

2021/12/09 基研研究会 "核力に基づいた原子核の構造と反応"

陽子-³He散乱による三体核力の研究

東北大学大学院 理学研究科

渡邊 跡武

> Tohoku University

<u>A. Watanabe</u>, S. Nakai, K. Sekiguchi, T. Akieda, D. Etoh, M. Inoue, Y. Inoue, K. Kawahara, H. Kon, K. Miki, T. Mukai, D. Sakai, S. Shibuya, Y. Shiokawa, T. Taguchi, H. Umetsu, Y. Utsuki, Y. Wada, M. Watanabe

> CYRIC, Tohoku University

M. Itoh

> National Institute of Radiological Science

T. Wakui

> RCNP, Osaka University

K. Hatanaka, H. Kanda, H. J. Ong, D. T. Tran

> University of Miyazaki

Y. Maeda, K. Nonaka

≻ RAP, RIKEN

Y. Ikeda, Y. Otake, A. Taketani, Y. Wakabayashi

> KEK > Hosei University

T. Ino

S. Ishikawa

> Vilnius University

A. Deltuva

> Kyushu University

S. Goto, Y. Hirai, D. Inomoto, H. Kasahara, S. Mitsumoto, H. Oshiro, T. Wakasa

RIKEN Nishina Center

H. Sakai, T. Uesaka

T = 3/2 channel of 3NF

- ➤ Nd 散乱系ではtotal isospin T=1/2に制限
- > 3NFのT = 3/2 channel → 中性子過剰核、非対称核物質において重要な役割

- ◆ 軽核の B.E. の Green's Function Monte Carlo (GFMC) 計算
 - Illinois-II (IL2) 3NF :

 2π -exchange $3NF + \underline{3\pi}$ -ring with Δ -isobar

- ◆ 中性子核物質(中性子星)の性質
 - 3NFの*T*=3/2成分のみが寄与
 - IL2 3NF でも理解が不十分

T = 3/2 channel of 3NF

- ➤ Nd 散乱系ではtotal isospin T=1/2に制限
- ▶ 3NFのT = 3/2 channel → 中性子過剰核、非対称核物質において重要な役割

- ▲ 軽核の B.E. の Green's Function Monte Carlo (GFMC) 計算
 - Illinois-II (IL2) 3NF :

 2π -exchange $3NF + \underline{3\pi}$ -ring with Δ -isobar

- ◆ 中性子核物質(中性子星)の性質
 - 3NFの*T*=3/2成分のみが寄与
 - IL2 3NF でも理解が不十分

3NF Study via p-³He Scattering

Measurement of $p + {}^{3}$ **He system** ($E_p \ge 65$ MeV)

- ◆少数系から多体系へのFirst Step
 - ✓ Verifying 3NFs determined from Nd scattering system.
- **ヽ***T* = 3/2 3NFsへのアプローチ
- ▲ Theory in progress...

A. Deltuva and A. C. Fonseca, PRC 87, 054002 (2013).

Observables

Cross section, Analyzing powers, Spin correlation coefficients.

3NF Study via p-³He Scattering

Measurements of proton-³He Scattering

Reported in "AW et al., Phys. Rev. C 103, 044001 (2021)".

Summary of Measurements for $p+{}^{3}\mathrm{He}$

Incident Energy	70 MeV	65 MeV	65 MeV	100 MeV
Beam	р	pol. <i>p</i>	pol. p	pol. <i>p</i>
Observables	$A_y(^{3}\text{He})$	$d\sigma/d\Omega, A_y(p)$	$A_{y}(p), A_{y}(^{3}\text{He}), C_{y,y}$	$A_{y}(p), A_{y}(^{3}\text{He}), C_{y,y}$
Measured Angles ($\theta_{c.m.}$)	46°-141°	27°- 170°	46°-133°	47°–149°
Facility	CYRIC , Tohoku Univ.	RCNP , Osaka Univ.	RCNP , Osaka Univ.	RCNP , Osaka Univ.
Exp. Course	41 course	WS course	ENN course	ENN course


```
CYRIC (AVF cyclotron)
```


Measurement of Differential Cross Section

13

Experimental Setup with Pol. ³He Target @CYRIC, RCNP

$$\begin{array}{c|c} & & & \\ \hline \textbf{Left} & & \\ \hline A_{0y} = \frac{1}{p_y} \frac{n_{\rm L}^{\uparrow} - n_{\rm L}^{\downarrow}}{n_{\rm L}^{\uparrow} + n_{\rm L}^{\downarrow}} = \frac{1}{p_y} \frac{n_{\rm R}^{\downarrow} - n_{\rm R}^{\uparrow}}{n_{\rm R}^{\uparrow} + n_{\rm R}^{\downarrow}} \end{array}$$

 p_y : Target polarization A_{0y} : ³He analyzing power $n^{\uparrow,\downarrow}$: Normalized yield at spin up (\uparrow)/down (\downarrow)

Differential Cross Section for $p+{}^{3}\text{He}$ @65 MeV

*Calculations : A. Deltuva, private communications

Spin Observables for $p+{}^{3}\text{He}$ @65, 70 MeV

*Calculations : A. Deltuva, private communications

7

7.2 7.4 7.6 7.8 8

B. E. (^{3}He) [MeV]

♦ exp. data • AV18 + SMS400 CD Bonn INOY04 ▲ Nijmegen I ∧ Nijmegen II ★ CD Bonn+ Δ ∠ CD Bonn+ Δ +U2 ○ AV18+TM99 CD Bonn+TM99 ▼ Nijmegen I+TM99 V Nijmegen II+TM99

B. E. (^{3}H) [MeV]

Δ -Isobar Effects for Scattering Observables

- ▶ Δ-isobar effectを2N起因 (dispersive effect) と3, 4NFsに分解
 - **Dispersive effect**: Δ-isobarを含む二体相互作用
 - 3,4NFs: Δ-isobar自由度によるEffectiveな3,4NFs
- ▷ *dσ/dΩ* : dispersive effectによって3, 4NFsがキャンセル

 $\succ C_{y,y}$: dispersive effectが支配的

Summary and Outlook

中間エネルギー領域 (*E/A* ≥ 65 MeV) における*p*-³He弾性散乱による3NF研究

`. Few to many $\frown \mathcal{O}$ First step

▲ 3NFのアイソスピンT = 3/2 channelへのアプローチ

65,70,100 MeVにおける*p*-³He弾性散乱測定 @CYRIC, RCNP

▲ *dσ/dΩ*, *A_y(p*), *A_{0y}(³He*), *C_{y,y}*のnew dataを取得
▲ NNポテンシャルに基づく厳密理論計算と比較

✓ 2NFのみでは実験値を**再現しない**(Δ-isoba effectも同様)

✓ *d-p*散乱系とは異なる性質(NNポテンシャル依存性、∆-isobar effect)

✓ $C_{y,y}$ において Δ -isobarによるdispersive effectが顕著

Future Plan

p-³He scattering : Complete set of spin correlation coefficients

→ Dispersive effectを含む Δ -isobar effectのstudy,

T=3/23NFの詳細な議論

Thank you for your attention.