格子 QCDによるハイペロン核力の研究
根村英克 ${ }^{1}$ ，

arXiv：1510．00903［hep－lat］
arXiv：1810．04046［hep－lat］

Study of hyperonic nuclear forces from lattice QCD

H. Nemura ${ }^{1,2}$, for HAL QCD Collaboration

Y. Akahoshi ${ }^{2}$, S. Aoki ${ }^{2}$, T. Aoyama ${ }^{2}$, T. Doi ${ }^{3}$, T. M. Doi ${ }^{3}$, F. Etminan ${ }^{4}$, S. Gongyo ${ }^{3}$, T. Hatsuda ${ }^{3}$, Y. Ikeda ${ }^{1}$,
T. Inoue ${ }^{5}$, T. Iritani ${ }^{3}$, N. Ishii ${ }^{1}$, T. Miyamoto ${ }^{2}$, K. Murano ${ }^{1}$, and K. Sasaki ${ }^{2}$, Hadrons to Atomic nuclei

${ }^{2}$ Kyoto University, ${ }^{3}$ RIKEN, ${ }^{4}$ University of Birjand, ${ }^{5}$ Nihon University

arXiv:1510.00903 [hep-lat]
arXiv:1810.04046 [hep-lat]

Outline

- Introduction
©HAL QCD method for baryon-baryon interaction
- Preliminary results of LN-SN potentials at $\left(\mathrm{m}_{\pi}, \mathrm{m}_{\mathrm{K}}\right) \approx(145,525) \mathrm{MeV}$
- Single channel analysis for $\mathrm{LN}==>$ central and tensor potentials

Phase shifts at low energy region below the SN threshold

- $\mathrm{LN}-\mathrm{SN}(\mathrm{I}=1 / 2)$, central and tensor potentials
- Effective block algorithm for various baryonbaryon channels, CPC207,91(2016)[1510.00903]
New application of the algorithm
- Summary

Multi-hadron on lattice i) basic procedure: asymptotic region --> phase shift ii) HAL's procedure: interacting region --> potential

Multi-hadron on lattice

Lattice QCD simulation

$$
L=-\frac{1}{4} G_{\mu \nu}^{a} G^{a \mu \nu}+\bar{q} \gamma^{\mu}\left(i \partial_{\mu}-g t^{a} A_{\mu}^{a}\right) q-m \bar{q} q
$$

$\langle O(\bar{q}, q, U)\rangle=\int d J d \bar{q} d q e^{-S(\bar{q}, q, U} O(\bar{q}, q, U)$

$$
=\int d U \operatorname{det} D(U) \mathrm{e}^{-S_{U}(U)} O\left(D^{-1}(U)\right)
$$

$$
=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N} O\left(D^{-1}\left(U_{i}\right)\right)
$$

$E=\frac{k^{2}}{2 \mu}$

$k \cot \delta_{0}(k)=\frac{2}{\sqrt{\pi} L} Z_{00}\left(1 ;(k L /(2 \pi))^{2}\right)=\frac{1}{a_{0}}+O\left(k^{2}\right)$ $Z_{00}\left(1 ; q^{2}\right)=\frac{1}{\sqrt{4 \pi}} \sum_{n \in Z^{3}} \frac{1}{\left(n^{2}-q^{2}\right)^{s}} \quad \Re s>\frac{3}{2}$

Luscher, NPB354, 531 (1991). Aoki, et al., PRD71, 094504 (2005).

Multi-hadron on lattice

 Lattice QCD simulation $L=-\frac{1}{4} G_{\mu \nu}^{a} G^{a \mu \nu}+\bar{q} \gamma^{\mu}\left(i \partial_{\mu}-g t^{a} A_{\mu}^{a}\right) q-m \bar{q} q_{\uparrow}$$\langle O(\bar{q}, q, U)\rangle=\int d U d \bar{q} d q e^{-S(\bar{q}, \underline{q}, U} O(\bar{q}, q$
${ }^{1} \mathrm{~S}_{0}$ channel $=\int d U \operatorname{det} D(U) e^{-S_{U}(U)} O\left(D^{-1}(I\right.$

$F_{\alpha \beta}^{U N}$$\rightarrow\left\langle\left\langle(\vec{r}, t) \hat{\left.\left(0_{0}\right)\right\rangle}\right.\right.$
Calculate the scattering state

Multi-hadron on lattice

 ii) HAL's procedure: make better use of the lattice output! (wave function) interacting region --> potentialIshii, Aoki, Hatsuda, PRL99, 022001 (2007); ibid., PTP123, 89 (2010).

