Triple alpha reaction rate under extreme conditions

T. Kawabata Department of Physics, Osaka University

Contents

- Introduction
- Triple alpha reaction rate at high T
 - γ -decay probability of the 3⁻¹ state in ¹²C
- Triple alpha reaction rate at high *p* Cross section for the ¹²C(n,n')¹²C* reaction

Nucleosynthesis in the Universe

All chemical elements were synthesized by nuclear reactions starting from protons and neutrons.

Triple alpha reaction rate

Recent Update

New data on the 2_{2}^{+} were published.

γ -decay probability of the 3_1^- state

Difficult to measure the Γ_{γ}/Γ of the 3_1^- state because it is very small.

[D. Camberlin et.al., Phys. Rev. C 10, 2 (1974).]

Experimental procedure

Using the inverse kinematic reaction $H({}^{12}C, {}^{12}Cp)$, recoil protons and scattered ¹²C will be measured simultaneously instead of γ -rays.

y-decay probability Γ_v / Γ a-decay events Hydrogen γ Number of y-decay events Target Number of all excited events 2 events Number of all excited events ¹²C Beam 3α E_X in ¹²C is determined from the excited energy and angle of the recoiled proton. y-decay events Number of y-decay events Hydrogen Target The scattered ¹²C should be detected All in coincidence with the recoiled proton. 12**C*** ¹²C Beam

- \succ Thin solid hydrogen target.
- Recoil proton detector.

Experimental Setup

The experiment was performed at the cyclotron facility in RCNP.

Gamma Decay Probability γ -decay probability is given by $\frac{\Gamma_{\gamma}}{\Gamma} = \frac{\# \text{ of } \gamma \text{ decay events}}{\# \text{ of singles events}} \times \frac{1}{\text{geo. eff.}}$ Geometrical efficiency should be estimated by MC calculation. $0^{+}{}_{2}$ 3-1 **]**+₁ 0.229(3) Geo. Efficiency 0.117(2) 0.186(9) 4.16(11)×10⁻⁴ 2.21(7)×10⁻² Γ_{γ}/Γ Previous Unknown 6.2(6) ×10⁻⁴

 Γ_{γ}/Γ Present 4.3(8)×10⁻⁴ 2.6(7)×10⁻² 1.3(8)×10⁻⁶

The present results are consistent

with the previous result on the O_2^+ and 1_1^+ states, but not with the recent report for the O_2^+ state by Kibedi et al.

 Γ_{γ} for the 3⁻¹ state is larger than the previous upper limit [8.2 × 10⁻⁷ (2 σ)].

The 3α rate is partially restored, and consistent with NACRE... Recently published in M. Tsumura, T. K. et al., Phys. Lett. B 817, 136283 (2021). ¹³

Triple Alpha Reaction Rate at high p

Only de-excitation by gamma decay was considered so far.

Time Inverse Reaction Direct measurement of ¹²C(Hoyle)(n,n')¹²C(g.s.) is impossible.

 \rightarrow Time inverse reaction should be measured.

Eye-Scan Analysis

Two track images were analyzed by human eyes.

Event Reconstruction

- ✓ Test images were generated by Simulation. → BG events were randomly mixed.
- Eye-scan analysis was carried out to estimate the reconstruction efficiency.

K. Himi, Bachelor Thesis, Osaka University (2021).

Summary

- Triple alpha reaction rates under extreme conditions were measured.
 - Measurement of the γ -decay probability of the 31⁻ state in ¹²C
 - Triple alpha reaction rate at high T has been updated.
 - New measurement of the cross sections for the ¹²C(n,n')¹²C* reaction is in progress.
 - Triple alpha reaction rate at high ρ .
 - Experimental feasibility has been confirmed.
 - Upgrade of MAIKo is now ongoing. (Sensitive volume $10 \times 10 \times 10 \text{ cm}^3 \rightarrow 30 \times 30 \times 30 \text{ cm}^3$)