融合ダイナミクスに起因する設構造の変化を利用した 未知超重元素生成の理論研究

高木慎弥¹, 天野翔太¹, 山本匠真², 有友嘉浩^{1,2}

1.近畿大学 大学院 総合理工学研究科エレクトロニクス系工学専攻 2.近畿大学 理工学部電気電子工学科

2021年12月7日(火) 基研研究会「核力に基づいた原子核の構造と反応」

1. 研究背景

2. 理論

3. 計算結果および議論

4. まとめ

Introduction

Yuri Oganessian SHE-2017, Sept. 10-14, 2017, Kazimierz Dolny, Poland

Oganessian

Way for synthesizing new SHE

 Ti, Cr, Fe etc. beams ← ⁴⁸Ca beams Actinide target

2) Secondary beams

3) Transfer reaction U+Th, U+Cm

Yu. Ts. Oganessian and K. Morita

Goal after 30 years

New Approach to explore Island of Stability

Use Property of Shell Structure of SHE

Goal after 30 years New Approach to explore Island of Stability

Use Property of Shell Structure of SHE

1) Suppress the dissipation of Kinetic Energy 1st 2nd Stage

2) Dynamical Shell Effect during fusion process 2nd pocket in deformed area 1st 2nd Stage

 3) Singularity of the survival probability in neutron rich region (East side of Island Stability) 3rd Stage

1. 研究背景

2. 理論

3. 計算結果および議論

4. まとめ

Overview of Dynamical Process in reaction ³⁶S+²³⁸U

Nuclear shape

two-center parametrization (z, δ, α)

(Maruhn and Greiner, Z. Phys. 251(1972) 431)

 $q(z,\delta,\alpha)$

$$z = \frac{z_0}{BR}$$
$$B = \frac{3+\delta}{3-2\delta}$$

R: Radius of the spherical compound nucleus

$$\delta = \frac{3(a-b)}{2a+b} \qquad (\delta_1 = \delta_2)$$
$$\alpha = \frac{A_1 - A_2}{A_{CN}}$$

Potential Energy

$$V(q, \ell, T) = V_{DM}(q) + \frac{\hbar^2 \ell(\ell+1)}{2I(q)} + V_{SH}(q, T)$$
$$V_{DM}(q) = E_S(q) + E_C(q)$$
$$V_{SH}(q, T) = E_{shell}^0(q) \Phi(T)$$

T : nuclear temperature $E^* = aT^2$ *a* : level density parameter Toke and Swiatecki

 E_S : Generalized surface energy (finite range effect) E_C : Coulomb repulsion for diffused surface E^0_{shell} : Shell correction energy at T=0

I : Moment of inertia for rigid body

 $\Phi(T)$: Temperature dependent factor

A. V. Ignatyuk, et al 21, 485 (1974); Sov. J. Nucl. Phys. 21, 255 (1975)

Fission barrier recovers at low excitation energy

$$\Phi(T) = \exp\left\{-\frac{aT^2}{E_d}\right\}$$
$$E_d = 20 \text{ MeV}$$

Multi-dimensional Langevin Equation

 $\frac{dq_i}{dt} = (m^{-1})_{ij} p_j$ Friction Random for dissipation fluctuation $\frac{dp_i}{dt} = -\frac{\partial V}{\partial q_i} - \frac{1}{2} \frac{\partial}{\partial q_i} (m^{-1})_{jk} p_j p_k - \gamma_{ij} (m^{-1})_{jk} p_k + g_{ij} R_j (t)$ Random force Newton equation ordinary differential equation $\langle R_i(t) \rangle = 0, \ \langle R_i(t_1)R_j(t_2) \rangle = 2\delta_{ij}\delta(t_1 - t_2)$: white noise (Markovian process) $\sum g_{ik}g_{jk} = T\gamma_{ij}$ Einstein relation Fluctuation-dissipation theorem deformation coordinate (nuclear shape) two-center parametrization (z, δ, α) q_i : (Maruhn and Greiner, Z. Phys. 251(1972) 431) momentum p_i : (inertia mass) Yamaji (TCSM) m_{ii} : Hydrodynamical mass γ_{ij} : Wall and Window (one-body) dissipation (friction) Hofmann Ivanyuk

$$E_{\rm int} = E^* - \frac{1}{2} (m^{-1})_{ij} p_i p_j - V(q)$$

 $E_{\rm int}$: intrinsic energy, E^* : excitation energy

$$\sigma_{ER} = \frac{\pi\hbar^2}{2\mu_0 E_{cm}} \sum_{\ell=0}^{\infty} (2\ell+1)T_{\ell}(E_{cm},\ell)P_{CN}(E^*,\ell)W(E^*,\ell)$$

R: Radius of the spherical compound nucleus

$$\delta = \frac{3(a-b)}{2a+b}$$
$$\alpha = \frac{A_1 - A_2}{A_{CN}}$$

Projection on two-dim. plane

1. 研究背景

2. 理論

3. 計算結果および議論

4. まとめ

Test Calculation

Potential LDM Trajectory without fluctuation

Starting point at $\alpha = 0.6$ Virtual combination Produce Th, Pu, Cf, No, Sg, Ds, Fl, Og

The essential point is in the relation between fusion saddle point on z-δplane and turning point of the trajectory.

Trajectory is projected onto z-δ plane at a which corresponds to turning point

0.8 -

0.6 -

0.4

0.2 -

0.0 -

-0.2

0.0

0.5

1.0

Ζ

×

(b) ²⁵⁶No

 α = 0.30

2.0

1.5

Z= 120 ${}^{54}Cr + {}^{248}Cm \rightarrow {}^{302}120 (\alpha = 0.64)$

 $(^{50}\text{Ti} + ^{250}\text{Cf} \rightarrow ^{300}120 \ (\alpha = 0.67))$

1. 研究背景

2. 理論

3. 計算結果および議論

4. まとめ

まとめ

- これまでの手法の延長線上では、新元素の合成および安定の島への到達は難しい。
- 融合過程における動力学的な殻効果を利用する ことで、融合確率が増大する。
- 中性子過剰領域では、基底状態での変形度が大きくなるため、2nd pocketを利用した融合が可能であろう。
- Z≥119や安定の島に到達するために、様々な系でのより詳細な軌道の解析を行う。

ご清聴ありがとうございました