R-process nucleosynthesis in GW170817 in the context of metal-poor stars

Alex Ji University of Chicago

Maria Drout Toronto

Terese Hansen Texas A&M

Ji, Drout, & Hansen 2019 ApJ 882, 40; arXiv:1905.01814

The Rapid Neutron-Capture Process (r-process): What is the source?

Rare core-collapse supernovae or neutron star mergers?

Alex Ji

2017: Year of the Neutron Star Merger GW170817

kilonova afterglow

0 5 10 15 20 Rest frame time from merger (days)

LIGO/VIRGO Collaboration 2017; Drout et al. 2017

NSM delay times cause difficulties for chemical evolution

NSM delay times cause difficulties for chemical evolution

Fundamental concerns the same as pre-GW170817

These difficulties can be addressed!

e.g., Tsujimoto+Shigeyama 14, Shen+15, van de Voort+15, Ishimaru+2015, Hirai+15, Ji+2016, Beniamini+16ab/19, Duggan+18, Ojima+18, Safarzadeh+19, Schonrich+Weinberg 19, Andrews+19, ...)

Possible aspects include:

hierarchical galaxy formation, fast merging neutron stars, adding early rare supernovae to NSM

What can we do that is new with GW/KN?

NSMs should not make identical r-process yields

Tidal dynamical

Blue: high Y_e, neutron-poor, **light** 1st-peak r-process Red: low Y_e, neutron-rich, **heavy** 2nd+3rd peak r-process

Varying R-Process Abundances in Stars Implies Different Kilonova Compositions

The *lanthanide fraction* X_{La} ~ 0.1 heavy/(heavy+light) is measurable in both stars and kilonovae

Measure X_{La} in existing metal-poor Milky Way stars (assume each star = 1 neutron star merger) Figure: Sneden et al. 2008

Predict X_{La} for future kilonovae

Determining X_{La} in metal-poor stars (1): Which Stars?

- Metal-poor, r-dominated: [Fe/H] < -2.5, [Ba/Eu] < -0.4
- **Pure sample**: [Eu/Fe] > 0.7 Roederer et al. 2018: 46 metal-poor stars
- Complete sample: any [Eu/Fe] JINAbase (Abohalima & Frebel 2018): 146 metal-poor and r-dominated stars

Results verified with R-Process Alliance data (Hansen et al. 2017, Sakari et al. 2018)

Determining X_{La} in metal-poor stars (2): How to Measure X_{La}?

We do not measure all elements: extrapolate with the solar r-process pattern

X_{La} ~ 0.1 heavy/(heavy+light)

Ji & Frebel 2018

Alex Ji

Metal-poor star lanthanide fraction distribution

Also see poster by T. Tsujimoto

Ji, Drout, & Hansen 2019

Alex Ji

Determining X_{La} in Kilonovae

Kilonovae have red and blue components

At least two different mass components: blue = La-poor (low opacity) red = La-rich (high opacity)

Stars probe the *sum* of all components (Including any hidden ones)

Alex Ji Drout et al. 2017

Lanthanide fractions in GW170817

Vary by ~5x in ejected mass but all agree log X_{La} ~ -2.2 ± 0.5

GW170817 is consistent with (but at the low end of) metal-poor star lanthanide fractions

- GW170817 has log X_{La} ~ -2.2 ± 0.5
 → Unusually large amount of Sr, Y, Zr!
- Future KN should have higher X_{La}!
 R-enhanced stars have ~10x higher X_{La}
 - If not: NSM cannot be the source of early r-process

How to get higher X_{La} Kilonovae in NS mergers?

Enhance tidal dynamical contributions

- Larger mass ratio; higher eccentricity
- NS equation of state/tidal deformability, spin

Suppress blue kilonova component

- Prompt collapse to BH
- NS-BH mergers

High-X_{La} KN are <u>redder</u> and probably eject less mass (<u>shorter</u> and <u>fainter</u>)

- Blue kilonova is not r-process (not likely: Watson+2019 detected Sr)
- Increase X_{La} of disk winds and/or suppress disk wind mass
 - Faster disk mass ejection (less neutrinos)

Systematic Concerns

Metal-poor Stars

- Solar pattern not sufficient to describe metal-poor stars
 - First peak too massive
 - Variation in H (2nd peak)
- Hard cutoffs in atomic mass
- Contamination from other sources in 1st peak
- Actinides not included
 Need UV spectra

Kilonovae

- Viewing angle effects or other hidden mass components
- Early blue component is not r-process elements
- Translation from opacity to lanthanide fractions
- Uncertain nuclear physics (heating, thermalization rates)
- Actinides?
 See talk by E. Holmbeck
 Need more kilonovae

Summary

 Metal-poor stars predict future kilonovae should be lanthanide rich

~10% of kilonovae should have $X_{La} > 10^{-1.2}$

-> fainter, shorter, and redder

- If not, then need at least one other significant early r-process site
- Require both early optical and mid-infrared followup observations of kilonovae

 R-enhanced stars are a strongly biased sample of r-process composition