有効2体化3体力を含んだ中重核領域の計算

核力に基づいた原子核の構造と反応2021／12／07－12＠京大基研

宇都宮大学
 吉 \boxplus 聡太

syoshida＠cc．utsunomiya－u．ac．jp

хEFTによる核力の記述

c．f．Δ－full ※こちらは今回考慮しない

EMN，arXiv：2107．06452
PRC 104， 054001 （2021）．
－Idaho：Entem，Machleidt，Nosyk
－LENPIC collaboration

NNN＠NNLOと，その＂有効2体化＂

$$
\begin{aligned}
V_{3 N}^{(2 \pi)} & =\sum_{i \neq j \neq k} \frac{g_{A}^{2}}{8 f_{\pi}^{4}} \frac{\vec{\sigma}_{i} \cdot \vec{q}_{i} \vec{\sigma}_{j} \cdot \vec{q}_{j}}{\left(\vec{q}_{i}^{2}+m_{\pi}^{2}\right)\left(\vec{q}_{j}^{2}+m_{\pi}^{2}\right)} F_{i j k}^{\alpha \beta} \tau_{i}^{\alpha} \tau_{j}^{\beta}, \\
V_{3 N}^{(1 \pi)} & =-\sum_{i \neq j \neq k} \frac{g_{A} c_{D}}{8 f_{\pi}^{4} \Lambda_{\chi}} \frac{\vec{\sigma}_{j} \cdot \vec{q}_{j}}{\vec{q}_{j}^{2}+m_{\pi}^{2}} \vec{\sigma}_{i} \cdot \vec{q}_{j} \vec{\tau}_{i} \cdot \vec{\tau}_{j}, \\
V_{3 N}^{(\mathrm{ct})} & =\sum_{i \neq j \neq k} \frac{c_{E}}{2 f_{\pi}^{4} \Lambda_{\chi}} \vec{\tau}_{i} \cdot \vec{\tau}_{j},
\end{aligned}
$$

$$
\left\langle\boldsymbol{k}_{1}^{\prime} \sigma_{1}^{\prime} \tau_{1}^{\prime}, \boldsymbol{k}_{2}^{\prime} \sigma_{2}^{\prime} \tau_{2}^{\prime}\right| V_{12(3)}\left|\boldsymbol{k}_{1} \sigma_{1} \tau_{1}, \boldsymbol{k}_{2} \sigma_{2} \tau_{2}\right\rangle_{A} \equiv \sum_{\boldsymbol{k}_{3}, \sigma_{3} \tau_{3}}\left\langle\boldsymbol{k}_{1}^{\prime} \sigma_{1}^{\prime} \tau_{1}^{\prime}, \boldsymbol{k}_{2}^{\prime} \sigma_{2}^{\prime} \tau_{2}^{\prime}, \boldsymbol{k}_{3} \sigma_{3} \tau_{3}\right| V_{123}\left|\boldsymbol{k}_{1} \sigma_{1} \tau_{1}, \boldsymbol{k}_{2} \sigma_{2} \tau_{2}, \boldsymbol{k}_{3} \sigma_{3} \tau_{3}\right\rangle_{A}
$$

＊TPEのLECs $\left(c_{1}, c_{3}, c_{4}\right)$ はNNと共通
＊＊運動量積分の上限は例えば $\mathrm{k}_{\mathrm{F}}=1.35 \mathrm{fm}^{-1}$

JW Holt，Kaiser，Weise，PRC 81， 024002 （2010） M．Kohno，PRC 88， 064005 （2013） SY Master thesis（2017）

