微視的模型による astrophysical S-factorの評価

<u>谷口 億宇</u>(香川高等専門学校) 木村 真明(北海道大学/理研) ¹²C+¹²C fusion S*-factor from a full-microscopic nuclear model Phys. Lett. B**823**, 136790 (2021)

- Nuclear fusion is energy source of various astrophysical phenomena.
- ¹²C+¹²C fusion is essential reaction.
 - Evolution of massive stars
 - Supernovae (type Ia)
 - X-ray superbursts

[https://www.news.gatech.edu/2014/09/19/thermonuclear-x-ray-bursts-neutron-stars-set-speed-record]

Evolution of massive stars

- Massive stars evolve through the carbon-burning process after the heliumburning process.
- The dominant reaction of the carbon-burning process is ¹²C+¹²C fusion.

X-ray superbutst

X-ray burst

X-ray superburst

[E. Kuulkers, NPB**132**, 466 (2004)]

- X-ray superbutsts are explosional astrophysical phenomena.
- ¹²C+¹²C fusion reaction of the accreting matter is considered the trigger.

¹²C+¹²C fusion reaction in X-ray superbutst

 ${}^{12}\mathrm{C} + {}^{12}\mathrm{C} \rightarrow p + {}^{23}\mathrm{Na} + 2.2\mathrm{MeV}$

 $\rightarrow \alpha + {}^{20}\mathrm{Ne} + 4.6\mathrm{MeV}$

Recent publications

A. Tumino et al., Nature557, 687 (2018).
G. Fruet et al., PRL124, 192701 (2020).
W.P. Tan et al., PRL124, 192702 (2020).

¹²C+¹²C fusion reaction in the universe

10¹⁸

----- Fowler et al.

present work

Aguilera et al.

Becker et al.

Spillane et al.

123412AAA DAMAA DAMAA

5.5

Jiang et al.

Uncertainties of ¹²C + ¹²C fusion reaction cross section $S^*(E) = E\sigma(E) \exp(2\pi\eta + 0.46 \text{ MeV}^{-1}E)$

[Original fig. : C. Beck et al, EPJA56, 87 (2020)]

- Experiments
 - No direct experiments in E < 2 MeV.
 - The estimation from the indirect THM experiment is under discussion.
- Theories (just extrapolations)
 - Constant: CF1988 etc.
 - Strong suppression in the lowenergy region: Hindrance model

Resonance-state dominance in ¹²C + ¹²C fusion reaction

S-factors of ¹²C + ¹²C fusion reaction has a significant peak structure.

Contributions of narrowresonance states are dominant.

→Theoretical estimation of ¹²C+¹²C fusion with resonance effects

[Rolfs and Rodney, Cauldrons in the Cosmos (1988)]

Difficulties of calculation of $^{12}C + ^{12}C$ fusion cross sections

- Rearrangement of many nucleons
 - Entrance: ${}^{12}C + {}^{12}C$
 - Exit: α + ²⁰Ne, p + ²³Na
- Channel coupling effects are essential.
- Unknown macroscopic coupling potentials
- → Microscopic framework

Framework: Antisymmetrized molecular dynamics (AMD)

Slater determinant of deformed Gaussian wave packets

$$|\Phi\rangle = \mathcal{A}|\varphi_1, \varphi_2, \dots, \varphi_A\rangle$$
$$\varphi_i(\mathbf{r}) = \exp\left[-\frac{1}{2}(\mathbf{r} - \mathbf{Z}_i) \cdot \mathbf{M}(\mathbf{r} - \mathbf{Z}_i)\right] \otimes \sigma_i \otimes \tau_i$$

- Coupling of the entrance and exit channels is treated by a linear combination of basis wave functions. $|\Psi > = c_{12} + c_4 + c_4 + c_{24} + c_{24}$ (Gogny D1S)
- Fusion and decay dynamics are also treated by a linear combination of various inter-nuclear distances wave functions.

$$| \bullet \rangle = d_1 | \bullet \rangle + d_2 | \bullet \rangle + d_3 | \bullet \rangle + \dots$$

• Diagonalization of Hamiltonian with the Gogny D1S effective interaction (density functional) after parity and angular-momentum projection.

