Constraining neutron star parameters by modelling X-ray bursts

Dr Adelle Goodwin

ICRAR – Curtin University

In collaboration with Alexander Heger, Duncan Galloway, Thomas Hilder, Andrew Cumming + co

Nuclear burning in massive stars workshop, July 2021

X-ray bursts: what systems produce them?

Accreting neutron stars

Introduction

Sensitivity studies Distance Composition Unified approach

X-ray burst properties

Thermonuclear runaway on the surface of an accreting neutron star

1: 4U 0513-40 2: 4U 0614+09 3: EXO 0748-676 4: 4U 0836-429 5: 2S 0918-549 6: 4U 1254-69 7: 4U 1323-62 X-ray bur^{8: Cir X-1} 9: 4U 1608 10: 4U 163 9: 4U 1608-522 10: 4U 1636-536 11: XTE J1701-462 12: MXB 1658-298 13: 4U 1702-429 14: 4U 1705-44 15: XTE J1709-267 16: XTE J1710-281 17: IGR J17191-2821 18: 4U 1722-30 19: 4U 1728-34 20: MXB 1730-335 . 21: KS 1731-260 Bri 22: SLX 1735-269 23: 4U 1735-444 Ray24: XTE J1739-285 25: KS 1741-293 26: GRS 1741.9-2853 27: 1A 1742-294 28: SAX J1747.0-285 29: IGR J17473-2721 30: SLX 1744-300 31: GX 3+1 32: IGR J17480-2446 33: EXO 1745-248 34: 1A 1744-361 35: SAX J1748.9-202 36: IGR J17498-2921 37: 4U 1746-37 38: SAX J1750.8-290 39: GRS 1747-312 the stand should be than the stand and the stand and the stand s 40: IGR J17511-3057 (41: IGR J17597-2201 42: SAX J1806.5-221 43: SAX J1808.4-3658 44: XTE J1810-189 45: SAX J1810.8-260 46: XTE J1814-338 47: GX 17+2 43 48: 4U 1820-303 49: GS 1826-24 50: XB 1832-330 49 51: Ser X-1 52: HETE J1900.1-245 Introduction Models Ov(53: Aql X-1 54: XB 1916 54: XB 1916-053 55: XTE J2123-058 56: 4U 2129+12

57: Cyg X-2

Nuclear Burning in Type I X-ray bursts

Fig. 3.1. Schematic showing the dominant pathways of the nuclear reaction flows during the rp process. Elements far beyond 56 Fe can easily be reached. Filled squares denote stable nuclides (after Schatz et al. 2001).

Strohmayer & Bildsten (2001)

Modelling X-ray bursts

Introdu

Two types of models:

- 1. Simple (semi) analytic models integrate an ignition column and make simple assumptions about energy output (e.g. settle)
- 2. Complex models include a nuclear reaction network to determine energy output (e.g. KEPLER)

Predict observed burst:

	<u> </u>	<u>nputs</u>		<u>Outputs</u>				
	F	uel composition		Rise times				
	Neutron star mass			Durations				
	Neutron star radius		S	Energies				
				Recurrence t	imes			
uction	Models Overview	Parameters we can constrain		Summa	ry			
		Sensitivity studies	Distance	Composition	Unified approach	Binar	y evolutio	on

Kepler

Woosley et al (2004)

- 1D implicit hydrodynamics code
- Adaptive nuclear reaction network

Models Overview

• Multi-zone

Introduction

- Has been used for 20 years to simulate X-ray bursts on neutron stars
- Takes ~4 days to run

Distance

Parameters we can constrain

Sensitivity studies

Settle

Cumming & Bildsten (2000)

- "0D" semi-analytic code
- Integrates neutron star atmosphere by making simple assumptions about thermal profile to find ignition conditions
- One-zone ignition criterion
- Makes simple assumptions about burst energy output -

Parameters we can constrain

Distance

Sensitivity studies

Models Overview

Introduction

> Nuclear reaction rates via sensitivity studies

Neutron star parameters that effect observed burst properties:
M, R, g, X, Z, Qb, d, inclination, accretion rate

Binary properties, binary evolution

Introduction Models Overview Parameters we can constrain

Summary

Sensitivity studies Distance Composition Unified approach

> Nuclear reaction rates via sensitivity studies

Neutron star parameters that effect observed burst properties:
M, R, g, X, Z, Qb, d, inclination, accretion rate

Binary properties, binary evolution

Introduction Models Overview Parameters we can constrain

Summary

Sensitivity studies Distance Composition Unified approach

X-ray burst reaction rate sensitivity studies

Sensitivity studies: vary the nuclear reaction rates and determine the effect on X-ray burst lightcurves

= 15O(α,γ)/10

- Baseline - Baseline - Baseline - Baseline = ²³Al(p,γ)/30 ²²Mg(α,p)/10 ¹⁴O(α,p)/10 ¹⁶Ne(α,p)×30 - Baseline - Baseline - Baseline Baseline =63Ga(p,γ)/10 $= {}^{19}F(p,\alpha) \times 10$ ¹²C(α,γ)×1.25 = ²⁶Si(α,p)×10 - Baseline - Baseline Baseline - Baseline ⁵⁷Cu(p,γ)/10 =¹⁷F(α,p)×10 ²⁴Mg(α,γ)×10 = ⁶³Ga(p,α)/100 - Baseline - Baseline Baseline - Baseline 48Cr(p.γ)/100 Time [sec] = ¹⁷F(p,γ)×6.33 40Sc(p.γ)/100 - Baseline - Baseline - Baseline Meisel+ 2018 ⁰Time [sec] Time [sec] Time [sec] Summary Parameters we can constrain Distance Composition Unified approach **Binary evolution**