c．f．Genuine NNN

※こちらは今回考慮しない

antisymmetrized Jacobi：

$$
\begin{aligned}
& \left|N_{\mathrm{cm}(3)} L_{\mathrm{cm}(3)}\right\rangle \otimes\left|N_{1} N_{2} ;\left[\left(L_{1} S_{1}\right) J_{1},\left(L_{2} \frac{1}{2}\right) J_{2}\right] J_{12} ;\left(T_{1} \frac{1}{2}\right) T_{12}\right\rangle_{a} \\
& \underline{\left|E_{12} i_{12} J_{12} T_{12}\right\rangle_{a}}=\sum_{N_{1}^{\prime} N_{2}^{\prime} \alpha_{12}^{\prime}} \delta_{\left(2 N_{1}^{\prime}+L_{1}^{\prime}+2 N_{2}^{\prime}+L_{2}^{\prime}\right), E_{12} \delta_{J_{12}^{\prime}, J_{12}} \delta_{T_{12}^{\prime}, T_{12}} C_{N_{1}^{\prime} N_{2}^{\prime} \alpha_{12}^{\prime}}^{i_{12}}\left|N_{1} N_{2} ; \alpha_{12}\right\rangle}
\end{aligned}
$$

JT－coupled

$$
\begin{aligned}
& { }_{a}\left\langle\tilde{a} \tilde{b} \tilde{c} ; J_{a b} J ; T_{a b} T\right| V\left|\tilde{a}^{\prime} \tilde{b}^{\prime} \tilde{c}^{\prime} ; J_{a b}^{\prime} J ; T_{a b}^{\prime} T\right\rangle_{a} \\
& =6 \sum_{N_{1}, N_{2}, \alpha} \sum_{N_{1}^{\prime}, N_{2}^{\prime}, \alpha^{\prime}} \sum_{N_{\text {c.m. }}, L_{\text {c.m. }}} \sum_{i, i^{\prime}} \delta_{T_{a b}, T_{1}} \delta_{T_{a b}^{\prime}, T_{1}^{\prime}} \delta_{T, T_{12}} \delta_{T, T_{12}^{\prime}} \delta_{J_{12}, J_{12}^{\prime}}
\end{aligned}
$$

m－scheme

$$
\begin{aligned}
& \underline{{ }_{a}\langle a b c| V\left|a^{\prime} b^{\prime} c^{\prime}\right\rangle_{a}}=\sum_{J_{a b}, J_{a b}^{\prime}, J} \sum_{T_{a b}, T_{a b}^{\prime}, T}\left(\begin{array}{cc|c}
j_{a} & j_{b} \\
m_{a} & m_{b} & J_{a b} \\
M_{a b}
\end{array}\right)\left(\left.\begin{array}{cc}
J_{a b} & j_{c} \\
M_{a b} & m_{c}
\end{array} \right\rvert\, \begin{array}{c}
J
\end{array}\right)\left(\left.\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
m_{t a} & m_{t b}
\end{array} \right\rvert\, \begin{array}{c}
T_{a b} \\
M_{T a b}
\end{array}\right)\left(\begin{array}{cc|c}
T_{a b} & \frac{1}{2} & T \\
M_{T a b} & m_{t c} & M_{T}
\end{array}\right) \\
& \times\left(\begin{array}{cc|c}
j_{a}^{\prime} & j_{b}^{\prime} & J_{a b}^{\prime} \\
m_{a}^{\prime} & m_{b}^{\prime} & M_{a b}^{\prime}
\end{array}\right)\left(\begin{array}{cc|c}
J_{a b}^{\prime} & j_{c}^{\prime} & J \\
M_{a b}^{\prime} & m_{c}^{\prime} & M
\end{array}\right)\left(\begin{array}{cc|c}
\frac{1}{2} & \frac{1}{2} & T_{a b}^{\prime} \\
m_{t a}^{\prime} & m_{t b}^{\prime} & M_{\text {Tab }}^{\prime}
\end{array}\right)\left(\begin{array}{cc|c}
T_{a b}^{\prime} & \frac{1}{2} & T \\
M_{T a b}^{\prime} & m_{t c}^{\prime} & M_{T}
\end{array}\right) \\
& \times{ }_{a} \underline{\left\langle\tilde{a} \tilde{b} \tilde{c} ; J_{a b} J ; T_{a b} T\right| V\left|\tilde{a}^{\prime} \tilde{b}^{\prime} \tilde{c}^{\prime} ; J_{a b}^{\prime} J ; T_{a b}^{\prime} T\right\rangle_{a}, ~} \\
& \rightarrow \text { on-the-fly必須 }
\end{aligned}
$$

