

「クラスター・シェル競合の最近の進展」

京都大学基礎物理学研究所 板垣 直之

itagaki@yukawa.kyoto-u.ac.jp

2021年12月9日 「核カに基づいた原子核の構造と反応」京都大学基礎物理学研究所

Content

Content

イントロダクション

- クラスター・シェル競合の最近の発展・1 (アイソスピン・ミキシング)
- クラスター・シェル競合の最近の発展・2 (医療への応用)

■ シェル構造 ■ クラスター構造

"The Birth of Venus" by Sandro Botticelli

シェル構造 クラスター構造

シェル構造: それぞれの核子の一粒子運動 クラスター構造 4Heは強く束縛しており (B.E. 28.3 MeV), 原子核中で部分系足りうる → ⁴He同士の相対の相互作用は比較的弱い

``Haystacks" by Claude Monet

Conventional α cluster model (Brink model) spatial part of the single particle wave function $\exp[-\nu (\mathbf{r} - \mathbf{R})^2]$ Locally shifted Gaussian form

R: Gaussian center parameter

``simple α cluster": 4 nucleons share same R

"Simple" a cluster

Dineutron クラスター

2中性子の空間部分の波動関数が同じなので、 スピンは反対称に組む

$\frac{1}{\sqrt{2}} \{ |\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \} = |00\rangle \quad S=0$

非中心力が作用しない

2核子間相互作用

• Central v(r), v(r)($\sigma_1 \cdot \sigma_2$), v(r)($\tau_1 \cdot \tau_2$), v(r)($\sigma_1 \cdot \sigma_2$)($\tau_1 \cdot \tau_2$)

- 空間部分がRank 1の非中心力 (トータルは回転対称)
 v(r)(σ₁+σ₂)・L
- **非中心力** S=1<mark>が必</mark>要

 空間部分がRank 2の非中心力 (トータルは回転対称)

$$S_{12} = 3(\sigma_1 \bullet r)(\sigma_2 \bullet r)/r^2 - (\sigma_1 \bullet \sigma_2)$$

Tensor operator

Cluster side

Shell model side

Antisymmetrized quasi-cluster model

spatial part of the single particle wave function $\exp[-\nu (\mathbf{r} - \mathbf{R})^2]$

spin-orbit interaction: **I** • **s** = (**r** x **p**) • **s**

<pr>< r > → Gaussian center parameter R → zero, if R is real

Antisymmetrized quasi-cluster model

spatial part of the single particle wave function $\exp[-\nu (\mathbf{r} - \mathbf{R})^2]$

spin-orbit interaction: I • s = (r x p) • s

<r > \rightarrow Gaussian center parameter R \rightarrow imaginary part of R (r x p) • s = (s x r) • p R \rightarrow R+i \land (e_spin x R) α cluster \rightarrow quasi cluster

 $L_i \bullet S_i$

¹²C squared overlap with $\Lambda=0$

Tohsaki interaction

Akihiro Tohsaki, Phys. Rev. C 49, 1814 (1994)

$$\begin{split} \hat{V}_{central} &= \frac{1}{2} \sum_{ij} V_{ij}^{(2)} + \frac{1}{6} \sum_{ijk} V_{ijk}^{(3)}, \\ \text{where } V_{ij}^{(2)} \text{ and } V_{ijk}^{(3)} \text{ consist of three terms,} \\ V_{ij}^{(2)} &= \sum_{\alpha=1}^{3} V_{\alpha}^{(2)} \exp[-(\vec{r}_{i} - \vec{r}_{j})^{2} / \mu_{\alpha}^{2}] (W_{\alpha}^{(2)} + M_{\alpha}^{(2)} P^{r})_{ij}, \\ V_{ijk}^{(3)} &= \sum_{\alpha=1}^{3} V_{\alpha}^{(3)} \exp[-(\vec{r}_{i} - \vec{r}_{j})^{2} / \mu_{\alpha}^{2} - (\vec{r}_{i} - \vec{r}_{k})^{2} / \mu_{\alpha}^{2}] \\ &\times (W_{\alpha}^{(3)} + M_{\alpha}^{(3)} P^{r})_{ij} (W_{\alpha}^{(3)} + M_{\alpha}^{(3)} P^{r})_{ik}. \end{split}$$