= ⁵⁹Cu(p,α)×100

⁶¹Ga(p,γ)/100

- ⁵⁹Cu(p,γ)/100

Using MESA or Kepler to generate lightcurves

Models Overview

Introduction

> Nuclear reaction rates via sensitivity studies

Neutron star parameters that effect observed burst properties:
M, R, g, X, Z, Ob, d, inclination, accretion rate

Binary properties, binary evolution

Introduction Models Overview Parameters we can constrain

Summary

Sensitivity studies Distance Composition Unified approach

X-ray bursts as standard candles for distance estimates

photosphere

Distance

Parameters we can constrain

Sensitivity studies

- Photospheric radius expansion: the outwards radiation pressure equals the gravitational force binding the outer layers of accreted material to the star.
- Luminosity reaches Eddington luminosity and \geq photosphere expands

Binary evolution

Composition Unified approach

Enables distance estimates

Models Overview

Introduction

> Nuclear reaction rates via sensitivity studies

Neutron star parameters that effect observed burst properties:
M, R, g, X, Z, Ob, d, inclination, accretion rate

Binary properties, binary evolution

Introduction Models Overview Parameters we can constrain

Summary

Sensitivity studies Distance Composition Unified approach

Kepler burst energy/composition predictions

- Ran grid of Kepler models
- Extract Energy (Qnuc) and average H fraction of burst ignition column

Qnuc = 1.35+6.05X

Models Overview

Determine relationship

Introduction

Kepler burst energy/composition predictionsuseful for observers

Kepler burst energy/composition predictionsuseful for observers

Sensitivity studies

Distance

Binary evolution

Unified approach

Kepler burst energy/composition predictionsuseful for observers

> Nuclear reaction rates via sensitivity studies

Neutron star parameters that effect observed burst properties: M, R, g, X, Z, Qb, d, inclination, accretion rate

Binary properties, binary evolution

Models Overview Parameters we can constrain

Introduction

Summary

Sensitivity studies Distance Composition Unified approach

Matching observations with models Bayesian Estimation of Accreting Neutron Star parameters (BEANS)

- Match observed burst parameters (energy, alpha, recurrence time) with predicted to infer system properties
- Can use MCMC for simple (fast) models (Goodwin+2019) or educated guesses for slower models (Johnston+ 2018)

Observed parameters: accretion rate, burst energy, alpha, recurrence time

Predicted parameters: distance/inclination, neutron star mass and radius, fuel composition

Introduction Models Overview

Parameters we can constrain

Summary

Sensitivity studies Distance Composition Unified approach

Case study: SAX J1808.4-3658

- > AMXP at 3.5 kpc
- Goes into outburst every 3- \succ 4 years
- \succ Burst train from 2002 outburst

Introduction

Goodwin+ 2019

Goodwin+ 2019

Neutron star mass and radius?

Introduction

We imposed a neutron star mass and radius equation of state constraints

Sensitivity studies Distance

Composition Unified approach

Neutron star mass and radius?

Case study: IGR J17498-2921

 $M = 1.421^{+0.082}_{-0.057}$

2011 outburst: train of 8 bursts observed

Modelling done by an undergraduate student Thomas Hilder using BEANS

Preliminary

> Nuclear reaction rates via sensitivity studies

Neutron star parameters that effect observed burst properties:
M, R, g, X, Z, Qb, d, inclination, accretion rate

> Binary properties, binary evolution 1808 has evolved donor !!

Models Overview Parameters we can constrain

Introduction

Summary

Sensitivity studies Distance Composition Unified approach

Towards the evolution and progenitors of individual accreting neutron stars

Run MESA binary evolution models to determine the progenitor of systems that have been well-constrained through X-ray burst modelling

E.g. SAX J1808.4-3658

> Assumptions:

- Evolution begins after the NS has formed
- □ Companion star is now fully convective (since it's ~0.05M_sun)
- Accreted fuel composition is same as central composition of companion star
- Min initial Mc is set by minimum mass of star that can reach central H fraction of 0.58 in the Hubble time
- Eddington limited accretion
- □ Mass transfer scheme follows Ritter (1988)
- □ Initially assume 50% mass transfer efficiency (this is highly unconstrained)

Introduction Models Overview Parameters we can constrain

Summary

Sensitivity studies Distance Composition Unified approach Bi

Results

Goodwin+ 2020

Results

Introduction

Goodwin+ 2020

X-ray bursts are energetic explosions on the surface of accreting neutron stars

Detailed modelling and observations of X-ray bursts (and combining the two) can constrain:

- 1. Nuclear reaction rate sensitivities
- 2. Distance
- 3. Neutron star mass, radius, surface gravity
- 4. Binary inclination, accreted fuel (donor star) composition
- 5. Binary evolutionary pathways

Introduction Models Overview Parameters we can constrain

Summary

Sensitivity studies Distance Composition Unified approach