A．Calci，Ph．O thesis，TU Darmstadt（2014）

FIG．1．（Color online）Memory required to store the T coef－ ficients (\diamond) ，as well as the three－body matrix elements in the antisymmetrized－Jacobi（ \square ），$J T$－coupled（ $\mathbf{\Delta}$ ），and m－scheme（ $\boldsymbol{\bullet}$ ） representations as function of the maximum three－body energy quantum number $E_{3 \max }$ ．All quantities are assumed to be single－ precision floating point numbers．

R．Roth et al．，PRC 90， 024325 （2014）

T．Miyagi et al．，arXiv：2104．04688

Motivation

genuine 3NF は大変．．．
\rightarrow 有効 2 体化 3 体力でバルクな3体力効果を＂mimic＂できないか？

－C_{D}, C_{E} のみをパラメータとする （ $c_{1,3,4}$ はNN－sectorで決まっている）

- 中重核領域で C_{D}, C_{E} を＂ベイズ最適化＂でラフに決定
- 有効2体力の枠組みでの中重核領域の記述を検討

ChiEFTint．jl：Julia言語によるカイラル相互作用生成コード

GitHub上で公開予定 https：／／github．com／SotaYoshida／ChiralEFTint．j｜

\checkmark Entem－Machleidt型の2体力（N3LO）
\checkmark 運動量空間でのSRG変換（NN－only）
\checkmark 河野（＋吉 $⿴$ ）型の有効 2 体化 3 体力
\checkmark valence系の演算子を含むNN相互作用
－IMSRG計算 \rightarrow 殸模型有効相互作用
\rightarrow NCSMや款模型計算 KSHELL／ShellModel．j1
－その他．．．

SRG evolution of NN／NNN interaction

NN－only

induced－3Nを無視

$$
H(s)=U(s) H(0) U^{\dagger}(s) \quad \frac{d}{d s} H(s)=[\eta(s), H(s)]
$$

$\rightarrow m \times m$ 行列の演算 + ODE（e．g．RK4）に帰着
m ：運動量メッシュ点の数

NNN，Jacobi ※こちらは今回考慮しない

$$
\begin{aligned}
\frac{d}{d \alpha}\left\langle E_{12} i\right| H_{\alpha}\left|E_{12}^{\prime} i^{\prime}\right\rangle= & (2 \mu)^{2} \sum_{E_{12}^{\prime \prime}, i^{\prime \prime}}^{E_{12}^{\prime} \leqslant E_{\text {ssG }}} \sum_{E_{12}^{\prime \prime}, i^{\prime \prime \prime}}^{E_{12}^{\prime \prime} \leqslant E_{\text {sRG }}}\left(\left\langle E_{12} i\right| T_{\text {int }}\left|E_{12}^{\prime \prime} i^{\prime \prime}\right\rangle\left\langle E_{12}^{\prime \prime} i^{\prime \prime}\right| H_{\alpha}\left|E_{12}^{\prime \prime \prime} i^{\prime \prime \prime}\right\rangle\left\langle E_{12}^{\prime \prime \prime} i^{\prime \prime \prime}\right| H_{\alpha}\left|E_{12}^{\prime} i^{\prime}\right\rangle\right. \\
& -2\left\langle E_{12} i\right| H_{\alpha}\left|E_{12}^{\prime \prime} i^{\prime \prime}\right\rangle\left\langle E_{12}^{\prime \prime} i^{\prime \prime}\right| T_{\text {int }}\left|E_{12}^{\prime \prime \prime} i^{\prime \prime \prime}\right\rangle\left\langle E_{12}^{\prime \prime \prime} i^{\prime \prime \prime}\right| H_{\alpha}\left|E_{12}^{\prime} i^{\prime}\right\rangle \\
& \left.+\left\langle E_{12} i\right| H_{\alpha}\left|E_{12}^{\prime \prime} i^{\prime \prime}\right\rangle\left\langle E_{12}^{\prime \prime} i^{\prime \prime}\right| H_{\alpha}\left|E_{12}^{\prime \prime \prime} i^{\prime \prime \prime}\right\rangle\left\langle E_{12}^{\prime \prime} i^{\prime \prime \prime}\right| T_{\text {int }}\left|E_{12}^{\prime} i^{i}\right\rangle\right),
\end{aligned}
$$

