Core-collapse supernova simulation of a 3D 25 M_{\odot} progenitor model

Ko Nakamura (Fukuoka University)

Tomoya Takiwaki (NAOJ), Kei Kotake (Fukuoka Univ.)

YITP-OzGrav WS "Nuclear burning in massive stars" July 26-30, 2021

We need <u>*Realistic*</u> CCSN models <u>*Comparable*</u> to observations.

<u>*Realistic*</u> model... based on 3D self-consistent simulations without any arbitrary parameters.

<u>*Comparable*</u> to obs... $E_{exp} \sim 10^{51} \text{erg}, M_{Ni} \sim 0.07 M_{\odot}$

One of the key inputs is non-spherical structure of initial conditions (CCSN progenitors).

2D simulations

Mass accretion is important! high $M \rightarrow$ high $L_{\nu} \rightarrow$ high $Q \rightarrow$ high E_{exp} Progenitors with high M can attain 10⁵¹erg in 1-2 s after bounce (if they explode).

3D simulations

It's not easy to explode high M progenitors. Some small mass (= small M) progenitors can explode, but their E_{exp} is small. *Melson*+15: 9.6 $M_{\odot} \rightarrow 10^{50}$ erg *Mueller*+18: 7 progenitors \rightarrow 1-4 x 10⁵⁰erg

We could obtain $E_{exp} \sim 10^{51} \text{erg} (\& M_{Ni} \sim 0.07 M_{\odot})$ CCSM models if high \dot{M} progenitors explode.

<u>Couch & Ott 13</u> 3D CCSN simulation for a **spherical** $15M_{\odot}$ progenitor star with a **parametric** v_{θ} **perturbation** in 1,000 - 5,000 km. \rightarrow **Shock revival**.

<u>Couch & Ott 13</u> 3D CCSN simulation for a **spherical** $15M_{\odot}$ progenitor star with a **parametric** V_{θ} **perturbation** in 1,000 - 5,000 km. \rightarrow **Shock revival**.

<u>Mueller+17</u> 3D CCSN simulation following a **3D stellar evolution** of $18M_{\odot}$ progenitor (*Mueller*+16). $\rightarrow E_{exp} \sim 7.7 \times 10^{50}$ erg @ 2.4 s.

<u>Couch & Ott 13</u> 3D CCSN simulation for a **spherical** $15M_{\odot}$ progenitor star with a **parametric** V_{θ} **perturbation** in 1,000 - 5,000 km. \rightarrow **Shock revival**.

<u>Mueller+17</u> 3D CCSN simulation following a **3D stellar evolution** of $18M_{\odot}$ progenitor (*Mueller*+16). $\rightarrow E_{exp} \sim 7.7 \times 10^{50}$ erg @ 2.4 s.

☆ <u>Bollig+21</u>

"Self-consistent 3D SN models from -7 min. to +7 sec: a 1-Bethe explosion"

3D CCSN simulation following a 3D stellar evolution of $18.88M_{\odot}$ progenitor (*Yadav+20*). $\rightarrow E_{exp} \sim 10^{51} \text{ erg \& } M_{Ni} \sim 0.087 M_{\odot} @ 7 \text{ s.}$

<u>Couch & Ott 13</u> 3D CCSN simulation for a **spherical** $15M_{\odot}$ progenitor star with a **parametric** V_{θ} **perturbation** in 1,000 - 5,000 km. \rightarrow **Shock revival**.

<u>Mueller+17</u> 3D CCSN simulation following a **3D stellar evolution** of $18M_{\odot}$ progenitor (*Mueller*+16). $\rightarrow E_{exp} \sim 7.7 \times 10^{50}$ erg @ 2.4 s.

☆ <u>Bollig+21</u>

"Self-consistent 3D SN models from -7 min. to +7 sec: a 1-Bethe explosion"

3D CCSN simulation following a 3D stellar evolution of $18.88M_{\odot}$ progenitor (*Yadav+20*). $\rightarrow E_{exp} \sim 10^{51} \text{ erg } \& M_{Ni} \sim 0.087 M_{\odot} @ 7 \text{ s.}$

We want to construct independent 1-Behte CCSN models employing different progenitor models and numerical code.

Numerical scheme

Progenitor model (Yoshida+19)

3D stellar evolution of $25M_{\odot}$ progenitor for 100 s before collapse.

- \rightarrow O-shell burning drives large convective motions in Si/O layer.
- \rightarrow Mapping the v_r profile on 1D progenitor for the initial condition.

Yoshida+'19

Numerical scheme

Progenitor model (*Yoshida+19*)

3D stellar evolution of $25M_{\odot}$ progenitor for 100 s before collapse.

- \rightarrow O-shell burning drives large convective motions in Si/O layer.
- \rightarrow Mapping the v_r profile on 1D progenitor for the initial condition.

Core-collapse simulations

2D/3D simulation by means of **3DnSNE code** (*Takiwaki+18*). v transport : 3-flavor IDSA scheme, 20 energy bins (<300 MeV)

EoS : LS220 + Boltzmann gas

nuclear network : 13- α (He-Ni) simple network calculation

spatial resolution: $0 \le r \le 10^4$ km, $600(r)x128(\theta)$ or $600x64x128(\phi)$

Inputted non-spherical structures

rp: random density perturbation (< 0.01%)

vp: radial velocity perturbation based on 3D stellar evolution.

 $(v_{\text{turbl.}} \sim \pm 10^8 \text{ cm/s}, \text{ much smaller than } v_{\text{infall}} \sim -10^9 \text{ cm/s})$

<u>1D (spherical)</u> No explosion.

<u>1D (spherical)</u> No explosion.

 $\begin{array}{l} \underline{\text{2D with rp}} & 10^9 \\ \text{Shock revival at } \sim 260 \text{ms}, \\ \text{earlier than the infall time of} \\ \text{the convective region.} & 10^8 \end{array}$

<u>1D (spherical)</u> No explosion.

 $\frac{2D \text{ with rp}}{Shock revival at ~ 260ms,}$ earlier than the infall time of the convective region. 10⁸

We shift the inner radius of the region inward.

<u>1D (spherical)</u> No explosion.

 $\frac{2D \text{ with rp}}{Shock revival at ~ 260ms,}$ earlier than the infall time of the convective region. 10⁸

We shift the inner radius of the region inward.

2D with rp+vp Inputted velocity perturbation assists early 10⁶ shock revival (~ 150ms).

<u>1D (spherical)</u> No explosion.

2D with rp

Shock revival at ~ 260ms, earlier than the infall time of the convective region.

We shift the inner radius of the region inward.

2D with rp+vp

Inputted velocity perturbation assists early shock revival (~ 150ms).

<u>3D with rp</u> Successful shock revival.

<u>3D with rp</u> Successful shock revival.

<u>3D with vp</u>

Earlier shock revival,

will be produce more energetic explosion.

Summary

- ✓ Numerical (self-consistent) CCSN models have been suffered from small explosion energy (<10⁵¹erg).
- One of the key inputs is non-spherical structure of CCSN progenitors such as a convective motion driven by nuclear shell burning.
- ✓ We perform 3D CCSN simulation for 3D progenitor model and confirm that the non-spherical structure helps shock revival.
- ✓ This mechanism may be effective only when the bottom of the Si/O layer is close to the progenitor core.