Supernova Explosions in AGN discs

Evgeni Grishin (Monash U, Clayton, VIC)

YITP & Monash "Nuclear Burning in Massive Stars" workshop, 26/07/2021

Hagai B. Perets (Technion) Alexey Bobrick (Lund) Ryosuke Hirai, Ilya Mandel (Monash/OzGrav)

Type Ia Supernovae are used as standard candles

- Ejected mass $\sim M_{\odot}$, energy $E_0 \sim 10^{51}$ erg, velocity $v_0 \sim \sqrt{E_0/M_{\odot}} \sim 10^9$ cm s⁻¹
- \blacksquare Peaks at $\sim {\it L}_{peak} \sim 10^{43} erg~s^{-1}$
- \blacksquare Duration at peak \sim 30 days

Interaction with a medium leads to sulerluminous events

 Interaction with pre-existing circumstellar medium (CSM):
 more efficient conversion of kinetic outflow to radiation (Woosley+2007, Nature; Jerkstrand+2020, Science)

Different CSM mass changes the peak and duraction of the lightcurve

- Less CSM mass shorter and brighter events
- More CSM mass longer duration and less bright

- Origin of the CSM is usually its wind itself.
- What about SNe in different environments?

AGN discs are modelled as accretion discs

- Geometrically thin $H \ll r$, optically thick $\tau \gg 1$ accretion discs
- Marginally stable for $r > 10^5 r_s$, $r_s = 2GM_{\bullet}/c^2$
- Potential migration traps around maximal density @r ~ 10³r_s (Bellovary+2016)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

AGN accretion discs host many stellar populations

- Many stars and stellar remnants (Miranda+2000, Bartko+2010)
- Star formation: instability (Paczynski 1987, Dittmann+2020) or disc capture (Artymowicz 1993)
- Accretion and migration, changing mass and orbits (Ostriker+1983, Cantiello+2021)

Lightcurve is detremined from explosion and AGN disc initial conditions

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

We compare the analytics with two different codes

- SuperNova Explosion Code (SNEC): spherically symmetric Lagrangian radiation hydrodynamicals (Morozova+2016)
 - Ideal for obtaining lightcurves, radiative transfer, opacity tables

 HORMONE: Eulerian grid-based Godunov type scheme hydrodynamics code (Hirai+2016) - study disc morphology

The shock wave propagates in three phases

• Free expansion: The shock sweeps mass $M_{\rm sw} \sim \rho_0 z^3 \gg M_{\rm ej}$, and the density is uniform, the velocity is roughly constant

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

The shock decelerates

• When $M_{\rm sw} \gtrsim M_{\rm ej}$, the shock decelerates via the Sedov-Taylor solution $R \propto (E/\rho_0)^{1/5} t^{2/5}$, $v(t) \propto (E/\rho_0)^{1/5} t^{-3/5}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Finaly the shock accelerates and breaks out

- When $\rho(z) \ll \rho_0$ in the upper layers, the Shock accelerates as a Sakurai Law $v \propto \rho^{-\mu}$ ($\mu \approx 0.19$), (Sakurai 1960) and breaks out
- z_{bo} is where $\tau(z_{bo}) = c/v(z_{bo})$ (Nakar and Sari 2010)

The photons then diffuse to the photosphere (Grishin+2021)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Once v(z), $\tau(z)$ is known, analytical lightcurve estimation L(t) is possible (Grishin+2021)

• v(z) from an extrapolation: $v(z) = \left(\frac{E_0}{M_{\rm ej} + M_{\rm sw}(z)}\right)^{1/2} \left(\frac{\rho(z)}{\rho_0}\right)^{-\mu}$ (Matzner & McKee 1999),

• For ST: $v^2 \sim E/M \sim E/(\rho v^3 t^3) \rightarrow v^5 \sim (E/\rho t^3)$

ρ,τ,z_{bo}-> L(t) via analytical means (Yalinewich & Matzner 2019, Grishin+2021)

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

- Photosphere expansion: $d = d_0 + v_{bo}t$
 - planar phase: $v_{bo}t \ll z_{phot} z_{bo}$ constant τ .
 - Spherical phase, $v_{
 m bo} \, t \gtrsim z_{
 m phot} z_{
 m bo}$, au decreases
- We later vary the explosion and disc properties.

The analytic lightcurve reproduces the simulation(Grishin et al. 2021)

Gray area - range of times to breakout t_{bo} = ∫₀<sup>z_{bo} dz/v(z)
 Blue line - end of the spherical phase (Yalinewich and Matzner 2019)
</sup>

Lightcurve depends on the different vertical Structure (Grishin et al. 2021)

 (#1: Gaussian) (#7: Radiation dominated profile) (#8 -Uniform)

э

2D Hydrodynamical simulations uncover the disc morphology(Grishin et al. 2021)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Low density and/or high explosion energy events may be observable (Grishin et al. 2021)

Gray area - expected to be obscured by the AGN luminosity $L_{AGN} = 0.3L_{Edd} \sim 4 \cdot 10^{44} (M_{\bullet}/10^7 M_{\odot}) \text{erg/s} (\text{Hubeny+2001})$ Some AGNs could be much less luminous $L_{AGN} = 0.01L_{Edd}$ (Fabian+2009)

Lower density environments are more likely to be observable (Grishin et al. 2021)

More massive ejecta as in core collapse SN behave similarly

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト

æ

Early breakout could be blue optical/UV or hour-long X-ray flare (Grishin et al. 2021)

◆□ > ◆□ > ◆三 > ◆三 > 一三 - のへで

Upper rate limit comparable to AGN BBH marger rates (Grishin et al. 2021)

