the filling of 0f5/2, 0g9/2 orbitals.

The results obtained with both model spaces, the one
considered in present work with five neutron orbitals and
the other with four orbitals from Ref. [18], follow closely
the behavior of the experimental S2n up to N = 34, while
those obtained in our previous work provide an energy
drop between N = 34 and 36 much stronger than the
observed one.
This shell-closure properties of calcium isotopes can

obviously be also observed in the evolution of the excita-
tion energies of the yrast J⇡ = 2+ states with respect to
the number of neutrons N , as reported in Fig. 5.
It is noteworthy to observe that we obtain a better

agreement with experiment by including the 0g9/2 or-
bital. In fact, within such a model space, we better
reproduce the subshell closure at N = 34 and predict
bound calcium isotopes at least up to N = 50. Actu-
ally, the results obtained without 0g9/2 orbital provide,
in contrast with data, a raise of the excitation energy of
the J

⇡ = 2+1 state between N = 32 and 34, and predict
the calcium drip line located at N = 38 at variance with

the recent observation of a bound 60Ca [2].
This testifies the need of a model space larger than the

standard one spanned by the 0f1p orbitals to perform a
reliable investigation of heaviest calcium isotopes.
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FIG. 4. Experimental and theoretical two-neutron separation
energies for calcium isotopes from N = 22 to 50. Data are
taken from [10, 11, 40]. See text for details.

FIG. 5. Experimental and theoretical excitation energies of
the yrast J

⇡ = 2+ states for calcium isotopes from N = 22
to 50. See text for details.

It is now worth recalling that in the Introduction we
mentioned about the role that continuum states may play
in isotopic chains approaching their drip lines. In a recent
paper we investigated the neutron drip line of oxygen iso-
topes [43], which is experimentally placed at N = 24, by
writing the many-body Hamiltonian in the Berggren ba-
sis and deriving a He↵ , built up in terms of the present
chiral NN and NNN potentials, that accounts for con-
tinuum states. We have observed that this adds an addi-
tional repulsive e↵ect to the one provided by the NNN

component of the nuclear potential, and leads to a better
agreement with experiment too.
A similar procedure might be employed also to study

calcium isotopes, but the present limits of our compu-
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bital. In fact, within such a model space, we better
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bound calcium isotopes at least up to N = 50. Actu-
ally, the results obtained without 0g9/2 orbital provide,
in contrast with data, a raise of the excitation energy of
the J

⇡ = 2+1 state between N = 32 and 34, and predict
the calcium drip line located at N = 38 at variance with

the recent observation of a bound 60Ca [2].
This testifies the need of a model space larger than the

standard one spanned by the 0f1p orbitals to perform a
reliable investigation of heaviest calcium isotopes.
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FIG. 4. Experimental and theoretical two-neutron separation
energies for calcium isotopes from N = 22 to 50. Data are
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It is now worth recalling that in the Introduction we
mentioned about the role that continuum states may play
in isotopic chains approaching their drip lines. In a recent
paper we investigated the neutron drip line of oxygen iso-
topes [43], which is experimentally placed at N = 24, by
writing the many-body Hamiltonian in the Berggren ba-
sis and deriving a He↵ , built up in terms of the present
chiral NN and NNN potentials, that accounts for con-
tinuum states. We have observed that this adds an addi-
tional repulsive e↵ect to the one provided by the NNN

component of the nuclear potential, and leads to a better
agreement with experiment too.

A similar procedure might be employed also to study
calcium isotopes, but the present limits of our compu-
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N = 36 on, the calculated curve is rather flat matching
the filling of 0f5/2, 0g9/2 orbitals.

The results obtained with both model spaces, the one
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those obtained in our previous work provide an energy
drop between N = 34 and 36 much stronger than the
observed one.