FIG．2．（Color online）Matrix elements in the antisymmetrized HO Jacobi representation for the triton channel（ $\left.J_{12}^{\pi}, T_{12}\right)=\left(1 / 2^{+}, 1 / 2\right)$ for $\hbar \Omega=24 \mathrm{MeV}$ ．Plotted are the absolute values of the intrinsic kinetic－energy matrix elements（a），as well as the interaction part of the evolved chiral $N N+3 N$ Hamiltonian for flow parameters $\alpha=0 \mathrm{fm}^{4}(\mathrm{~b}), \alpha=0.04 \mathrm{fm}^{4}(\mathrm{c})$ ，and $\alpha=0.16 \mathrm{fm}^{4}(\mathrm{~d})$ ．The dark grid lines separate blocks of fixed energy quantum numbers E_{12} and E_{12}^{\prime} ．

R．Roth et al．，PRC 90， 024325 （2014）

In－medium Similarity Renormalization Group（IMSRG）

－reference state（通常HF）に対する p－h励起／相関を繰り込む（decouple）

$$
H(s)=U(s) H(0) U^{\dagger}(s) \quad \frac{d}{d s} H(s)=[\eta(s), H(s)]
$$

$H=E_{0}+\sum_{i j} f_{i j}: a_{i}^{\dagger} a_{j}:+\frac{1}{4} \sum_{i j k l} \Gamma_{i j k l}: a_{i}^{\dagger} a_{j}^{\dagger} a_{k} a_{l}:+\frac{1}{36} \sum_{i j k l m n} W_{i j k l m n}: a_{i}^{\dagger} a_{j}^{\dagger} a_{k}^{\dagger} a_{n} a_{m} a_{l}:$
H．Hergert Phys．Scr． 92 （2017） 023002

$$
\begin{aligned}
& \frac{d E_{0}}{d s}=[\eta(s), H(s)]_{0 b} \quad \frac{d \Gamma}{d s}=[\eta(s), H(s)]_{2 b} \\
& \frac{d f}{d s}=[\eta(s), H(s)]_{1 b} \quad \frac{d W}{d s}=[\eta(s), H(s)]_{3 b} \\
& \operatorname{IMSRG}(2) \sim \mathrm{CCSO}
\end{aligned}
$$

－Hamiltonianと同様に任意のOperatorをevolveして期待値を計算できる（c．f．Magnus expansion）
－上のf\＆「のflow \rightarrow 模型空間上の殻模型有効相互作用を導出（VS－IMSRG）

c．f．IMSRGコード（C＋＋／Python）
https：／／github．com／ragnarstroberg／imsrg

cD，cEのベイズ最適化

有効2体化3体力を取り込んで，C_{D}, C_{E} を中重核のg．s．energyでfit

$E_{g s}(40,48,52,54 \mathrm{Ca})$ ，
A） $\mathrm{c}_{\mathrm{D}}=3.50, \mathrm{c}_{\mathrm{E}}=0.50$
emax $=10, \operatorname{HFMBPT}(3) \times 0.93$
B）$c_{D}=0.166, c_{E}=-0.333$

IMSRGコード（C＋＋／Python）を使用 https：／／github．com／ragnarstroberg／imsrg

ベイズ最適化（Bayesian Optimization）：探索と活用のトレードオフ

- 最適化したい関数がブラックボックス
- 探索回数をできるだけ減らしたい

今の場合：
探索＝1回の大変な計算

最小化／最大化したい関数（誤差関数／尤度）の振る舞いを， Gaussian Processでsurrogateして，次の探索点を提案
※「Sota Yoshida ベイズ最適化 GitHub」で検索すると授業で使うGoogle Colab．用Jupyter Notebookが見つかります