Examples of the basis wave functions of the multi-configuration mixing

- Energy variation with the constraint on inter-nuclear distance and quadrupole deformation
- Coupling of the entrance ($^{12}C + ^{12}C$) and exit ($\alpha + ^{20}Ne$) channels
- Rotation of clusters

Fusion cross sections and Decay widths

The Breit-Wigner formula

$$\sigma(E) \propto \frac{\pi}{k^2} \frac{\Gamma_{ent} \Gamma_{exit}}{(E - E_R)^2 + \Gamma^2/4}$$

$$\Gamma = \Gamma_{\alpha} + \Gamma_{p}$$

$$\Gamma_{\alpha} = (\Gamma_{\alpha} / \Gamma_{\alpha 1}) \cdot \Gamma_{\alpha 1}$$

$$\Gamma_{p} = (\Gamma_{p} / \Gamma_{p 1}) \cdot \Gamma_{p 1}$$

• The R-matrix theory

• T

exp. data by Becker+, Z. Phys. 303, 305 (1981)

$$\Gamma_{C_1+C_2} = \frac{2ka}{F_l(ka)^2 + G_l(ka)^2} \frac{3\hbar^2}{2\mu a^2} \theta_{C_1+C_2}^2$$

$$Q = \frac{k^2}{2\mu}$$

a: channel radius

(Dimensionless)Reduced width amplitude at channel radius *a* Probability of existence of clusters

Laplace expansion method [Chiba+, PTEP (2017)]

Relative wave function and S-factor of each channel

Astrophysical S factor

- Reproduced in E > 3 MeV region
- Much larger S factors than the hindrance extrapolation
- The 1.5-MeV resonance is predicted.
 - Trigger of X-ray superburst?
 - $(\omega\gamma) \sim 10^{-10}$ eV is two orders smaller than the Cooper's scenario.

• $\Gamma \sim 10^{-2} - 10^{-1} \text{ MeV}$

A novel approach to the cluster resonances

The isoscalar monopole transition induced by the alpha inelastic reaction can populate cluster resonances.

IS monopole strengths and clusters

"Cluster resonances have strong transition strengths" Analytical proof, **Model independent**!

T. Yamada et al., PTP120, 1139 (2008)

$$\mathcal{M}_{\mu}^{IS0} = \sum_{i=1}^{A} (\mathbf{r}_{i} - \mathbf{r}_{cm})^{2} = \sum_{i \in C_{1}} \xi_{i}^{2} + \sum_{i \in C_{2}} \xi_{i}^{2} + \frac{C_{1}C_{2}}{C_{1} + C_{2}} \mathbf{r}^{2}$$

Analytical estimate of transition matrix

 $M^{IS0} = \langle \Phi(0_{\text{ex}}^+) | \mathcal{M}^{IS0} | \Phi(0_1^+) \rangle$ = $f_{N_0+2} \sqrt{\frac{\mu_{N_0}}{\mu_{N_0+2}}} \langle R_{N_00} | r^2 | R_{N_0+20} \rangle$ $\simeq 7.67 f_{N_0+2} = 5.5 \,\text{fm}^2 \text{ (for } \alpha + {}^{16}\text{O resonance)}$

Single particle estimate

$$M_{\rm WU}^{IS0} = \frac{3}{5} (1.2A^{1/3})^2 \simeq 6.3 \,{\rm fm}^2$$
 (for α +¹⁶O resonance)

M(IS_λ) values

- The M(ISO) operator has a term to excite inter-cluster motion. [Kawabata et al, PLB646 (2007)] [Yamada et al, PTP120 (2008)]
- M(IS λ \uparrow) values have an order of W.u.
- Inelastic scattering is a suitable probe of resonances essential for low-energy fusion reactions.

IS monopole strengths by (α, α') reactions

O The observed data shows the resonances in the Gamow window

- ◎ They are not described by RPA
 - ⇒ They are different from the ordinary collective states

"Some (many) of them must be the di-nuclear resonances"

Summary

- The ¹²C + ¹²C fusion astrophysical S factors are reasonably reproduced using a full-microscopic framework.
- No hindrance effects due to contributions of low-energy resonances.
- Inelastic scattering is a suitable probe of low-energy ¹²C + ¹²C resonances.