カルシウム**62,72**のハロー構造 に関する3体模型からの示唆

基研研究会「核力に基づいた原子核の構造と反応」 2021年12月7日~10日 京都大学基礎物理学研究所

堀内 渉 (北海道大学)

共同研究者: 鈴木宜之(新潟大学、理研), M. A. Shalchi, L. Tomio (UNESP, Brazil) WH, Y. Suzuki, M. A. Shalchi, L. Tomio, arXiv: 2112.12923

Exploring heavier halo nuclei

PHYSICAL REVIEW LETTERS 123, 212501 (2019)

Featured in Physics

Location of the Neutron Dripline at Fluorine and Neon

D. S. Ahn,¹ N. Fukuda,¹ H. Geissel,⁵ N. Inabe,¹ N. Iwasa,⁴ T. Kubo,^{1,*,†} K. Kusaka,¹ D. J. Morrissey,⁶ D. Murai,³ T. Nakamura,² M. Ohtake,¹ H. Otsu,¹ H. Sato,¹ B. M. Sherrill,⁶ Y. Shimizu,¹ H. Suzuki,¹ H. Takeda,¹ O. B. Tarasov,⁶ H. Ueno,¹ Y. Yanagisawa,¹ and K. Yoshida¹

Sudden increase of interaction cross section is observed at ²⁹F S. Bagchi et al., Phys. Rev. Lett. 124, 222504 (2020) *N* = 28 ²⁴0 oxygen anomaly stable isotopes *N* = 20 ²²C rare isotopes A = 3Z + 4isotopes searched ¹⁹R in this work Recent structure studies by three-body models ⁴Be neutron dripline N = 16²⁹F: ²⁷F+n+n J. Singh et al., Phys. Rev. C 101, 024310 (2020) ³¹F: ²⁹F+n+n H. Masui, WH, M. Kimura, Phys. Rev. C 101, 041303(R) (2020) Dripline fixed up to Ne

Halo structure studies: ⁶He, ¹¹Li, ¹⁴Be, ¹⁹B, ²²C,… I. Tanihata et al., Phys. Rev. Lett. 55, 2676 (1985)

Reaction cross section (mb)

1300

1200

1100

1000

20

22

Mass number A

28

Core+few-nucleon model with a heavy core

- Use of explicitly correlated basis expansion
 - Limited to light nuclei
 - ²⁰C+n+n: Halo structure of ²²C WH, Y. Suzuki, Phys. Rev. C 74, 034311 (2006)
 - ${}^{12}C+n+n+p+p$: alpha clustering in the first excited 0⁺ state in ${}^{16}O$

WH, Y. Suzuki, Phys. Rev. C 89, 011304(R) (2014)

Alpha clustering phenomena in Sn isotopes

J. Tanaka et al., Science 371, 260 (2021)

- Difficulties for describing nucleon orbits around a heavy core
 - Many forbidden occupied states
 - Correlated nucleon motion far from the origin
 - Halo structure
 - Clustering near the surface of the core
 - \rightarrow the needs for efficiently describing...
 - Small (nodal) amplitude in the core
 - Large amplitude near the nuclear surface

K. Varga, R.J. Liotta, Phys. Rev. C 50, R1292 (1994)

Purpose of this work

- To establish an efficient way to describe
 - Short-ranged nodal behavior
 - Enhanced amplitude near the nuclear surface

Ordinary Gaussian → Forbidden-state-Free Locally-Peaked Gaussian (FFLPG)

 $r^l \exp(-ar^2) \rightarrow \text{LPG}$ $r^{2k+l} \exp(-ar^2) \rightarrow \text{FFLPG}$ (present study)

Y. Suzuki, WH, Phys. Rev. C 95, 044320 (2017)
 Y. Suzuki, Phys. Rev. C 101, 014002 (2020)
 WH, Y. Suzuki, M. A. Shalchi, L. Tomio, in prep.

- To clarify the condition that the halo structure emerges for ^{62, 72}Ca
 - Touchstone nuclei for extremely neutron-rich Ca isotopes
 - FFLPG: Easy application to various nuclear states
 - Ground and **excited** states

Dripline of Ca isotopes, under debate

- \bullet No experimental information for N>40
 - Existence, confirmed up to ⁶⁰Ca O.B. Tarasov et al., Phys. Rev. Lett. 121, 022501 (2018))
 - Mass measurement up to ${}^{57}Ca$ S. Michimasa et al., Phys. Rev. Lett. 121, 022506 (2018)
 - Interaction cross section ⁵¹Ca M. Tanaka et al., Phys. Rev. Lett. 124, 102501 (2020)
- Theory
 - Dripline around ⁶⁰Ca _{G. Hagen et al.}, Phys. Rev. Lett. 109, 032502 (2012),
 - 2n halo of ⁶²Ca G. Hagen et al., Phys. Rev. Lett. 111, 132501 (2013)
 - Dripline around ⁷⁰Ca
 - EDF J. Erler et al., Nature 486, 509 (2012), C. Forssen et al., Phys. Scr. T152, 014022 (2013) and references therein
 - Bayesian analysis L. Neufcourt et al., Phys. Rev. Lett. 122, 062502 (2019)
 - Discussion on Efimov physics in ⁷²Ca D. Hove et al., Phys. Rev. Lett. 120, 052502 (2018)
 - Recent shell model based on chiral int. L. Coraggio et al., Phys. Rev. C 102, 054326 (2020)
 - Recent ab initio calculation S.R. Stroberg et al., Phys. Rev. Lett. 126, 022501 (2021)