NOTE:

> Potential is not a direct experimental observable.
> Potential is a useful tool to give (and to reproduce) the physical quantities. (e.g., phase shift)

Multi-hadron on lattice

 ii) HAL's procedure: make better use of the lattice output! (wave function) interacting region --> potentialIshii, Aoki, Hatsuda, PRL99, 022001 (2007); ibid., PTP123, 89 (2010).

> Phase shift $=\gg$ Nuclear many-body problems

An improved recipe for NY potential:

 ©cf. Ishii (HAL QCD), PLB712 (2012) 437.- Take account of not only the spatial correlation but also the temporal correlation in terms of the R-correlator:
$-\frac{1}{2 \mu} \nabla^{2} R(t, \vec{r})+\int d^{3} r^{\prime} U\left(\vec{r}, \vec{r}^{\prime}\right) R\left(t, \vec{r}^{\prime}\right)=-\frac{\partial}{\partial t} R(t, \vec{r})$
$\rightarrow \frac{-k^{2}}{2 \mu} R(t$,

$$
\begin{aligned}
V_{N Y}= & V_{0}(r)+V_{\sigma}(r)\left(\vec{\sigma}_{N} \cdot \vec{\sigma}_{Y}\right) \\
& +V_{T}(r) S_{12}+V_{L S}(r)\left(\vec{L} \cdot \vec{S}_{+}\right) \\
& +V_{A L S}(r)\left(\vec{L} \cdot \vec{S}_{-}\right)+O\left(\nabla^{2}\right)
\end{aligned}
$$

格子Q CDによるポテンシャル導出の手順（超簡略版）

（1）4点相関関数を計算する。

$$
\begin{equation*}
F_{\alpha \beta, J M}^{\left\langle B_{1} B_{2} \overline{\left.B_{3} B_{4}\right\rangle}\right.}\left(\vec{r}, t-t_{0}\right)=\sum_{\vec{X}}\langle 0| B_{1, \alpha}(\vec{X}+\vec{r}, t) B_{2, \beta}(\vec{X}, t) \overline{\mathscr{J}_{B_{3} B_{4}}^{(J, M)}\left(t_{0}\right)}|0\rangle, \tag{2.3}
\end{equation*}
$$

（2）時間依存法を使うためにしきい値だけ時間相関をずらす

$$
\begin{aligned}
& R_{\alpha \beta, J M}^{\left(B_{1} B_{2} \overline{\left.B_{3} B_{4}\right)}\right.}\left(\vec{r}, t-t_{0}\right)=\mathrm{e}^{\left(m_{B_{1}}+m_{B_{2}}\right)\left(t-t_{0}\right)} F_{\alpha \beta, J M}^{\left\langle B_{1} B_{2} \overline{\left.B_{3} B_{4}\right)}\right.}\left(\vec{r}, t-t_{0}\right) \\
= & \sum_{n} A_{n} \sum_{\vec{X}}\langle 0| B_{1, \alpha}(\vec{X}+\vec{r}, 0) B_{2, \beta}(\vec{X}, 0)\left|E_{n}\right\rangle \mathrm{e}^{-\left(E_{n}-m_{B_{1}}-m_{B_{2}}\right)\left(t-t_{0}\right)}+O\left(\mathrm{e}^{-\left(E_{\mathrm{H}}-m_{B_{1}}-m_{B_{2}}\right)\left(t-t_{0}\right)}\left(2_{2} .4\right)\right.
\end{aligned}
$$

（3）チャネルごとにしきい値が異なるので，それを考慮した時間依存型Schroedinger方程式からポテンシャルを求める

$$
\left(\frac{\nabla^{2}}{2 \mu_{\lambda}}-\frac{\partial}{\partial t}\right) R_{\lambda \varepsilon}(\vec{r}, t) \simeq V_{\lambda \lambda^{\prime}}^{(\mathrm{LO})}(\vec{r}) \theta_{\lambda \lambda^{\prime}} R_{\lambda^{\prime} \varepsilon}(\vec{r}, t), \text { with } \theta_{\lambda \lambda^{\prime}}=\mathrm{e}^{\left(m_{B_{1}}+m_{B_{2}}-m_{B_{1}^{\prime}}-m_{B_{2}^{\prime}}\right)\left(t-t_{0}\right)} .
$$

（※）＂moderately large imaginary time＂で計算を行う （※※）2種類の励起状態を区別している

[^0]Almost physical point lattice QCD calculation using $N_{F}=2+1$ clover fermion + Iwasaki gauge action

- APE-Stout smearing ($\mathrm{r}=0.1, \mathrm{n}_{\text {stout }}=6$)
* Non-perturbatively $O(a)$ improved Wilson Clover action at $\beta=1.82$ on $96^{3} \times 96$ lattice