Ca領域の基底状態，IMSRG計算：

NN（N3LO，SRG evolved，$\lambda=2.0 \mathrm{fm}^{-1}$ ，ind X ）+3 NF （NNLO，Fermi gas approx．，not evolved）

- Single－Ref．（Reference state＝それぞれの核についてHF）
- $e_{\text {max }}$ に対する収束の兆候～emax＝12（emax＝10 $\rightarrow 12$ ）
- 有効2体化3体力の積分パラメータは固定 $\left(k_{F}=1.35 \mathrm{fm}^{-1}\right)$
$\rightarrow 16 \mathrm{O}$ とCa領域を両立しない

VS－IMSRGでpf shell（ ${ }^{40} \mathrm{Ca}$ コア）の相互作用を導出し，殻模型計算で厳密対角化

バレンス核子が多くなるにつれIMSRG／VS－IMSRGのgapが大きくなる
Ref．＝Core \rightarrow バレンス3体力の効果等を過小評価する Ref．＝Nucl．Ensemble Normal Ordering（ENO）

VS－IMSRGでpf shell（ ${ }^{40} \mathrm{Ca}$ コア）の相互作用を導出し，殻模型計算で厳密対角化

バレンス核子が多くなるにつれIMSRG／VS－IMSRGのgapが大きくなる
Ref．＝Core \rightarrow バレンス3体力の効果等を過小評価する Ref．＝Nucl．Ensemble Normal Ordering（ENO）

VS－IMSRG計算： $\mathrm{Ca}(\mathrm{A}=48,52,54)$

－int A／Bともにスペクトル
（g．s．と励起状態の相対的な関係） はほぼ同じ

3NF（OPE／CON）には強く依存しない

－genuine $3 N F$ を含む計算（右2つ）と核力•近似の不定性の範囲でconsistent？

全てを上手く説明する核力は今のところ無い
－現象論的にはソコソコ．．．？

T＝1のmonopoleを見てみると GXPFIA（Bonn C，G行列＋fit） に＂似ている＂
$\operatorname{intA} / B: h w=28, e m a x=12, \operatorname{Ref}={ }^{40} \mathrm{Ca}$
S．R．Stroberg et al．，PRL 118， 032502 （2017）
$N N(E M, N 3 L O)+N N N\left(\Lambda_{3 N F}=400 \mathrm{MeV}\right)$ $h w=24, c D=-0.2 c E=0.098$

VS－IMSRG計算：${ }^{48} \mathrm{Cr}$ yrast states

- int A／Bはf7／2が壊れやすい \rightarrow 後述
- back bendingは説明できない

Vmono．（total $=\mathrm{C}+\mathrm{LS}+\mathrm{T}+\mathrm{ALS}$ ）

$T=1$ 成分はGXPF1Aと類似 \rightarrow Caの記述はソコソコ？
※GXPFIAはcoulomb無し
proton－neutronで，全体的に引力的（GXPF1A比）
\rightarrow f5－f7の＂1 MeV＂～Central\＆Tensor
$\rightarrow f 7$ に詰まるよりもf5に適度に励起した方がお得
$\rightarrow{ }^{48} \mathrm{Cr}$ のback bending，${ }^{56} \mathrm{Ni}$ 領域での破綻
origin：相互作用（近似，LECs fitの artifact）？多体手法（IMSRG（2））？

${ }^{56} \mathrm{Ni}$ 相互作用でのmonopoleの内訳（Central／LS／Tensor）

－Central

- 今の相互作用はCa同位体にLECs（cD\＆cE）をあわせた以外，一切fitはナシ
- 一方でCentralのmonopoleはGXPFIA（G行列＋fit）と極めて類似した傾向（非自明）
－Tensor

－Chiral EFT相互作用の，とくに有効2体化3体力による 3体力のバルクな近似の妥当性を中重殻領域で検証中
－密度依存性の導入（今はエイヤッと標準核密度）\rightarrow より広域を系統的に
publicな相互作用生成コードChiEFT．jを開発中，NN＋eff 2N（3NF）
genuine 3NFやNN－NNNのconsistent SRGとあわせて検証へ
－核力から核構造計算•結果の可視化を単一のプラットフォームで．．．
publicな3体力／多体計算コード Nuclear Toolkit（？）の作成に興味はありませんか？