This shell-closure properties of calcium isotopes can
obviously be also observed in the evolution of the excita-
tion energies of the yrast J⇡ = 2+ states with respect to
the number of neutrons N , as reported in Fig. 5.
It is noteworthy to observe that we obtain a better

agreement with experiment by including the 0g9/2 or-
bital. In fact, within such a model space, we better
reproduce the subshell closure at N = 34 and predict
bound calcium isotopes at least up to N = 50. Actu-
ally, the results obtained without 0g9/2 orbital provide,
in contrast with data, a raise of the excitation energy of
the J

⇡ = 2+1 state between N = 32 and 34, and predict
the calcium drip line located at N = 38 at variance with

the recent observation of a bound 60Ca [2].
This testifies the need of a model space larger than the

standard one spanned by the 0f1p orbitals to perform a
reliable investigation of heaviest calcium isotopes.

FIG. 4. Experimental and theoretical two-neutron separation
energies for calcium isotopes from N = 22 to 50. Data are
taken from [10, 11, 40]. See text for details.
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FIG. 5. Experimental and theoretical excitation energies of
the yrast J

⇡ = 2+ states for calcium isotopes from N = 22
to 50. See text for details.
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⇡ = 2+ states for calcium isotopes from N = 22
to 50. See text for details.
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to 50. See text for details.
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Why " isobar?
3NF contributes almost everywhere  
(already shown) 

3NF is 2!-exchange dominant 
In #-full chiral EFT, the 2"-exchange 3NF  
appears at lower order (NLO), 
separated from the contact terms.

Confirmed numerically  
within the realistic shell model. 
 
 
 
 
 

Fujita-Miyazawa force  
can approximate  
chiral-EFT 3NF

My daydream | Physics with " explicitly addressed
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Extended Data Fig. 4 | Ground-state expectation value of the 3NF for the Ne 
and Mg isotopes. a, Ne; b, Mg. For each isotope, the second (orange), third 
(green) and fourth (red) columns depict, respectively, this quantity obtained 
with the 3NF of Gazit et al.80, that of Hebeler et al.77 and that of Hebeler et al. 

with single-particle energy shift (labelled ‘Hebeler et al.−0.5N ’) (Methods). For 
comparison, the same quantity by the Fujita–Miyazawa 3NF is shown by the 
first (blue) column.
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Fig. 24. The 3NF without and with �-isobar degrees of freedom. Arrows indicate the shift of strength when explicit �’s are added to the theory. Note that
the �-full theory consists of the diagrams involving �’s plus the �-less ones. Double lines represent �-isobars; remaining notation as in Fig. 1.

contributions due to intermediate �-excitations, expanded in powers of 1/�M , can be absorbed into a redefinition of the
LECs of the �-less theory. The corresponding shift of the LECs c3, c4 is given by

c3 = �2c4 = � h2
A

9�M
. (6.2)

Using hA = 3gA/
p
2 (large Nc value), almost all of c3 and an appreciable part of c4 is explained by the � resonance.

The studies of Refs. [56,221] confirm that a large amount of the intermediate-range attraction of the 2NF is shifted from
NNLO to NLO with the explicit introduction of the �-isobar. However, it is also found that the NNLO 2PE potential of the
�-less theory provides a very good approximation to the NNLO potential in the �-full theory.

The � isobar also changes the 3NF scenario, see Fig. 24. The leading 2PE 3NF is promoted to NLO. In the �-full theory,
this term has the same mathematical form as the corresponding term in the �-less theory, Eqs. (5.2) and (5.3), provided
one chooses c1 = 0 and c3, c4 according to Eq. (6.2). Note that the other two NLO 3NF terms involving �’s vanish [222]
as a consequence of the antisymmetrization of the 3N states. The � contributions to the 3NF at NNLO [222] vanish at
this order, because the subleading N�⇡ vertex contains a time-derivative, which demotes the contributions by one order.
However, substantial 3NF contributions are expected at N3LO from one-loop diagrams with one, two, or three intermediate
�-excitations, which correspond to diagrams of order N4LO, N5LO, and N6LO, respectively, in the �-less theory. 3NF loop
diagrams with one and two �’s are included in the Illinois force [224] in a simplified way.

To summarize, the inclusion of explicit � degrees of freedom does certainly improve the convergence of the chiral
expansion by shifting sizable contributions from NNLO to NLO. On the other hand, at NNLO the results for the �-full and
�-less theory are essentially the same. Note that the �-full theory consists of the diagrams involving �’s plus all diagrams
of the �-less theory. Thus, the �-full theory is much more involved. Moreover, in the �-full theory, 1/MN 2NF corrections
appear at NNLO (not shown in Fig. 23), which were found to be uncomfortably large by Kaiser et al. [56]. Thus, it appears
that up to NNLO, the �-less theory is more manageable.