(2) $1 / a=2.3 \mathrm{GeV}(a=0.085 \mathrm{fm})$
(90lume: $96^{4} \rightarrow(8 \mathrm{fm})^{4}$
- $\mathrm{m}_{\mathrm{D}}=145 \mathrm{MeV}, \mathrm{m}_{\mathrm{K}}=525 \mathrm{MeV}$

DDHMC(ud) and UVPHMC(s) with preconditioning

- K.-I.Ishikawa, et al., PoS LAT2015, 075; arXiv:1511.09222 [hep-lat].
- NBS wf is measured using wall quark source with Coulomb gauge fixing, spatial PBD and temporal DBC; \#stat=207configs x 4rotation x 96src

In lattice QCD calculations, we compute the normalized four-point correlation function

$$
R_{\alpha \beta}^{(J, M)}\left(\vec{r}, t-t_{0}\right)=\sum_{\vec{X}}\langle 0| B_{1, \alpha}(\vec{X}+\vec{r}, t) B_{2, \beta}(\vec{X}, t) \overline{\mathcal{J}_{B_{3} B_{4}}^{(J, M)}\left(t_{0}\right)}|0\rangle / \exp \left\{-\left(m_{B_{1}}+m_{B_{2}}\right)\left(t-t_{0}\right)\right\},
$$

$$
\begin{array}{lr}
p=\varepsilon_{a b c}\left(u_{a} C \gamma_{5} d_{b}\right) u_{c}, & n=-\varepsilon_{a b c}\left(u_{a} C \gamma_{5} d_{b}\right) d_{c}, \\
\Sigma^{+}=-\varepsilon_{a b c}\left(u_{a} C \gamma_{5} s_{b}\right) u_{c}, & \Sigma^{-}=-\varepsilon_{a b c}\left(d_{a} C \gamma_{5} s_{b}\right) d_{c}, \\
\Sigma^{0}=\frac{1}{\sqrt{2}}\left(X_{u}-X_{d}\right), & \Lambda=\frac{1}{\sqrt{6}}\left(X_{u}+X_{d}-2 X_{s}\right), \\
\Xi^{0}=\varepsilon_{a b c}\left(u_{a} C \gamma_{5} s_{b}\right) s_{c}, & \Xi^{-}=-\varepsilon_{a b c}\left(d_{a} C \gamma_{5} s_{b}\right) s_{c}, \tag{5}
\end{array}
$$

where

$$
\begin{equation*}
X_{u}=\varepsilon_{a b c}\left(d_{a} C \gamma_{5} s_{b}\right) u_{c}, \quad X_{d}=\varepsilon_{a b c}\left(s_{a} C \gamma_{5} u_{b}\right) d_{c}, \quad X_{s}=\varepsilon_{a b c}\left(u_{a} C \gamma_{5} d_{b}\right) s_{c}, \tag{6}
\end{equation*}
$$

$$
\left(\frac{\nabla^{2}}{2 \mu}-\frac{\partial}{\partial t}\right) R(\vec{r}, t)=\int d^{3} r^{\prime} U\left(\vec{r}, \vec{r}^{\prime}\right) R\left(\vec{r}^{\prime}, t\right)+O\left(k^{4}\right)=V_{\mathrm{LO}}(\vec{r}) R(\vec{r}, t)+\cdot(-8)
$$

Effective mass plot of the single baryon's correlation function

Preliminary result of LN potential at the $\left(m_{\pi^{\prime}} m_{K}\right) \approx(145,525) \mathrm{MeV}$

Very preliminary result of LN potential at the physical point $\quad V_{C}\left({ }^{3} S_{1}-{ }^{3} D_{1}\right)$ $\left(\frac{\nabla^{2}}{2 \mu}-\frac{\partial}{\partial t}\right) R(\vec{r}, t)=\int d^{3} r^{\prime} U\left(\vec{r}, \vec{r}^{\prime}\right) R\left(\vec{r}^{\prime}, t\right)+O\left(k^{4}\right)=V_{\mathrm{LO}}(\vec{r}) R(\vec{r}, t)+\cdot(-8)$

Very preliminary result of LN potential at the physical point

$$
\begin{aligned}
& V_{T}{ }_{(T) T(T, t)+\left({ }^{3} S_{1}-\right.}-(8)
\end{aligned}
$$

