有効2体化3体力を含んだ中重核領域の計算 核力に基づいた原子核の構造と反応 2021/12/07-12@京大基研

宇都宮大学

吉田 聡太

syoshida@cc.utsunomiya-u.ac.jp

x EFTによる核力の記述

- Idaho: Entem, Machleidt, Nosyk
- LENPIC collaboration

NNN@NNLOと、その"有効2体化"

$$\begin{split} V_{3N}^{(2\pi)} &= \sum_{i \neq j \neq k} \frac{g_A^2}{8 f_\pi^4} \frac{\vec{\sigma}_i \cdot \vec{q}_i \vec{\sigma}_j \cdot \vec{q}_j}{\left(\vec{q}_i^2 + m_\pi^2\right) \left(\vec{q}_j^2 + m_\pi^2\right)} F_{ijk}^{\alpha\beta} \tau_i^{\alpha} \tau_j^{\beta}, \\ V_{3N}^{(1\pi)} &= -\sum_{i \neq j \neq k} \frac{g_A c_D}{8 f_\pi^4 \Lambda_\chi} \frac{\vec{\sigma}_j \cdot \vec{q}_j}{\vec{q}_j^2 + m_\pi^2} \vec{\sigma}_i \cdot \vec{q}_j \vec{\tau}_i \cdot \vec{\tau}_j, \\ V_{3N}^{(\text{ct)}} &= \sum_{i \neq j \neq k} \frac{c_E}{2 f_\pi^4 \Lambda_\chi} \vec{\tau}_i \cdot \vec{\tau}_j, \end{split}$$

 $\langle \mathbf{k}_{1}' \sigma_{1}' \tau_{1}', \mathbf{k}_{2}' \sigma_{2}' \tau_{2}' | V_{12(3)} | \mathbf{k}_{1} \sigma_{1} \tau_{1}, \mathbf{k}_{2} \sigma_{2} \tau_{2} \rangle_{A} \equiv \sum_{\mathbf{k}_{3}, \sigma_{3} \tau_{3}} \langle \mathbf{k}_{1}' \sigma_{1}' \tau_{1}', \mathbf{k}_{2}' \sigma_{2}' \tau_{2}', \mathbf{k}_{3} \sigma_{3} \tau_{3} | V_{123} | \mathbf{k}_{1} \sigma_{1} \tau_{1}, \mathbf{k}_{2} \sigma_{2} \tau_{2}, \mathbf{k}_{3} \sigma_{3} \tau_{3} \rangle_{A}.$ $* \text{ TPE} \\ \sigma \text{LECs}(c_{1}, c_{3}, c_{4}) \text{ INN } \\ \varepsilon \neq \mathbb{B}$

**運動量積分の上限は例えばk_F=1.35 fm⁻¹

JW Holt, Kaiser, Weise, PRC 81, 024002 (2010) <u>M. Kohno, PRC 88, 064005 (2013)</u> <u>SY Master thesis (2017)</u>

c.f. Genuine NNN

※こちらは今回考慮しない

antisymmetrized Jacobi:

 $|N_{\rm cm(3)}L_{\rm cm(3)}\rangle \otimes |N_1N_2; [(L_1S_1)J_1, (L_2\frac{1}{2})J_2]J_{12}; (T_1\frac{1}{2})T_{12}\rangle_a$

$$\underline{|E_{12}i_{12}J_{12}T_{12}\rangle_a} = \sum_{N_1'N_2'\alpha_{12}'} \delta_{(2N_1'+L_1'+2N_2'+L_2'), E_{12}} \delta_{J_{12}', J_{12}} \delta_{T_{12}', T_{12}} C_{N_1'N_2'\alpha_{12}'}^{i_{12}} \underline{|N_1N_2; \alpha_{12}\rangle_a}$$