Spin-orbit interaction

 RealisticなTamagaki potentialを借りてきて、 強さを調節する。⁴He+nのphase shiftを 合わせるものよりも少し弱めを用いる

After GCM with respect to R

In collaboration with E. Hiyama

12 C		Energy (0 ⁺)	One-body LS
	$\Lambda = 0$	-86.82	0.00
	optimal A	-90.41	1.86

After GCM with respect to R

In collaboration with E. Hiyama

		Energy (0 ⁺)	One-body LS	
120	$\Lambda = 0$	-86.82	0.00	
12U	optimal A	-90.41	1.86	
		Energy (1/2+)	One-body LS	
¹³ ℃	$\Lambda = 0$	-93.46	0.00	
	optimal A	-98.93	2.37	

After GCM with respect to R

In collaboration with E. Hiyama

		Energy (0 ⁺)	One-body LS	
¹² C	$\Lambda = 0$	-86.82	0.00	
	optimal A	-90.41	1.86	
		Energy (1/2+)	One-body LS	
¹³ Λ Λ	$\Lambda = 0$	-93.46	0.00	
	optimal A	-98.93	2.37	
		Energy (0 ⁺)	One-body LS	
	$\Lambda = 0$	-103.32	0.00	
	optimal A	-110.68	2.69	

Content

イントロダクション クラスター・シェル競合の最近の発展・1 (アイソスピン・ミキシング)

 クラスター・シェル競合の最近の発展・2 (医療への応用)

Physics Letters B 817 (2021) 136283

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

First experimental determination of the radiative-decay probability of the 3_1^- state in 12 C for estimating the triple alpha reaction rate in high temperature environments

M. Tsumura ^{a,*,1}, T. Kawabata ^b, Y. Takahashi ^a, S. Adachi ^b, H. Akimune ^c, S. Ashikaga ^a, T. Baba ^a, Y. Fujikawa ^a, H. Fujimura ^d, H. Fujioka ^e, T. Furuno ^b, T. Hashimoto ^f, T. Harada ^g, M. Ichikawa ^a, K. Inaba ^a, Y. Ishii ^a, N. Itagaki ^h, M. Itoh ⁱ, C. Iwamoto ^j, N. Kobayashi ^k, A. Koshikawa ^{a,2}, S. Kubono ^{g,1}, Y. Maeda ^m, Y. Matsuda ^{i,3}, S. Matsumoto ^a, K. Miki ⁿ, T. Morimoto ^a, M. Murata ^k, T. Nanamura ^a, I. Ou ^o, S. Sakaguchi ^p, A. Sakaue ^{g,4}, M. Sferrazza ^q, K.N. Suzuki ^a, T. Takeda ^a, A. Tamii ^k, K. Watanabe ^a, Y.N. Watanabe ^r, H.P. Yoshida ^k, J. Zenihiro ^a

M. Tsumura et al. Phys. Lett. B817 136283 (2021)

https://www.nndc.bnl.gov/nudat3/

$$\begin{array}{cccc} 0^{+}_{2} & 3^{-}_{1} \\ \hline \Gamma_{rad}/\Gamma_{tot} \ (present) & 1.3^{+1.2}_{-1.1} \times 10^{-6} & (2.6 \pm 0.7) \times 10^{-2} \\ \Gamma_{rad}/\Gamma_{tot} \ (previous) \ [25] & < 8.2 \times 10^{-7} \ (95\% C.L.) & (2.21 \pm 0.07) \times 10^{-2} \\ \Gamma_{tot} \ (eV) \ [25] & (46 \pm 3) \times 10^{3} & 0.40 \pm 0.05 \end{array}$$

M. Tsumura et al. Phys. Lett. B**817** 136283 (2021)

Basic information

 $E_x(2^+) = 4.4398221 \text{ MeV}$ $E_{x}(3^{-}) = 9.6415 \text{ MeV}$ ■ $B(E\lambda\uparrow) (2J_{ground}+1) = B(E\lambda\downarrow) (2J_{ex}+1)$ ■ $\Gamma = 8\pi [(\lambda+1) / \lambda(2\lambda+1)!!^2] [E_v / \hbar c]^{2\lambda+1} e^2 B(E \lambda \downarrow)$ ■ Γ (E1, 3⁻ → 2⁺) (meV) = $1.4732 \times 10^5 \times B(E1\downarrow)(e^2 fm^2)$ $B(E1) が 10^{-4} e^{2} fm^{2} の オーダー以上で必要$ (E3は幅にはあまり効かない)

まずはアイソスピンが破れていないといけない

AQCM+2p2h configurations of the shell model

Small mixing of T=1 components ($\sim 10^{-3}$) due to the Coulomb interaction judging from T²

Naoyuki Itagaki and Tomoya Naito Phys. Rev. C 103 044303 (2021)

lsospinの混じりの問題に加え、 3⁻におけるK=1の混じりも必要!