Very preliminary result of LN potential at the physical point $V_{C}\left({ }^{1} S_{0}\right)$ $\left(\frac{\nabla^{2}}{2 \mu}-\frac{\partial}{\partial t}\right) R(\vec{r}, t)=\int d^{3} r^{\prime} U\left(\vec{r}, \vec{r}^{\prime}\right) R\left(\vec{r}^{\prime}, t\right)+O\left(k^{4}\right)=V_{\mathrm{LO}}(\vec{r}) R(\vec{r}, t)+\cdot(-8)$

Effective block algorithm for various baryon-baryon correlators HN, CPC207,91(2016), arXiv:1510.00903(hep-lat)

Numerical cost (\# of iterative operations) in this algorithm

$$
1+N_{c}{ }^{2}+N_{c}{ }^{2} N_{\alpha}{ }^{2}+N_{c}{ }^{2} N_{\alpha}{ }^{2}+N_{c}{ }^{2} N_{\alpha}+N_{c}{ }^{2} N_{\alpha}=370
$$ In an intermediate step:

$\left(N_{c}!N_{\alpha}\right)^{B} \times N_{u}!N_{d}!N_{s}!\times 2^{N_{\Lambda}+N_{\Sigma^{2}}-B}=3456$ In a naïve approach:
$\left(N_{c}!N_{\alpha}\right)^{2 B} \times N_{u}!N_{d}!N_{s}!=3,981,312$

Generalization to the various baryon-baryon channels strangeness $\mathrm{S}=0$ to -4 systems

```
<pn\overline{pn}\rangle,
\langlep\Lambda\overline{p\Lambda}\rangle,}\langlep\Lambda\overline{\mp@subsup{\Sigma}{}{+}n}\rangle,\langlep\Lambda\overline{\mp@subsup{\Sigma}{}{0}p}\rangle
\langle\mp@subsup{\Sigma}{}{+}n\overline{pN}\rangle,\langle\mp@subsup{\Sigma}{}{+}n\overline{\mp@subsup{\Sigma}{}{+}n}\rangle,\langle\mp@subsup{\Sigma}{}{+}n\overline{\mp@subsup{\Sigma}{}{0}p}\rangle
<\Sigma 0
\\Lambda\Lambda\overline{\Lambda\Lambda}\rangle,}\langle\Lambda\Lambda\overline{p\overline{\Xi}}\rangle,\quad\langle\Lambda\Lambda\overline{n\overline{\mp@subsup{\Xi}{}{0}}}\rangle,\quad\langle\Lambda\Lambda\overline{\mp@subsup{\Sigma}{}{+}+\mp@subsup{\Sigma}{}{-}}\rangle,\quad\langle\Lambda\Lambda\overline{\mp@subsup{\Sigma}{}{0}\mp@subsup{\Sigma}{}{0}}\rangle
\langlep\Xi
\langlen\Xi
< \mp@subsup{\Sigma}{}{+}\mp@subsup{\Sigma}{}{-}\overline{\Lambda\Lambda}\rangle,\langle\mp@subsup{\Sigma}{}{+}\mp@subsup{\Sigma}{}{-}\overline{p\mp@subsup{\Xi}{}{-}}\rangle,\langle\mp@subsup{\Sigma}{}{+}\mp@subsup{\Sigma}{}{-}\overline{n\mp@subsup{\Xi}{}{0}}\rangle,\langle\mp@subsup{\Sigma}{}{+}\mp@subsup{\Sigma}{}{-}\overline{\mp@subsup{\Sigma}{}{+}\mp@subsup{\Sigma}{}{-}}\rangle,\langle\mp@subsup{\Sigma}{}{+}\mp@subsup{\Sigma}{}{-}\overline{\mp@subsup{\Sigma}{}{0}\mp@subsup{\Sigma}{}{0}}\rangle,\langle\mp@subsup{\Sigma}{}{+}\mp@subsup{\Sigma}{}{-}\overline{\mp@subsup{\Sigma}{}{0}\Lambda}\rangle
\langle\mp@subsup{\Sigma}{}{0}\mp@subsup{\Sigma}{}{0}\overline{\Lambda\Lambda}\rangle,\quad\langle\mp@subsup{\Sigma}{}{0}\mp@subsup{\Sigma}{}{0}\overline{p\Xi}\mp@subsup{\overline{\Xi}}{}{-}}\rangle,\quad\langle\mp@subsup{\Sigma}{}{0}\mp@subsup{\Sigma}{}{0}\overline{n\mp@subsup{\Xi}{}{0}}\rangle,\quad\langle\mp@subsup{\Sigma}{}{0}\mp@subsup{\Sigma}{}{0}\overline{\mp@subsup{\Sigma}{}{+}\mp@subsup{\Sigma}{}{-}}\rangle,\quad\langle\mp@subsup{\Sigma}{}{0}\mp@subsup{\Sigma}{}{0}\overline{\mp@subsup{\Sigma}{}{0}\mp@subsup{\Sigma}{}{0}}\rangle
<\mp@subsup{\Sigma}{}{0}\Lambda\overline{p\Xi\mp@subsup{\Xi}{}{-}}\rangle,}\langle\mp@subsup{\Sigma}{}{0}\Lambda\overline{n\mp@subsup{\Xi}{}{0}}\rangle,\quad\langle\mp@subsup{\Sigma}{}{0}\Lambda\overline{\mp@subsup{\Sigma}{}{+}\mp@subsup{\Sigma}{}{-}}\rangle, \langle\mp@subsup{\Sigma}{}{0}\Lambda\overline{\mp@subsup{\Sigma}{}{0}\Lambda}\rangle
\langle\Xi
<\mp@subsup{\Sigma}{}{-}\mp@subsup{\Xi}{}{0}\overline{\Xi-\Lambda}\rangle,\langle\mp@subsup{\Sigma}{}{-}\mp@subsup{\Xi}{}{0}\overline{\mp@subsup{\Sigma}{}{-}\mp@subsup{\Xi}{}{0}}\rangle,\langle\mp@subsup{\Sigma}{}{-}\mp@subsup{\Xi}{}{0}\overline{\mp@subsup{\Sigma}{}{0}\mp@subsup{\Xi}{}{-}}\rangle
\langle\mp@subsup{\Sigma}{}{0}\mp@subsup{\Xi}{}{-}\overline{\mp@subsup{\Xi}{}{-}\Lambda}\rangle,\langle\mp@subsup{\Sigma}{}{0}\mp@subsup{\Xi}{}{-}}\overline{\mp@subsup{\Sigma}{}{-}\mp@subsup{\Xi}{}{0}}\rangle,\langle\mp@subsup{\Sigma}{}{0}\mp@subsup{\Xi}{}{-}\overline{\mp@subsup{\Sigma}{}{0}\mp@subsup{\Xi}{}{-}}\rangle
\langle\Xi
```