The situation could, however, change at N3LO where potentially large contributions enter the picture. It may be more
efficient to calculate these terms in the �-full theory, because in the �-less theory they are spread out over N3LO, N4LO

Fujita-Miyazawa
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How does " contribute?
"-full chiral EFT (intermediate st.)


#(1232): Relatively small excitation energy

Unnaturally large LECs ( )  
move to reasonable values

Improves convergence but contains more 
 
 

Spectra of light nuclei 
N2LO (2NF+3NF) +N3LO contacts 
in quantum Monte Carlo calculations 

Nuclear-matter saturation 
N2LO (2NF+3NF) 
in coupled-cluster calculations 

c1, c3, c4
2  ( )π c1, c3, c4
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#-full chiral EFT

Piarulli +, PRL 120, 052503 (2018)
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FIG. 7. Energy per nucleon (in MeV) of symmetric nuclear matter (upper row) and pure neutron matter (lower row) up to third order in
χEFT without (left column) and with (right column) explicit inclusion of the " isobar in χEFT. All interaction employ a momentum cutoff
# = 450 MeV. Shaded areas indicate the estimated EFT-truncation errors, and the (square) diamond marks the saturation point in symmetric
nuclear matter for ("NLO) "NNLO. The black rectangle indicates the region E/A = −16 ± 0.5 MeV and ρ = 0.16 ± 0.01 fm−3.

32 ! L ! 67 MeV at "NNLO. The estimated EFT truncation
error for ρ0 is very small at "NNLO because its central
value and lower and upper bounds have essentially the same
saturation point. The estimated EFT truncation error for S0 is
the maximum difference between the energies per particle in
neutron matter and symmetric nuclear matter, at the saturation
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FIG. 8. The symmetry energy as a function of the density for
"NLO (green), and "NNLO (blue) with "-full interaction at cutoff
of 450 MeV, with uncertainties shown as shaded areas.

point. This uncertainty also decreases with increasing order.
Finally, the estimated uncertainty in the slope (L) of the
symmetry energy is taken from the ranges of slopes of S0
at its upper and lower values. It is large even at "NNLO
and reflects that the slope in neutron matter exhibits a greater
variance at "NNLO than at "NLO; see Fig. 7. We note that our
predictions for the symmetry energy and its density derivative
at "NLO and "NNLO are consistent with the recent estimates
of Refs. [75,76].

IV. SUMMARY

We presented results for selected finite nuclei and infinite
nucleonic matter using optimized interactions from χEFT
with explicit "-isobar degree of freedom. We optimized both
"-full and "-less interactions order by order in the power
counting up to NNLO, for two different cutoffs, and with πN
LECs from a recent Roy-Steiner analysis of πN scattering.
The NN contact potentials up to NNLO were adjusted to
NN phase shifts, while the short-ranged parts of the NNN
interactions were constrained by energy and radius data on 4He.
We emphasize that the only differences between the "-full
and "-less interactions are because of the explicit inclusion
of the " isobar. In a detailed comparison, we found that radii
in nuclei up to 48Ca are accurate within EFT-truncation error
estimates, and that binding energies—while improving order

024332-8

Ekström +, PRC 97, 024332 (2018)

#-full#-less
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#(1232)
293 MeV 
< Hard scale  
   (~ 1 GeV)
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FIG. 7. Energy per nucleon (in MeV) of symmetric nuclear matter (upper row) and pure neutron matter (lower row) up to third order in
χEFT without (left column) and with (right column) explicit inclusion of the " isobar in χEFT. All interaction employ a momentum cutoff
# = 450 MeV. Shaded areas indicate the estimated EFT-truncation errors, and the (square) diamond marks the saturation point in symmetric
nuclear matter for ("NLO) "NNLO. The black rectangle indicates the region E/A = −16 ± 0.5 MeV and ρ = 0.16 ± 0.01 fm−3.