Positions of N = n or p, 25 states generated using random numbers proportional to $\pm \exp[-r_i^2 / \sigma^2]$, $\sigma = 1$ fm, (we use same random numbers for p and n to guarantee the room for isoscalar configurations)

¹²C B(E1↓) Sz=0

	1	2	3	4	5	6	7	8	9
R (fm)	1	1	1	2	2	2	3	3	3
θ	π/4	2π/4	3п/4	π/4	2π/4	Зπ/4	π/4	2π/4	3п/4
2+ (MeV)	-81.1	-84.3	-81.5	-88.3	-89.7	-87.9	-83.3	-86.9	-83.5
3⁻ (MeV)	-74.2	-74.0	-74.8	-80.5	-80.5	-80.5	-80.0	-80.2	-80.5
B(E1↓) (e ² fm ²)	1.14 x 10 ⁻⁷	4.61 x 10 ⁻⁷	2.85 x 10 ⁻⁷	1.84 x 10 ⁻⁸	1.21 x 10 ⁻⁷	8.99 x 10 ⁻⁷	1.09 x 10 ⁻⁷	1.96 x 10 ⁻⁶	1.45 x 10 ⁻⁶

¹²C B(E1↓) Sz=1

	1	2	3	4	5	6	7	8	9
R (fm)	1	1	1	2	2	2	3	3	3
θ	π/4	2π/4	3п/4	π/4	2π/4	Зπ/4	π/4	2π/4	3п/4
2+ (MeV)	-53.8	-55.3	-54.3	-60.0	-62.0	-58.9	-50.9	-57.0	-52.3
3⁻ (MeV)	-50.0	-52.0	-51.6	-53.4	-54.5	-54.3	-49.0	-50.4	-51.7
B(E1↓) (e ² fm ²)	5.04 x 10 ⁻³	2.43 x 10 ⁻³	3.09 x 10 ⁻³	7.63 x 10 ⁻⁵	3.17 x 10 ⁻³	8.69 x 10 ⁻⁵	2.97 x 10 ⁻⁴	1.81 x 10 ⁻³	1.10 x 10 ⁻³

Content

SCIENTIFIC **REP**CRTS

Received: 26 January 2017 Accepted: 27 December 2017 Published online: 18 January 2018

OPEN First experimental proof of **Proton Boron Capture Therapy** (PBCT) to enhance protontherapy effectiveness

G. A. P. Cirrone 1, L. Manti 2^{,3}, D. Margarone⁴, G. Petringa^{1,5}, L. Giuffrida⁴, A. Minopoli², A. Picciotto⁶, G. Russo^{7,1}, F. Cammarata^{7,1}, P. Pisciotta^{1,5}, F. M. Perozziello^{2,3}, F. Romano^{8,1}, V. Marchese 1, G. Milluzzo^{1,5}, V. Scuderi^{1,4}, G. Cuttone¹ & G. Korn⁴

Protontherapy is hadrontherapy's fastest-growing modality and a pillar in the battle against cancer. Hadrontherapy's superiority lies in its inverted depth-dose profile, hence tumour-confined irradiation. Protons, however, lack distinct radiobiological advantages over photons or electrons. Higher LET (Linear Energy Transfer) ¹²C-ions can overcome cancer radioresistance: DNA lesion complexity increases with LET, resulting in efficient cell killing, i.e. higher Relative Biological Effectiveness (RBE). However, economic and radiobiological issues hamper ¹²C-ion clinical amenability. Thus, enhancing proton RBE is desirable. To this end, we exploited the $p + {}^{11}B \rightarrow 3\alpha$ reaction to generate high-LET alpha particles with a clinical proton beam. To maximize the reaction rate, we used sodium borocaptate (BSH) with natural boron content. Boron-Neutron Capture Therapy (BNCT) uses ¹⁰B-enriched BSH for neutron irradiationtriggered alpha particles. We recorded significantly increased cellular lethality and chromosome aberration complexity. A strategy combining protontherapy's ballistic precision with the higher RBE promised by BNCT and ¹²C-ion therapy is thus demonstrated.

