Anomalous quadrupole collectivity of neutron-rich Mg isotopes near the drip line

K. Yoshida (Kyoto U.)

NSR2021@YITP

based on KY, arXiv:2109.08328

Strong quadrupole deformation beyond N=20

 \checkmark breaking of the spherical N=20 magic number at ³²Mg

low $E(2_1^+)$ and high B(E2)

 \checkmark "stable" quadrupole deformation beyond N=20 Doornenbal+, PRL111(2013)212502 Crawford+, PRL122(2019)052501

$635(6) \text{ keV} \rightarrow 500(14) \text{ keV}$ ~20% decrease in energy

Why so low at ⁴⁰Mg?

Rodríguez, EPJA52(2016)190

 β -GCM: upward trend toward N=26 and decrease at N=28 $\beta\gamma$ -GCM: triaxial dynamics lowers $E(2^+)$ at N=26

weak binding/continuum effects?

Simple mean-field analysis within DFT

not easy to incorporate the continuum effects into the BMF model

coordinate-space Hartree–Fock–Bogoliubov formalism Dobaczewski–Flocard–Treiner, NPA422(1984)103

cranking for non-zero spins $\delta(E[\rho] - \omega_{rot} \langle \hat{J}_{\tau} \rangle) = 0$

standard technique for solving the cranked-HFB (3D-HFB) eq.

two-basis method

Gall+, ZPA348(1994)183 $\{\phi_i\}$ Terasaki+, NPA621(1997)706

> non-localized single-particle states in the continuum enter the pairing window one needs to enlarge the truncated space

full diagonalization of the HFB Hamiltonian possible using modern computers parallel solver for the HFB eq. in the 3D-Cartesian-mesh KY, arXiv:2109.08328

3D-coordinate-space (Cartesian-mesh) representation

sp wavefunctions

$$\varphi_{\overrightarrow{n}} \equiv \varphi(\overrightarrow{r} = \Delta L \overrightarrow{n})$$

$$\overrightarrow{n} = (n_x, n_y, n_z)$$

$$(n_x, n_y, n_z) = 0, \pm 1, \cdots$$

advantage exotic deformation weakly-bound nuclei simple coding

$$\varphi_{\overrightarrow{n}} \equiv \varphi(\overrightarrow{r} = \Delta L \overrightarrow{n})$$

$$\overrightarrow{n} = (n_x, n_y, n_z)$$

$$(n_x, n_y, n_z) = 0, 1, \cdots M$$

In the present calculation,

 $\Delta L = 1.0 \text{ fm}$ dim $(H) = 8M^3 = 13824 @M = 12$ direct diagonalization

parallelization in parity, z-signature, neutrons/protons, spatial grid

Density-dependence of the pairing int.

according to KY, EPJA42(2009)583 Mixed-type: $V_0 = -295$ MeV fm³

Exp: Michimasa+, PRC89(2014)054307

low-spin states are well described not very sensitive to the density dependence

volume pairing: slightly weak correlation

Isotopic dependence of the low-spin yrast states

Exp: Doornenbal+, PRL111(2013)212502 Crawford+, PRL122(2019)052501

36,38Mg slight underestimation of $\mathcal{J}^{(1)}$ ^{40}Mg (cal) far below the observed one overestimation of $E(2^+)$

the present model does not explain the observed isotopic dep.

Anomaly in ⁴⁰Mg

weak-binding effect does not explain the obs. pairing plays a more important role

Pairing functional considering the neutron-excess effect

Yamagami-Shimizu-Nakatsukasa, PRC80(2009)064301 $H(\mathbf{r}) = \frac{V_0}{\Lambda} \sum g_{\tau}[\rho, \rho_1] |\tilde{\rho}_{\tau}(\mathbf{r})|^2$ $g_{\tau}[\rho,\rho_{1}] = 1 - \eta_{0} \frac{\rho_{0}(\mathbf{r})}{\rho_{\text{nn}}} - \eta_{1} \frac{\tau_{3}\rho_{1}(\mathbf{r})}{\rho_{\text{nn}}} - \eta_{2} \left(\frac{\rho_{1}(\mathbf{r})}{\rho_{\text{nn}}}\right)^{2}$

weakening of pairing at ⁴⁰Mg isospin-dependence of the paring deformed gap at N = 28

pairing does play an important role

low-lying states in n-rich nuclei - construction of a global pairing EDF

Weak-binding effects in low-spin states

 $J_z^2 = I(I+1)$

Functional dependence

 $J_z^2 = I(I+1)$

both SkM* and SLy4 reproduce the lowering of $E(2_1^+)$ predict different $R_{4/2}$ values

SLy4 + YSN pairing both neutrons and protons are unpaired similar result using SkM* w/o pairing

> experimental $R_{4/2}$ determines the normal/superfluidity of ⁴⁰Mg

in ⁴⁰Mg

Evolution of triaxial deformation in ⁴²Mg

 $J_{z}^{2} = I(I+1)$

Summary

first cal. of the cranked-Skyrme–Kohn–Sham–Bogoliubov in 3D mesh practical/reasonable in investigating the interplay among deformation, pairing, and continuum

neutron-rich Mg isotopes near the drip line anomaly in ⁴⁰Mg unlikely due to the weak binding suppression/vanishing of pairing of neutrons discriminated by the $R_{4/2}$ value

triaxial dynamics in ⁴²Mg

weak-binding effects visible: neutrons rms radius, triaxial def., $R_{A/2}$

Quasineutron Routhians in ³⁴Mg

Mixed-type

Volume-type

Ground-state properties

	³⁴ Mg	³⁶ Mg	³⁸ Mg	⁴⁰ Mg	⁴² Mg
λ_n	-4.08	-3.19	-2.42	-1.62	-1.15
λ_p	-18.7	-20.1	-22.3	-23.8	-25.5
$\sqrt{\langle r^2 angle_n}$	3.51	3.59	3.67	3.78	3.83
$\sqrt{\langle r^2 angle_p}$	3.14	3.16	3.18	3.21	3.19
β_n	0.35	0.31	0.28	0.29	0.18
β_p	0.41	0.38	0.37	0.37	0.27

SkM* + YSN pairing

Ground-state properties: density distribution of neutrons

34Mg

36Mg

38Mg

40Mg

42Mg

SkM*+mixed

40Mg

 $\Delta_n = 1.6 \text{ MeV}$

Total BE: -282.06 MeV pairing E: -10.4 MeV λ_n : -1.61 MeV -281.10 MeV -1.38 MeV -1.62 MeV

SkM*+YSN

SkM* w/o pairing

-281.05 MeV

SkM*+YSN

 Total BE:
 -281.10 MeV

 pairing E:
 -1.38 MeV

 λ_n :
 -1.62 MeV

-281.10 MeV -1.37 MeV -1.63 MeV

SLy4 w/o pairing

Total BE:

-270.22 MeV

-270.22 MeV