Black Hole Archaeology

Jeremy Sakstein (University of Hawai'i) Nuclear Burning in Massive Stars YITP, Kyoto University & Monash University July 29th 2021 sakstein@hawaii.edu | jeremysakstein.com

Binary mergers in LIGO/Virgo GWTC-2

Goal: test fundamental physics with GW observations

BHs are insensitive to many physical processes

No-hair theorem:

BHs are insensitive to

- Nuclear physics
- Novel particles (dark matter)
- Modified gravity (dark energy)

Their progenitor stars are not!!!

New/different physics changes how stars work

Black hole archaeology

Black hole archaeology

Binary mergers in LIGO/Virgo O1+O2

Astrophysical black holes

Simulated with MESA version 12778

Evolution of massive stars

Astrophysical black holes

Fundamental physics and the black hole mass gap What physics could effect the black hole mass gap?

1) Nuclear reaction rates — Triple- $\alpha \& {}^{12}C(\alpha, \gamma){}^{16}O$ set ratio of ${}^{12}C$ to ${}^{16}O$ during pulsations

2) New light particles — act as a new source of losses similar to neutrinos

We can implement both of these into MESA

New physics and the black hole mass gap

Nuclear reaction rates - ${}^{12}C(\alpha, \gamma){}^{16}O$

Helium burning Carbon burning Oxygen burning

Nuclear reaction rates

Most recent ${}^{12}C(\alpha, \gamma){}^{16}O$ rate from de Boer, Gorres & Wiescher 2017

Cold dark matter (CDM)

Weakly-interacting massive particle

- Cold, collisionless, non-interacting
- Responsible for:

Large scale structure

Galactic rotation curves

Problems with CDM

We haven't seen it:

Problems with CDM

Galaxy-scale astrophysical problems:

E.g. cusp-core problem

Alternatives to CDM

New light particle coupled to matter?

- Axions, hidden photons, milli-charged DM,
- Acts like CDM on large scales but solves small-scale problems
- These give rise to new loss channels in stars can test DM with astronomy

New light particles

New light particles

Hidden photon: $m_{A'} = 10^{-2} \text{eV}, Z = 10^{-5}$

Wait, didn't I hear something about the mass gap?

GW190521

A black hole in the mass gap

Beyond the Standard Model Explanations of GW190521

Jeremy Sakstein,^{1,*} Djuna Croon,^{2,†} Samuel D. McDermott,^{3,‡} Maria C. Straight,^{4,§} and Eric J. Baxter^{5,¶} ¹Department of Physics & Astronomy, University of Hawai'i, Watanabe Hall, 2505 Correa Road, Honolulu, HI, 96822, USA

² TRIUMF. 1001 Wesbrook Mall. Vancouver. BC V6T 2A3. Canada

Sesh Nadathur @SeshNadathur

@JeremySakstein, nice paper! But how did you manage this apparent violation of causality?! arxiv.org/abs/2009.01213

11:37 PM · Sep 2, 2020 · Twitter Web App

JS, Croon, McDermott, Straight & Baxter, PRL (2020)

Black hole archeology

Astrophysically-motivated mass function

 $M_{
m in}\,({
m M}_{\odot})$

Astrophysically-motivated mass function

$$\frac{dN_{\rm BH}}{dM_{\rm BH}} \propto M_{\rm BH}^{b} \left[1 + \frac{2a^2 M_{\rm BH}^{\frac{1}{2}} (M_{\rm BHMG} - M_{\rm BH})^{a-1}}{M_{\rm BHMG}^{a-1/2}} \right]$$

Three physical parameters:

- $\bullet M_{
 m BHMG}$ edge of the black hole mass gap
- *a* sharpness of the peak
- b IMF + transfer function

+2 low-mass smoothing parameters + second-gen BHs (2 parameters)

Baxter, Croon, McDermott & JS (2021)

Nuclear reaction rates

New particles

Baxter, Croon, McDermott & JS (2021)

Baxter, Croon, McDermott & JS (2021)

Degeneracies can be mitigated!

 $^{12}\mathrm{C}(\alpha,\gamma)^{16}\mathrm{O}$ rate

Hidden photon

Baxter, Croon, McDermott & JS (2021)

Application to GWTC-2

Results are sensitive to GW190521

GW190521 could be: second-gen, a straddling binary, highly-eccentric,

Application to GWTC-2

Results are sensitive to GW190521

With GW190521:

$$M_{\rm BHMG} = 46^{+17}_{-6} {\rm M}_{\odot}$$

Without GW190521:

$$M_{\rm BHMG} = 54^{+6}_{-6} \rm M_{\odot}$$

Looking forward

- Data analysis after O3b release
- Constrain new particles + nuclear physics
- Effects of heavy DM on the BHMG
- Modified gravity more work needed
- Very exciting!!!!!

Thank you to my amazing collaborators

Papers:

- •New particles: 2007.00650, 2007.07889
- Modified gravity: 2009.10716
- •GW190521: 2009.01213
- •BH mass function: 2104.02685

Thank you!

sakstein@hawaii.edu | jeremysakstein.com

Papers:

•New particles: 2007.00650, 2007.07889

• Modified gravity: 2009.10716

•GW190521: 2009.01213

•BH mass function: **2104.02685**