^{62,72}Ca within three-body models

Hamiltonian for core+2n system

Standard three-body Hamiltonian with cluster-orbital shell model

$$H = \sum_{i=1}^{2} (\underline{T_i + V_i}) + \frac{1}{\underline{Am}} p_1 \cdot p_2 + \underbrace{v_{12}}_{n-n \text{ interaction}}$$
Core: mass number A Core: mass number A Kinetic, n-core interaction Recoil term Minnesota pot. D.R. Thompson et al. Nucl. Phys. A 286, 53 (1977)

• Variational calculation with non-orthogonal basis expansion
$$\Psi_{JM} = \sum_{i=1}^{K} c_i \Phi_{JM}(\alpha_i), \rightarrow \text{generalized eigenvalue problem } \mathcal{H} \mathbf{c} = E \mathcal{B} \mathbf{c},$$

$$\mathcal{H}_{ij} = \langle \Phi(\alpha_i) | H | \Phi(\alpha_j) \rangle, \ \mathcal{B}_{ij} = \langle \Phi(\alpha_i) | \Phi(\alpha_j) \rangle.$$
 "Good" basis needed

Valence neutron orbits should be orthogonal to all the occupied (forbidden) states in the core

- Pseudopotential method V.I. Kukulin, V.N. Pomerantsev, Ann. Phys. (NY), 111, 330 (1978)
 - λ value typically >10⁴ \rightarrow numerically unstable
- Forbidden-state free basis (This work)
 - No pseudo-potential is introduced

$$H \to H + \lambda \sum_{i=1}^{2} P_F(i)$$

 r_1

 r_2

Forbidden-state-Free Locally-Peaked Gaussian (FFLPG) approach

• Single-particle (sp) state $\phi^a_{kljm} = \phi^a_{kl}(r) \left[Y_l(\hat{r}) \chi_{1/2} \right]_{jm}$,

• LPG basis
$$\phi_{kl}^a(r) = N_{kl} \left(\frac{a^3}{\pi}\right)^{\frac{1}{4}} (\sqrt{ar})^{2k+l} \exp\left(-\frac{1}{2}ar^2\right) \qquad N_{kl} = \sqrt{\frac{2^{2k+l+2}}{(4k+2l+1)!!}}$$

• Projection operator $P_F = \sum_{n'l'j' \in F} \sum_{m'=-j'} |\psi_{n'l'j'm'}\rangle \langle \psi_{n'l'j'm'}|$

 ψ^{ν}_{nljm} : Harmonic-oscillator wave function for simplicity

• FFLPG basis

⁶¹Ca case (N=40 closed): up to pf-shell (10 Orbits) ⁷¹Ca case: additional forbidden 0g9/2 orbit

$$\bar{\phi}^{a}_{kljm} = (1 - P_F)\phi^{a}_{kljm}$$
$$= \phi^{a}_{kljm} - \sum_{n' \in F} \langle \psi^{\nu}_{n'l} | \phi^{a}_{kl} \rangle \psi^{\nu}_{n'ljm}$$

Antisymmetrized two-neutron basis

$$\Phi_{JM}(a_1k_1l_1j_1;a_2k_2l_2j_2)$$

$$= \frac{1}{\sqrt{2}} (1 - P_{12}) \left\{ \left[\bar{\phi}_{k_1 l_1 j_1}^{a_1}(1) \bar{\phi}_{k_2 l_2 j_2}^{a_2}(2) \right]_{JM} \right\}$$

Choice of n-60Ca potential

Phenomenological WS potential

$$V(r) = -V_0 f(r) + V_1 r_0^2 \frac{1}{r} \frac{df(r)}{dr} (\ell \cdot s),$$

$$f(r) = \left[1 + \exp\left(r - R_{\rm WS}\right) / a_{\rm WS}\right]^{-1}$$

$$a_{\rm WS} = 0.67 \text{ fm}, R_{\rm WS} = 1.27 \text{A}^{1/3} \text{ fm}$$

- Following the theoretical work
 - 2s1/2 energy is set to be -0.01 MeV
 - Vary V_1 to change 0g9/2 energy

(i)Vanishing spin-orbit limit $V_1 \sim 0$

- Simulates the results of the coupled-cluster * \boldsymbol{o}

*G. Hagen et al., Phys. Rev. Lett. 109, 032502 (2012)

Q

(ii)Degenerate sg limit V₁ \sim 11 MeV

• $\varepsilon (0g9/2) \sim \varepsilon (2s1/2)$

Tests of FFLPG basis expansion

• Energy convergence only with $I_1 = I_2 = 0$ ($V_1 = 0$)