32 ! L ! 67 MeV at "NNLO. The estimated EFT truncation
error for ρ0 is very small at "NNLO because its central
value and lower and upper bounds have essentially the same
saturation point. The estimated EFT truncation error for S0 is
the maximum difference between the energies per particle in
neutron matter and symmetric nuclear matter, at the saturation
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FIG. 8. The symmetry energy as a function of the density for
"NLO (green), and "NNLO (blue) with "-full interaction at cutoff
of 450 MeV, with uncertainties shown as shaded areas.

point. This uncertainty also decreases with increasing order.
Finally, the estimated uncertainty in the slope (L) of the
symmetry energy is taken from the ranges of slopes of S0
at its upper and lower values. It is large even at "NNLO
and reflects that the slope in neutron matter exhibits a greater
variance at "NNLO than at "NLO; see Fig. 7. We note that our
predictions for the symmetry energy and its density derivative
at "NLO and "NNLO are consistent with the recent estimates
of Refs. [75,76].

IV. SUMMARY

We presented results for selected finite nuclei and infinite
nucleonic matter using optimized interactions from χEFT
with explicit "-isobar degree of freedom. We optimized both
"-full and "-less interactions order by order in the power
counting up to NNLO, for two different cutoffs, and with πN
LECs from a recent Roy-Steiner analysis of πN scattering.
The NN contact potentials up to NNLO were adjusted to
NN phase shifts, while the short-ranged parts of the NNN
interactions were constrained by energy and radius data on 4He.
We emphasize that the only differences between the "-full
and "-less interactions are because of the explicit inclusion
of the " isobar. In a detailed comparison, we found that radii
in nuclei up to 48Ca are accurate within EFT-truncation error
estimates, and that binding energies—while improving order
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FIG. 2. Neutron-proton phase parameters as predicted by the Gőteborg-Oak Ridge (GO) potentials [29] [solid red line !NNLO(450)GO,
dashed red !NNLO(394)GO] and by our refit (Rf) potentials [solid blue line !NNLO(450)Rf , dashed blue !NNLO(394)Rf ]. Partial waves
and mixing parameters with total angular momentum J ! 2 are displayed for laboratory energies up to 200 MeV. The filled and open circles
represent the results from the Nijmegen [35] and the Granada [36] np phase-shift analyses, respectively.

the result of such comparison in terms of the χ2, which is
obtained as outlined below.

The experimental data are broken up into groups (sets)
of data, A, with NA data points and an experimental over-
all normalization uncertainty !nexp

A . For datum i, xexp
i is the

experimental value, !xexp
i the experimental uncertainty, and

xmod
i the model prediction. When fitting the data of group A by

a model (or a phase shift solution), the overall normalization,
nmod

A , is floated and finally chosen such as to minimize the χ2

for this group. The χ2 is then calculated from [37]

χ2 =
∑

A

{
NA∑

i=1

[
nmod

A xmod
i − xexp

i

!xexp
i

]2

+
[

nmod
A − 1
!nexp

A

]2
}

;

(2.3)
that is, the overall normalization of a group is treated as an
additional datum. For groups of data without normalization

uncertainty (!nexp
A = 0), nmod

A = 1 is used and the second term
on the right-hand side (r.h.s). of Eq. (2.3) is dropped. The total
number of data is

Ndat = Nobs + Nne, (2.4)

where Nobs denotes the total number of measured data points
(observables), i.e., Nobs =

∑
A NA and Nne is the number of

experimental normalization uncertainties. We state results in
terms of χ2/Ndat ≡ χ2/datum, where we use, in general, for
the experimental data the 2016 NN base, which is defined in
Ref. [23].

In Table III, we show the χ2/datum for the two
Gőteborg-Oak Ridge potentials, !NNLO(450)GO and
!NNLO(394)GO, for pp scattering, np scattering, and a
combination of both for the laboratory energy intervals
0–100 and 0–200 MeV. In the case of the !NNLO(450)GO
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FIG. 2. Neutron-proton phase parameters as predicted by the Gőteborg-Oak Ridge (GO) potentials [29] [solid red line !NNLO(450)GO,
dashed red !NNLO(394)GO] and by our refit (Rf) potentials [solid blue line !NNLO(450)Rf , dashed blue !NNLO(394)Rf ]. Partial waves
and mixing parameters with total angular momentum J ! 2 are displayed for laboratory energies up to 200 MeV. The filled and open circles
represent the results from the Nijmegen [35] and the Granada [36] np phase-shift analyses, respectively.

the result of such comparison in terms of the χ2, which is
obtained as outlined below.