Make better use of the computing resources!
HN, CPC 207, 91(2016) [arXiv:1510.00903[hep-lat]], (See also arXiv:1604.08346)

Classification of baryon blocks

 in the effective block algorithm* The number of declared blocks in terms of quark propagation form, i.e., from [111] to [222], in the simultaneous calculation of 4 pt correlators from NN to $\Xi \Xi$

```
Proton:
\(\Sigma^{+}\):
( \(\Xi^{0}\) :
- \(\Lambda\) (dsu):
* \(\Lambda\) (sud):
- \(\Lambda\) (uds):
```

$18+0+31+0+106+16+121+12=304$
$3+0+10+0+52+3+55+1=124$
$16+19+0+0+118+102+29+14=298$
$242+318+436+408+290+266+376+248=2584$
$94+164+102+132+130+164+102+96=984$
$94+102+130+102+164+132+164+96=984$

Summary

（I－1）LN potentials（central，tensor）at $\left(\mathrm{m}_{\pi}, \mathrm{m}_{\mathrm{K}}\right) \approx(145,525) \mathrm{MeV}$ ． phase shifts below the SN threshold

Both channels are attractive．（but weaker than empirical values）
Spin dependence is very weak．Relatively large statistical uncertainty． （I－2）Effective block algorithm for the various baron－baryon interaction Comput．Phys．Commun．207，91（2016）［arXiv：1510．00903（hep－lat）］ Simultaneous calcs（NN to XiXi ）is the point we have to take into account for the comprehensive perspective as well as energy－computing－ resource efficiency．

The algorithm will be applied to more wide range problems．
Future work：
 （II－1）Physical quantities including the binding energies of few－ body problem of light hypernuclei with the lattice YN（and NN） potentials
（II－2）New application of effective baryon block algorithm for the various baron－baryon interaction from NN to 三ミ．
＞Classification of baryon blocks from NN to ミニ，which comprises 52 4pt－correlators（2639 diagrams）
$>$ In search of a better approach to conducting lattice nuclear physics．
＞Spin－orbit force．

[^0]: ${ }^{1}$ The potential is obtained from the NBS wave function at moderately large imaginary time；it would be $t-t_{0} \gg$ $1 / m_{\pi} \sim 1.4 \mathrm{fm}$ ．In addition，no single state saturation between the ground state and the excited states with respect to the relative motion，e．g．，$t-t_{0} \gg(\Delta E)^{-1}=\left((2 \pi)^{2} /\left(2 \mu(L a)^{2}\right)\right)^{-1} \simeq 8.0 \mathrm{fm}$ ，is required for the HAL QCD method［13］．