これまでの現象論的な殻模型計算における＂ノウハウ＂を活かして核力•有効相互作用•多体計算手法（SM，MSCM／QVSM，IMSRG，etc．）相補的な理解の深化へ．．．

- 核力（NN，NNN，etc．）のさらなる理解
- 核力に基づく中重核領域計算フロンティアの開拓

基底状態のIMSRG計算：収束性（intB）

EM 1．8／2．0 magic interaction，J．Simonis et al．，PRC 96， 014303 （2017）

NN（N3LO，SRG evolved，ind X）＋3NF（NNLO，not evolved）
K．Hebeler et al．，PRC 83，031301（R）（2011）

induceされる多体力を上手くmimicするような3体力になっている？

J. Hoppe et al., PRC 100, 024318 (2019)

NN+3NF upto N3LO, Consistently SRG evolved (ind $\sqrt{ }$) cD,cE from saturation property

Hüter（R．Roth group），Phys．Lett．B 808， 135651 （2020）

$N N+3 N F$ upto N3LO，Consistently SRG evolved（ind $\sqrt{ }$ ）c_{D}, c_{E} from ${ }^{3} \mathrm{H} \&{ }^{16} \mathrm{O}$ g．s．energy

SRG parameterにあんまり依らない （＝induceされる多体力の効果は小さい）
good！！

What is Julia?

julia
Since 2012:
Becoming popular in physics, DS, Machine Learning, etc.

- MIT LICENSE
- Multiple dispatch
- Dynamically typed
- JIT(Just-In-Time) compilation by LLVM
- Fast as C++/Fortran
- Macros like Lisp
- Package manager
- Easy to call Python, C, Fortran, etc.
\rightarrow High readability and productivity like Python
\rightarrow High performance like C++/Fortran
If you are "greedy", you should consider to use Julia

Juliaを用いた殻模型計算コード：ShellModel．jl（v0．1．0）

Lanczos法による厳密対角化：$H(\vec{c})|\psi(\vec{c})\rangle=E(\vec{c})|\psi(\vec{c})\rangle$殻模型計算の80－95\％を占める
Thick－Restart（TR），Block Lanczos（BL）， TRBL，double Lanczos（J射影），etc．
sd－shell（ $\left.{ }^{16} \mathrm{O} \sim\right)$ ）pf－shell（ ${ }^{(40} \mathrm{Ca}$～）領域で＂最速＂

```
Algorithm 4 Thick-restart block Lanczos method
    1: \(\boldsymbol{V}_{1}\) be arbitrary vectors with \(\boldsymbol{V}_{1}^{i} \boldsymbol{V}_{1}=\mathbf{1}\) and \(k_{x}:=0\).
for \(l=1,2,3, \ldots\) do
    for \(k=1,2, \cdots\) do
        \(\boldsymbol{w}:=H \boldsymbol{V}_{k}\)
            \(\boldsymbol{\alpha}_{k}:=\boldsymbol{V}_{k}^{T} \boldsymbol{W}\)
            \(T_{k_{x}+q(k-1)+1: k_{x}+q k, k_{x}+q(k-1)+1: k_{x}+q k}:=\boldsymbol{\alpha}\)
            Diagonalize \(T^{(k)}\) and stop if \(e_{n}\) converges
            Orthogonalize \(\boldsymbol{W}\) with \(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \cdots, \boldsymbol{v}_{k_{x}+q k}\)
            \(\boldsymbol{V}_{k+1} \boldsymbol{\beta}_{\boldsymbol{k}}:=\mathrm{QR}(\boldsymbol{W})\)
            \(T_{k_{x}+q k+1: k_{x}+q(k+1), k_{x}+q(k-1)+1: k_{x}+q k}:=\boldsymbol{\beta}_{k}\)
            \(T_{k_{x}+q(k-1)+1: k_{x}+q k, k_{x}+q k+1: k_{x}+q(k+1)}:=\boldsymbol{\beta}_{k}^{T}\),
    end for
    Construct \(T^{\left(l_{s}\right)}\) and \(\boldsymbol{v}_{k}, 1 \leq k \leq l_{s}\) for restart
        \(k_{x}:=l_{s}\)
    end for
```