Fast and numerically stable results

FFLPG vs LPG

- $b=b_0(=1/v^{1/2})$
 - k=0,1 forbidden states
 - The amplitude is zero
 - k>1, the radial function includes nodes
- b>b₀
 - Peak of LPG $r = \sqrt{(2k+l)/a}$
 - Radial nodes are taken into account
 - Identical to LPG for large b and k

FFLPG: Advantageous to describing large amplitudes near the nuclear surface with shortranged nodal behavior

Application to ⁶²Ca

 $\Phi_{JM}(a_1k_1l_1j_1;a_2k_2l_2j_2)$

$$= \frac{1}{\sqrt{2}} (1 - P_{12}) \left\{ \left[\bar{\phi}_{k_1 l_1 j_1}^{a_1}(1) \bar{\phi}_{k_2 l_2 j_2}^{a_2}(2) \right]_{JM} \right\}$$

Stochastically selected within $b=1/a^{1/2}=[0, 40]$ fm, I=0-10, k=0-3

J^{π}	E(MeV)	$r_{2n}(\mathrm{fm})$	P_{ss}	P_{gg}	P_{dd}	P_{sg}	P_{sd}	P_{gd}	ΔP
0_{1}^{+}	-1.19	5.08	0.01	0.94	0.02	_	_	_	0.02
2_{1}^{+}	-0.74	5.12	_	0.86	0.01	_	0.01	0.09	0.03
4_1^+	-0.36	5.35	_	0.87	0.00	0.09	_	0.03	0.01
6^{+}	-0.22	5.03	_	0.99	_	_	_	0.01	0.01
8^{+}	-0.21	5.02	_	0.99	_	_	_	_	0.01
0_{2}^{+}	-0.14	12.8	0.91	0.02	0.05	_	_	_	0.03
4_{2}^{+}	-0.11	10.1	_	0.10	0.00	0.87	_	0.02	0.01
2^{+}_{2}	-0.014	6.77	_	0.13	0.03	_	0.14	0.64	0.06

 P_{xy} : occupation number

8 states are found with degenerate limit $\varepsilon (0g9/2) \sim \varepsilon (2s1/2)$

- $(0g9/2)^2$ produces compact $0^+, \cdots, 8^+$ states
- 0₂⁺: **2n halo** (2s1/2)²
- 4₂⁺: **1n halo** (2s1/2)(0g9/2)

Coexistence of 2n and 1n halo structure

Structure changes

- Vary V_1 as f V_1 with f=[0, 1]
 - f=0: vanishing spin-orbit limit
 - Only two-neutron halo exist G. Hagen et al., Phys. Rev. Lett. 109, 032502 (2012)
 - f<0.7 level crossing
 - Pairing antihalo effect
 - $\varepsilon (0g9/2) > \varepsilon (2s1/2)$
 - $v_{12}[(0g9/2)^2] > v_{12}[(2s1/2)^2]$
 - f=1: degenerate sg limit
 - Nonhalo ground state
 - Two- and one-neutron halo structure coexists

Experimental information highly desired

H. Masui, <u>WH</u>, and M. Kimura, PRC101, 041303 (R) (2020)

Implications for ⁷²Ca

- No information
- Similar model can be considered
 - ε (2s1/2)=-0.01
 - Absence of 0g9/2: Competition between 2s1/2 and 1d5/2 orbits
 If V₁ is strong enough like the degenerate limit
 - **2n halo** of 0₂⁺ (2s1/2)²
 - 2^+ and 3^+ doublet **1n halo** states with (2s1/2)(1d5/2) orbits

From this phenomenological three-body model approach

• The degenerate case is unlikely

too strong V₁ (more than 2 times than standard value) is needed to realize it 2n Halo structure emerges if the 2s1/2 orbit is close to the threshold

1d5/2

2s1/2

0g9/2

pf shell

Summary and prospects

- Forbidden-state-Free Locally-Peaked Gaussian expansion
 - Short-ranged nodal behavior
 - Large amplitude near the nuclear surface
 - Fast and numerically stable convergence
 - Easy extension to core plus few-nucleon models involving a heavy core nucleus
- Application to 62,72Ca
 - Competition of 2s1/2 and 0g9/2 (1d5/2) orbits
 - Vanishing spin-orbit limit: Two-neutron halo structure for the ground state
 - Degenerate sg limit: Two- and one-neutron halo structure can coexist in spectrum
 - Implication to possible two-neutron halo structure in ⁷²Ca
- Future applications include
 - ²¹²Po: ²⁰⁸Po+n+n+p+p, improved results than K. Varga, R.J. Liotta, PRC 50, R1292 (1994)
 - ¹⁰⁴Te: ¹⁰⁰Sn+n+n+p+p
 - Sn isotopes, role of neutron excess J. Tanaka et al., Science 371, 260 (2021)

WH, Y. Suzuki, M. A. Shalchi, L. Tomio, arXiv: 2112.12923