Figure 8. Experimental cross sections. Proton-¹¹B total reaction cross section for the most probable α_1 channel decay (from EXFOR database).

12C So So	δα= 7.36659 MeV Sp=15.95668 MeV			
14079 5	4+	272 keV 6 %α≈100		
15110 <i>3</i>	1+	43.6 eV 10 % IT = 95.9 % α = 4.1		
15440 <i>40</i>	(2+)	1.77 MeV <i>20</i> %α≈100		
16106.0 8	2+	5.3 keV 2 % IT = 0.27 % p = 0.41 % α = 99.3		

https://www.nndc.bnl.gov/nudat3/

核構造としての興味 「¹¹Bの基底状態でα+α+tクラスターは 融け残っており、3αの種となり得るか?」

Naoyuki Itagaki, Tomoya Naito, Yuichi Hirata https://arxiv.org/abs/2109.09957

Naoyuki Itagaki, Tomoya Naito, Yuichi Hirata https://arxiv.org/abs/2109.09957

Naoyuki Itagaki, Tomoya Naito, Yuichi Hirata https://arxiv.org/abs/2109.09957

まとめ

- AQCMを用いて、クラスター模型の波動関数を jj-coupling shell modelに変換できる。
- ¹²Cの基底状態は、3αが微妙に融けた状態である。
- ■炭素では、付与する∧粒子の数と共に、クラスター・ シェル競合した状態から「jjシェル・ドミナント化」 が起る。
- jj-coupling shell modelの励起配位を混ぜ合わせることに より、isospin mixingと微少E1遷移の効果を議論可能 になりつつある。
- ¹¹Bのクラスター構造は医療への応用が期待されており、 クラスターの成分が70%程度融け残っていることが確認 される。

Back up slides

PHYSICAL REVIEW C 70, 054307 (2004)

Cluster-shell competition in light nuclei

N. Itagaki*

Department of Physics, University of Tokyo, Hongo Tokyo 113-0033, Japan

S. Aoyama

Integrated Information Processing Center, Niigata University, 950-2181 Niigata, Japan

S. Okabe

Information Initiative Center, Hokkaido University, 060-0811 Sapporo, Japan

K. Ikeda

The Institute of Physical and Chemical Research (RIKEN), 351-0098 Wako, Japan (Received 12 July 2004; published 5 November 2004)

We demonstrate whether the cluster structure dissolves or remains when the shell-model-like model space is introduced in addition to the cluster model space in light nuclei. Although the binding energies of ⁸Be, ¹⁰Be, and ¹⁰B become larger by about 1–2 MeV by adding shell-model-like basis states to the $\alpha + \alpha + N + N + \cdots$ basis states, the α - α structure is a dominant configuration of the ground states. However, α -breaking wave functions strongly mix in ¹²C, and the decrease of the energy from the 3 α configuration by about 6 MeV is a clue to resolving a long-standing problem of the binding energies of ¹²C and ¹⁶O. The improved version of antisymmetrized molecular dynamics (AMD), AMD superposition of selected snapshots (AMD triple-S), is used to show the cluster-shell competition of these nuclei.

N. Itagaki, S. Aoyama, K. Ikeda, and S. Okabe Phys. Rev. C **70** 054307 (2004)

FIG. 6. The energy convergence of ${}^{12}C(0^+)$ with respect to the number of trial AMD basis states. The basis states from 1 to 100 are those of the 3α model space, and those from 101 to 600 are $\alpha + \alpha + 2p + 2n$ model space with relative $\alpha - \alpha$ distances of 2, 3, and 4 fm. After 601, the wave functions with the shell-model-like $\alpha + 4p + 4n$ model space are added.

N. Itagaki, S. Aoyama, K. Ikeda, and S. Okabe Phys. Rev. C **70** 054307 (2004)

¹²C (3aを崩したもの)

主量子数n

N. Itagaki, S. Aoyama, K. Ikeda, and S. Okabe Phys. Rev. C **70** 054307 (2004)

https://www.nndc.bnl.gov/nudat3/

Cluster side

Shell model side

From "Competition" To "Confluence"

M. Tsumura et al. Phys. Lett. B817 136283 (2021)