N．Shimizu et al．，
Comp．Phys．Commun． 244 （2019）372－384各種物理量の期待値計算：$\langle\hat{O}\rangle=\left\langle\psi\left(\vec{c}_{\odot}\right)\right| \hat{O}\left|\psi\left(\vec{c}_{\odot}\right)\right\rangle$

EM遷移強度，β 崩壊（GT，Fermi，．．．）Eigenvector Continuation：

$$
\begin{gathered}
E\left(\vec{c}_{\odot}\right) \simeq \lambda \\
\left|\psi\left(\vec{c}_{\odot}\right)\right\rangle \simeq \sum_{i=1}^{N_{s}} v_{i}\left|\psi\left(\vec{c}_{i}\right)\right\rangle \equiv\left|\psi_{E C}\left(\vec{c}_{\odot}\right)\right\rangle
\end{gathered}
$$

任意のパラメータ点での近似波動関数の構成
\rightarrow（疑似）計算データの高速なサンプリング \rightarrow 最適化，ベイズ推定•不定性評価 c．f．https：／／arxiv．org／abs／2105．08256

他のコードとの＂比較＂

殻模型計算コード

$\left.\begin{array}{ll}\text { NuShellX } & \text { W．Rae，B．A．Brown（Michigan）} \sim \text { 42，000行 } \\ \text { BIGSTICK } & \text { C．W．Johnson（San Diego）} \sim \text { 70，000行 } \\ \text { ANTOINE } & \text { E．Caurier（Strasbourg）} \sim 30,000 \text { 行 } \\ \text { KSHELL } & \text { N．Shimizu（Tokyo）} \sim 24,000 \text { 行 }\end{array}\right]$ Fortran

ShellModel.jl => 手元で軽めの計算を大量にやる用

ちなみに．．．χ EFT核力の計算コード

- R．Machleidt（20，000～40，000行，Fortran）
- chiEFTint．jl（3，000～4，000行，Julia） https：／／github．com／SotaYoshida／ChiralEFTint．j｜で公開予定

Point：
Juliaコードは読み書きしやすく，実行性能も十分

\triangle－full EFT，PRC 102， 054301 （2020）

GO potential（Chalmers \＆Oak Ridge）

TABLE III．Binding energies（in MeV ）for selected nuclei with the new interaction using CCSDT－1 and compared to data．

	$\begin{gathered} \Delta \mathrm{NLO}_{\mathrm{GO}} \\ (450) \end{gathered}$	$\begin{gathered} \Delta \mathrm{NNLO}_{\mathrm{GO}} \\ (450) \end{gathered}$	$\underset{(394)}{\Delta \mathrm{NNLO}_{\mathrm{GO}}}$	Exp．
${ }^{16} \mathrm{O}$	128.2	128．1（23）	127．5（19）	127.62
${ }^{24} \mathrm{O}$	165	170 （3）	169 （3）	168.96
${ }^{40} \mathrm{Ca}$	341	348 （7）（1）	346 （6）	342.05
${ }^{48} \mathrm{Ca}$	410	422 （9）（4）	420 （7）	416.00
${ }^{78} \mathrm{Ni}$	－	631 （14）（20）	639 （11）（4）	641.55
${ }^{90} \mathrm{Zr}$	－	－	782 （14）（6）	783.90
${ }^{100} \mathrm{Sn}$	－	－	818 （16）（7）	825.30
${ }^{132} \mathrm{Sn}$	－	－	1043 （20）（30）	1102.84

「やっぱり Δ の自由度が重要！！」

Nosyk，Entem，Machleidt PRC 104，054001（2021）．

「あなたたちのポテンシャル， P－waveのphase shiftが めちゃくちゃだし， 60年代の核力より酷いよ」