The experimental data are broken up into groups (sets)
of data, A, with NA data points and an experimental over-
all normalization uncertainty !nexp

A . For datum i, xexp
i is the

experimental value, !xexp
i the experimental uncertainty, and

xmod
i the model prediction. When fitting the data of group A by

a model (or a phase shift solution), the overall normalization,
nmod

A , is floated and finally chosen such as to minimize the χ2

for this group. The χ2 is then calculated from [37]

χ2 =
∑

A

{
NA∑

i=1

[
nmod

A xmod
i − xexp

i

!xexp
i

]2

+
[

nmod
A − 1
!nexp

A

]2
}

;

(2.3)
that is, the overall normalization of a group is treated as an
additional datum. For groups of data without normalization

uncertainty (!nexp
A = 0), nmod

A = 1 is used and the second term
on the right-hand side (r.h.s). of Eq. (2.3) is dropped. The total
number of data is

Ndat = Nobs + Nne, (2.4)

where Nobs denotes the total number of measured data points
(observables), i.e., Nobs =

∑
A NA and Nne is the number of

experimental normalization uncertainties. We state results in
terms of χ2/Ndat ≡ χ2/datum, where we use, in general, for
the experimental data the 2016 NN base, which is defined in
Ref. [23].

In Table III, we show the χ2/datum for the two
Gőteborg-Oak Ridge potentials, !NNLO(450)GO and
!NNLO(394)GO, for pp scattering, np scattering, and a
combination of both for the laboratory energy intervals
0–100 and 0–200 MeV. In the case of the !NNLO(450)GO
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FIG. 2. Neutron-proton phase parameters as predicted by the Gőteborg-Oak Ridge (GO) potentials [29] [solid red line !NNLO(450)GO,
dashed red !NNLO(394)GO] and by our refit (Rf) potentials [solid blue line !NNLO(450)Rf , dashed blue !NNLO(394)Rf ]. Partial waves
and mixing parameters with total angular momentum J ! 2 are displayed for laboratory energies up to 200 MeV. The filled and open circles
represent the results from the Nijmegen [35] and the Granada [36] np phase-shift analyses, respectively.

the result of such comparison in terms of the χ2, which is
obtained as outlined below.

The experimental data are broken up into groups (sets)
of data, A, with NA data points and an experimental over-
all normalization uncertainty !nexp

A . For datum i, xexp
i is the

experimental value, !xexp
i the experimental uncertainty, and

xmod
i the model prediction. When fitting the data of group A by

a model (or a phase shift solution), the overall normalization,
nmod

A , is floated and finally chosen such as to minimize the χ2

for this group. The χ2 is then calculated from [37]

χ2 =
∑

A

{
NA∑

i=1

[
nmod

A xmod
i − xexp

i

!xexp
i

]2

+
[

nmod
A − 1
!nexp

A

]2
}

;

(2.3)
that is, the overall normalization of a group is treated as an
additional datum. For groups of data without normalization

uncertainty (!nexp
A = 0), nmod

A = 1 is used and the second term
on the right-hand side (r.h.s). of Eq. (2.3) is dropped. The total
number of data is

Ndat = Nobs + Nne, (2.4)

where Nobs denotes the total number of measured data points
(observables), i.e., Nobs =

∑
A NA and Nne is the number of

experimental normalization uncertainties. We state results in
terms of χ2/Ndat ≡ χ2/datum, where we use, in general, for
the experimental data the 2016 NN base, which is defined in
Ref. [23].