- Mass doubling time ~ AGN lifetime $\sim 10^8$ yr
- $100 M_{\odot}$ form a SNe $\implies 10^{-3}$ SNe per yr per AGN
- 1% of galaxies have AGN disc, typical number density of $n_{AGN} = 10^{-4} Mpc^{-3} \implies \mathscr{R} = 100 \text{ AGN SNe yr}^{-1} \text{ Gpc}^{-3}$

■ BBH merger rate in AGN discs 0.002 – 18 yr⁻¹ Gpc⁻³ (Groebner + 2020)

Rate has very large uncertaities (Grishin et al. 2021)

- Proper mass function of AGN discs? Fraction of starved AGNs?
- Most of them could be observable if occur near migration traps $\sim 10^3 r_s$ (Bellovary+2016)

Direction of migration could reverse (Gruzinov+2016)

- Accretion could render most stars into supermassive ones (Cantiello+2021)
 - Rotation / radiative feedback can limit accretion, especially in denser regions near $10^3 r_s$ (Jermyn+2021)
 - Extreme $\tau \sim 10^6$, energy release is blocked, accretion rate reduced: "Bondi explosions" (Wang+2021)
 - Accretion onto WD ⇒ Chandrasekhar WD and type Ia SNe (Ostriker 1983), increasing *R*, but accretion efficiency is also uncretain

Environments of reduced ho_{AGN} have more chances to be observed (Grishin et al. 2021)

- Reduced $ho_{
 m AGN}$ is better for observations
- Compactness, such that $\rho_{\rm AGN} H^3 \lesssim M_{\rm ej}$, otherwise the explosion could be choked

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

- Understanding AGN explosions opens a window to AGN disc physics and their interactions with the supernova progenitors.
- Typical peak luminosity is around $10^{44} 10^{46} \text{ erg s}^{-1}$.
 - The most energetic events are also the quickest to break out, t ~hours to days and occur in low ρ regions
- \blacksquare The upper limit for the event rate is $\mathscr{R} \lesssim 100 \mbox{ yr Gpc}^{-3},$ with large uncertaities
- AGN variability observed on larger tiemscales
 - Future high-cadence transient surveys may be able to identify AGN SNe.

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

The simulated velocity is somewhere in between (Grishin+2021)

Off-center explosion also experience a 'crater' phase

- If the explosion is at the origin, energy production stops (without nuclear sources)
 - If the explosion is close to the surface, the shells inner to the original explosion will be removed (Yalinewich and Matzner 2019)
- Initial slab geometry, additional crater/gap phase: somewhat similar to AGN disc

(Yalinewich and Matzner 2019)

• (#1,canon); (#5,10⁵²erg,) (#6,10⁵⁰erg); (#15,
$$M_{
m ej} = 10 M_{\odot}$$
)

Different radial AGN locations not always fit(Grishin et al. 2021)

• (#4: $M_{\bullet} = 10^6 M_{\odot}, r = 10^4 r_s$); (#13: $M_{\bullet} = 10^6 M_{\odot}$); (#14 - starved: $\rho \rightarrow \rho/10$)

Reduced densities, less mass in the CSM

 (#1: Gaussian) (#7: Radiation dominated profile) (#8 -Uniform)

Off plane AGN locations not always fit(Grishin et al. 2021)

	z = H	z = 2H
Gaussian	9	10
Radiation	11	12

very low swept mass

◆ロ▶ ◆母▶ ◆臣▶ ◆臣▶ 三臣 - の久(で)

Back up - YM19 model

• We take $\tau_0 = \kappa \rho_0 H$ and $\Gamma = E_0/(M_{\rm ej} + \rho_0 l_{\rm eff}^3)$, $l_{\rm eff} = z_{\rm bo} - z_1$ and ω evaluated at $z_{\rm bo}$ This uniquely detremines the lightcurve

• We take

$$\begin{split} & \Gamma = E_0/(M_{\rm ej} + \rho_0 l_{\rm eff}^3), \ l_{\rm eff} = z_{\rm bo} - z_1 \ \text{and} \ \omega \ \text{evaluated at} \ z_{\rm bo} \\ & L_i(t) = \frac{E_0 c}{H} \times \begin{cases} \Gamma^{(\omega\mu - 2\omega/3 - 5/6)\delta_-} \tau_0^{(5\omega\mu/3 - \omega - 4/3)\delta_-} \left(\frac{ct}{H}\right)^{-4/3} & pl \\ \Gamma^{(-\omega\mu + 1/6)\delta_+} \tau_0^{(\omega\mu - \omega - 4/3)\delta_+} \left(\frac{ct}{H}\right)^{(-4\omega\mu + 2/3)\delta_+} & sph \end{cases}$$
where $\delta_{\pm} = 1/(1 + \omega \pm \omega\mu)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- Hydrostatic Eq. $\frac{dP}{dz} = -\rho g_z = K \gamma \rho^{\gamma-1} \frac{d\rho}{dz}$ where $P = K \rho^{\gamma}$ is the EOS
- lsothermal (gas pressure) $P = c_s^2 \rho \implies \rho(z) = \rho_0 \exp(-z^2/2H^2)$
- General polytope: Vertical gravity in a disc: g_z ≈ Ω²z, we have ρ^{γ-2}dρ = -Ω²/γK. ⇒ γ = 4/3 is ρ(z) = ρ₀ [1-(γ-1)(z²/2H²)]^{1/(γ-1)}
 H² = Ω²/c_s² = Ω²/γKρ₀^{γ-1} is the scale height.