JT-coupled

$$\frac{{}_{a}\langle \tilde{a}\tilde{b}\tilde{c}; J_{ab}J; T_{ab}T | V | \tilde{a}'\tilde{b}'\tilde{c}'; J'_{ab}J; T'_{ab}T \rangle_{a}}{= 6 \sum_{N_{1},N_{2},\alpha} \sum_{N'_{1},N'_{2},\alpha'} \sum_{N_{c.m.},L_{c.m.}} \sum_{i,i'} \delta_{T_{ab},T_{1}} \delta_{T'_{ab},T'_{1}} \delta_{T,T_{12}} \delta_{T,T'_{12}} \delta_{J_{12},J'_{12}}} \times T_{N_{1}N_{2}\alpha'N_{c.m.}L_{c.m.}}^{\tilde{a}\tilde{b}\tilde{c}'J'_{ab}J} C_{N'_{1}N'_{2}\alpha'N_{c.m.}L_{c.m.}}^{i} C_{N_{1}N_{2}\alpha}^{i} C_{N'_{1}N'_{2}\alpha'a}^{i'} \langle E_{12}iJ_{12}^{\pi}T_{12} | V | E'_{12}i'J_{12}^{\pi}T_{12} \rangle_{a}}$$

m-scheme

$$\underline{a\langle abc| V|a'b'c'\rangle_a} = \sum_{J_{ab},J'_{ab},J} \sum_{T_{ab},T'_{ab},T'} \begin{pmatrix} j_a & j_b \\ m_a & m_b \end{pmatrix} \begin{pmatrix} J_{ab} \\ M_{ab} \end{pmatrix} \begin{pmatrix} J_{ab} & j_c \\ M_{ab} & m_c \end{pmatrix} \begin{pmatrix} J \\ M \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ m_{ta} & m_{tb} \end{pmatrix} \begin{pmatrix} T_{ab} & \frac{1}{2} \\ M_{Tab} & m_{tc} \end{pmatrix} \begin{pmatrix} T \\ M$$

→ on-the-fly必須

A. Calci, Ph.D thesis, TU Darmstadt (2014)

 $e_1 + e_2 + e_3 = (2n_1 + l_1) + ... \leq E_{3max}$

FIG. 1. (Color online) Memory required to store the *T* coefficients (\blacklozenge), as well as the three-body matrix elements in the antisymmetrized-Jacobi (\blacksquare), *JT*-coupled (\blacktriangle), and *m*-scheme (\bigcirc) representations as function of the maximum three-body energy quantum number E_{3max} . All quantities are assumed to be single-precision floating point numbers.

R.Roth et al., PRC 90, 024325 (2014)

Motivation

genuine 3NF は大変...

→ 有効2体化3体力でバルクな3体力効果を"mimic"できないか?

- c_D,c_Eのみをパラメータとする (c_{1.3.4}はNN-sectorで決まっている)
- ・ 中重核領域でc_D,c_Eを"ベイズ最適化"でラフに決定
- ・ 有効2体力の枠組みでの中重核領域の記述を検討

Python(読み書きしやすい) × Fortran/C++の速度(性能)

GitHub上で公開予定 <u>https://github.com/SotaYoshida/ChiralEFTint.jl</u> ※src未公開ですが、声をかけてもらえればお渡しします

- ✓ Entem-Machleidt型の2体力(N3LO)
- ✓ 運動量空間でのSRG変換(NN-only)
- ✓ 河野(+吉田)型の有効2体化3体力
- ✓ valence系の演算子を含むNN相互作用
 - ▶ IMSRG計算 → 殼模型有効相互作用

→NCSMや殻模型計算 KSHELL / 🎝 ShellModel.jl

https://github.com/SotaYoshida/ShellModel.jl

▶ その他...

SRG evolution of NN/NNN interaction

 $-2\langle E_{12}i|H_{\alpha}|E_{12}''i''\rangle \langle E_{12}''i''|T_{\rm int}|E_{12}'''i''\rangle \langle E_{12}'''i''|H_{\alpha}|E_{12}'i'\rangle$

(b) $\alpha = 0.0 \, \text{fm}^4$ (c) $\alpha = 0.04 \, \text{fm}^4$ (d) $\alpha = 0.16 \, \text{fm}^4$ (a) T_{int} [MeV] 2 1.16 20 (E'_{13}, i') 0.64 0.32 0.12 26 \cap 28 20 22 24 26 28 0 20 22 24 28 0 20 22 24 20 22 24 0 26 26 28 0 26 28 (E_{12}, i) (E_{12}, i) (E_{12}, i) (E_{12}, i)