In Table III, we show the χ2/datum for the two
Gőteborg-Oak Ridge potentials, !NNLO(450)GO and
!NNLO(394)GO, for pp scattering, np scattering, and a
combination of both for the laboratory energy intervals
0–100 and 0–200 MeV. In the case of the !NNLO(450)GO
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" probability per nucleon
Theoretical studies

Shell model + meson potentials


4He: a few% ($), ~1% ($$) 
16O: a few% ($), < 1% ($$)


Coupled channels/Brueckner + meson potentials

Deuteron: < 1% ($$) 
16O:          a few% ($ and $$)


              Matter:    a few% ($ and $$) increasing with density

Anastasio +, NPA 322, 369 (1979)

Horlacher & Arenhövel, NPA 300, 348 (1978)

Experimental studies

$-knockout (inclusive) from 9Be  
induced by 1-GeV-proton


9Be: < 1% ($)


 at 500 MeV

12C, 13C, 90Zr, 208Pb: a few% ($)


 at energy up to 1120 MeV

12C: < 1% ($) 
3He: a few% ($)

(π, πp)

(γ, πp)

Amelin +, PLB 337, 261 (1994)

Morris +, PLB 419, 25 (1998)

Huber +, PRC, 62, 044001 (2000) 
Bystritsky +, JETPL 73, 453 (2001) 
Bystritsky +, NPA 705, 55 (2002)
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Crucial tensor contributions
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could be large enough.
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Ca- and Ti-drip line
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III. RESULTS

In our previous study about nuclei belonging to 0f1p
shell, we have evidenced the crucial role played by the
NNN component of nuclear Hamiltonians derived by
way of ChPT, in order to provide SP energies and
TBMEs that may reproduce the shell evolution as ob-
served from the experiment [18]. We have seen that SP
energies and TBMEs of He↵ derived only from the NN

component own deficient monopole components, which
cannot provide the shell closures at N = 28 for both
48Ca and 56Ni.

On the above grounds, in our present work we are going
to deal only with He↵s that are derived with NN and
NNN components.
We start showing in Table II our calculated two-

neutron separation energies up to 70Ca, compared with
the available experimental data [10, 11, 40]. As previ-
ously mentioned, the neutron SP energies reported in
Table I are shifted to reproduce the experimental g.s.
energy of 41Ca with respect to 40Ca.

The results of our calculations, performed by way of
the shell-model code ANTOINE [36], are also presented
in Fig. 4 (black diamonds) to compare them with those
we have obtained in Ref. [18] where the model space we
have employed does not include the 0g9/2 orbital (blue
triangles). We report the experimental values as red dots.
We note that closure properties, related to the filling

of SP orbitals, are reflected in the behavior of both ex-
perimental and theoretical S2n.
As can be seen, data and calculated values show a

rather flat behavior up to N = 28, then a sudden drop
occurs at N = 30 that is a signature of the shell clo-
sure due to the 0f7/2 filling. Another decrease appears
at N = 34 because at that point the valence neutrons
start to occupy the 1p1/2 and 0f5/2 orbitals. Then, from
N = 36 on, the calculated curve is rather flat matching
the filling of 0f5/2, 0g9/2 orbitals.

The results obtained with both model spaces, the one
considered in present work with five neutron orbitals and
the other with four orbitals from Ref. [18], follow closely
the behavior of the experimental S2n up to N = 34, while
those obtained in our previous work provide an energy
drop between N = 34 and 36 much stronger than the
observed one.
This shell-closure properties of calcium isotopes can

obviously be also observed in the evolution of the excita-
tion energies of the yrast J⇡ = 2+ states with respect to
the number of neutrons N , as reported in Fig. 5.
It is noteworthy to observe that we obtain a better

agreement with experiment by including the 0g9/2 or-
bital. In fact, within such a model space, we better
reproduce the subshell closure at N = 34 and predict
bound calcium isotopes at least up to N = 50. Actu-
ally, the results obtained without 0g9/2 orbital provide,
in contrast with data, a raise of the excitation energy of
the J

⇡ = 2+1 state between N = 32 and 34, and predict
the calcium drip line located at N = 38 at variance with

the recent observation of a bound 60Ca [2].
This testifies the need of a model space larger than the

standard one spanned by the 0f1p orbitals to perform a
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⇡ = 2+ states for calcium isotopes from N = 22
to 50. See text for details.
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