+ $\langle E_{12}i | H_{\alpha} | E_{12}''i'' \rangle \langle E_{12}''i'' | H_{\alpha} | E_{12}'''i'' \rangle \langle E_{12}'''i'' | T_{\text{int}} | E_{12}'i' \rangle$,

FIG. 2. (Color online) Matrix elements in the antisymmetrized HO Jacobi representation for the triton channel $(J_{12}^{\pi}, T_{12}) = (1/2^+, 1/2)$ for $\hbar\Omega = 24$ MeV. Plotted are the absolute values of the intrinsic kinetic-energy matrix elements (a), as well as the interaction part of the evolved chiral NN + 3N Hamiltonian for flow parameters $\alpha = 0$ fm⁴ (b), $\alpha = 0.04$ fm⁴ (c), and $\alpha = 0.16$ fm⁴ (d). The dark grid lines separate blocks of fixed energy quantum numbers E_{12} and E'_{12} . R.Roth et al., PRC 90, 024325 (2014)

In-medium Similarity Renormalization Group (IMSRG)

c.f. IMSRG ⊐ − F (C++/Python) <u>https://github.com/ragnarstroberg/imsrg</u> 有効2体化3体力を取り込んで、c_D,c_Eを中重核のg.s. energyでfit

IMSRGコード (C++/Python)を使用 <u>https://github.com/ragnarstroberg/imsrg</u>

ベイズ最適化 (Bayesian Optimization): 探索と活用のトレードオフ

最小化/最大化したい関数(誤差関数/尤度)の振る舞いを、 Gaussian Processでsurrogateして、次の探索点を提案

> ※「Sota Yoshida ベイズ最適化 GitHub」で検索すると 授業で使うGoogle Colab.用Jupyter Notebookが見つかります

Ca領域の基底状態, IMSRG計算:

NN (N3LO, SRG evolved, $\lambda = 2.0 \text{ fm}^{-1}$, ind X) + 3NF (NNLO, Fermi gas approx., not evolved)

- Single-Ref. (Reference state = それぞれの核についてHF)
- e_{max}に対する収束の兆候 ~ emax=12(emax=10●→12●)
- 有効2体化3体力の積分パラメータは固定(k_F = 1.35 fm⁻¹) → ¹⁶O とCa領域を両立しない

VS-IMSRG計算: g.s.

VS-IMSRGでpf shell(⁴⁰Caコア)の相互作用を導出し、 殻模型計算で厳密対角化

バレンス核子が多くなるにつれIMSRG/VS-IMSRGのgapが大きくなる

Ref: S.R. Stroberg Annu. Rev. Nucl. Part. Sci. 2019. 69:307-62

VS-IMSRG計算: g.s.

VS-IMSRGでpf shell(⁴⁰Caコア)の相互作用を導出し、 殻模型計算で厳密対角化

バレンス核子が多くなるにつれIMSRG/VS-IMSRGのgapが大きくなる

Ref: S.R. Stroberg Annu. Rev. Nucl. Part. Sci. 2019. 69:307-62

VS-IMSRG計算: Ca (A=48,52,54)

J=2	
8 - J=3 J=3 J=5 J=5 	<u></u>
4	
0	
$a = \frac{J=0}{J=1} = \frac{J=0}{J=2}$ Ca52	
6 - J=4	
4 -	<u> </u>
2	
o	
$a^{8} = \frac{1}{1} = 0$ $f^{7} = \frac{1}{1} = 1$ Ca54	
6 - J=3 5 - J=4	
4	
3	
1-	

 int A/Bともにスペクトル (g.s.と励起状態の相対的な関係) はほぼ同じ

3NF(OPE/CON)には強く依存しない

genuine 3NFを含む計算(右2つ)と
 <u>核力・近似の不定性の範囲で</u>consistent?

全てを上手く説明する核力は今のところ無い

• 現象論的にはソコソコ...?

T=1のmonopoleを見てみると GXPF1A(Bonn C, G行列+fit) に"似ている"

intA/B: hw=28, emax=12, Ref=40Ca

S.R. Stroberg et al., PRL 118, 032502 (2017) NN(EM, N3LO) + NNN (Λ_{3NF} =400 MeV) hw = 24, cD = -0.2 cE = 0.098

VS-IMSRG計算: ⁴⁸Cr yrast states

monopole int.

T=1成分はGXPF1Aと類似→Caの記述はソコソコ?

※GXPF1Aはcoulomb無し

proton-neutronで、全体的に引力的(GXPF1A比)

→ f5-f7の"1MeV"~ Central&Tensor → f7に詰まるよりもf5に適度に励起した方がお得 → ⁴⁸Crのback bending, ⁵⁶Ni領域での破綻

origin: 相互作用(近似,LECs fitのartifact)? 多体手法(IMSRG(2))?

⁵⁶Ni相互作用でのmonopoleの内訳 (Central/LS/TEnsor)

Chiral EFT相互作用の、とくに有効2体化3体力による 3体力のバルクな近似の妥当性を中重殻領域で検証中

▶ 密度依存性の導入 (今はエイヤッと標準核密度)→より広域を系統的に

- publicな相互作用生成コードChiEFT.jlを開発中, NN+eff 2N(3NF)
 - ▶ genuine 3NFやNN-NNNのconsistent SRGとあわせて検証へ
 - ▶ 核力から核構造計算・結果の可視化を単一のプラットフォームで…

publicな3体力/多体計算コード Nuclear Toolkit (?)の作成に興味はありませんか?

- これまでの現象論的な殻模型計算における"ノウハウ"を活かして 核力・有効相互作用・多体計算手法(SM, MSCM/QVSM, IMSRG, etc.) 相補的な理解の深化へ...
 - ▶ 核力(NN, NNN, etc.)のさらなる理解
 - ▶ 核力に基づく中重核領域計算フロンティアの開拓

backup

基底状態のIMSRG計算: 収束性(intB)

EM1.8/2.0 magic interaction, J. Simonis et al., PRC 96, 014303 (2017)

NN (N3LO, SRG evolved, ind X) + 3NF (NNLO, not evolved) K. Hebeler et al., PRC 83, 031301(R) (2011)

cD = 1.264, cE = -0.120

induceされる多体力を上手くmimicするような3体力になっている?

J. Hoppe et al., PRC 100, 024318 (2019) •

NN+3NF upto N3LO, Consistently SRG evolved (ind \checkmark) ° GD, cE from saturation property

0

Hüter (R. Roth group), Phys. Lett. B 808, 135651 (2020)

NN+3NF upto N3LO, Consistently SRG evolved (ind \checkmark) c_D , c_E from ³H & ¹⁶O g.s. energy $cD \sim 4$

good!!

What is Julia ?

Since 2012: Becoming popular in physics, DS, Machine Learning, etc.

- MIT LICENSE
- Multiple dispatch
- Dynamically typed
- JIT(Just-In-Time) compilation by LLVM
- Fast as C++/Fortran
- Macros like Lisp
- Package manager
- Easy to call Python, C, Fortran, etc.
- → High readability and productivity like Python
 → High performance like C++/Fortran

If you are "greedy", you should consider to use Julia 😉

他のコードとの"比較"

Point: Juliaコードは読み書きしやすく、実行性能も十分

Δ-full EFT, PRC 102, 054301 (2020)

GO potential (Chalmers & Oak Ridge)

TABLE III. Binding energies (in MeV) for selected nuclei with the new interaction using CCSDT-1 and compared to data.

	ΔNLO_{GO} (450)	ΔNNLO _{GO} (450)	ΔNNLO _{GO} (394)	Exp.
¹⁶ O	128.2	128.1(23)	127.5(19)	127.62
²⁴ O	165	170 (3)	169 (3)	168.96
⁴⁰ Ca	341	348 (7)(1)	346 (6)	342.05
⁴⁸ Ca	410	422 (9)(4)	420 (7)	416.00
⁷⁸ Ni	-	631 (14)(20)	639 (11)(4)	641.55
⁹⁰ Zr	-	-	782 (14)(6)	783.90
¹⁰⁰ Sn	_	-	818 (16)(7)	825.30
¹³² Sn	-	-	1043 (20)(30)	1102.84

「やっぱり∆の自由度が重要!!」

そう単純なストーリーではない

「あなたたちのポテンシャル、 P-waveのphase shiftが めちゃくちゃだし、 60年代の核力より酷いよ」