

YITP-OzGrav WS "Nuclear burning in massive stars" July 27, 2021

Gaia's Detectability of Black Hole-Main Sequence Star Binaries Formed in Open Clusters (Shikauchi et al. 2020, PASJ, 72, 45)

Minori Shikauchi

Collaborators : Jun Kumamoto, Ataru Tanikawa, Michiko S. Fujii

(ESA/ATG medialab; background: ESO/S. Brunier)

Detecting Stellar Mass BHs with Gaia

- \blacktriangleright \lesssim 100 BHs in X-ray binaries in the MW
- ► \gtrsim 60 BBHs/NSBHs as GW transients
- periods of BH binaries: hours days
- biased to shorter period binaries possibility of unseen binaries in X-ray (Yungelson+ 2006)

How can such binaries be observed?

(https://www.ligo.caltech.edu/image/ligo20210629b)

Detecting Stellar Mass BHs with Gaia

► observe the motion of MSs → confirm the existence of BHs

Detecting Stellar Mass BHs with Gaia

- astrometric satellite : Gaia
- future data release in 2022
 - Including the data of five-year observation from 2013
 - binaries with periods of days years
 - X-ray and astrometric observations are complementary!

How many BH-MS binaries will be detected with Gaia?

(ESA/ATG medialab; background: ESO/S. Brunier)

(Mashian & Loeb 2017, Breivik+ 2017, Yamaguchi+ 2018, ...)

Previous Researches Predicted it, but...

(Mashian & Loeb 2017, Breivik+ 2017, Yamaguchi+ 2018, ...)

Previous Researches Predicted it, but...

- in a dense stellar region, stellar number density is higher than in isolated fields.
 - more binaries can be formed and kicked out from cluster!

How much do they contribute to the detectability?

Can we find the difference of

formation process?

performed N-body simulations of open cluster models

in star clusters

Setup of *N*-body Simulations

open cluster models

```
metallicity : solar metallicity
```

```
mass of each cluster M_{ini} : 2500M_{\odot}, Plummer profile
```

Kroupa IMF (range : $0.08M_{\odot} - 150M_{\odot}$)

```
single / binary stellar evolution
```

- common envelope phase, stellar wind mass loss
- no BH natal kicks (Not important for detectability, cf. Breivik+ 2017)
- 1000 different realizations with NBODY6++GPU

Results and Classification of Binaries

- obtained 49 BH-MS binaries escaping from open clusters with orbital periods of ≤ 3 years.
- divide them into two groups

Results and Classification of Binaries

- obtained 49 BH-MS binaries escaping from open clusters with orbital periods of \leq 3 years.
- divide them into two groups
 - Group 1 : tight with massive MSs
 - Group 2 : less tight and less massive MSs

Formation Process of Group 1 Binaries

- short periods ($P \lesssim 0.1$ year)
- ► massive MSs ($m_{MS} \gtrsim 5.6 M_{\odot}$)
- dynamically formed MS-MS binary experiencing common envelope phase
 - → tight BH-MS binaries
 (a kind of isolated field binaries)

Formation Process of Group 2 Binaries

- long periods ($P \gtrsim 0.1$ year)
- ▶ less massive MSs ($m_{MS} \leq 5.6 M_{\odot}$)
- dynamically formed <u>BH</u>-MS binaries experiencing common envelope phase
 - \rightarrow tight BH-white dwarf (WD) binaries
 - \rightarrow exchanging WD with MS

The Difference of Formation Process

The Difference of Formation Process

- Group 2 binaries exchange MSs after CE phases
- MSs of Group 2 binaries are not polluted by outflows of the BH progenitors

companion MSs with normal chemical abundance patterns can exist!

Detectability : The Number of BH-MS Binaries

constraints for realistic observation (following Yamaguchi et al. 2018)

- interstellar extinction
- Gaia's detection limit : parallaxes and orbital separations

	Total
our result	8.9
isolated field binaries (Yamaguchi et al. 2018)	200 - 1000

 $\sim 1 - 5$ % contribution to the total detectability

Detectability : Main Contribution of Group 2

constraints for realistic observation (following Yamaguchi et al. 2018)

- interstellar extinction
- Gaia's detection limit : parallaxes and orbital separations

	Total	Group 1	Group 2
our result	8.9	5.6×10 ⁻⁴	8.9
isolated field binaries (Yamaguchi et al. 2018)	200 - 1000	~ 0	~ 0
Group 1 binaries are ha because of their tight s	ardly observed eparation.		

15

Detectability : Main Contribution of Group 2

	Total	Group 1	Group 2
our result	8.9	5.6×10 ⁻⁴	8.9
isolated field binaries (Yamaguchi et al. 2018)	200 - 1000	~ 0	~ 0

the formation process of Group 2 binaries is

a characteristic of <u>cluster-origins</u>.

chemical abundance patterns of MSs can be a clue to identify the origin of BH-MS binaries!

Summary

- predicted Gaia's detectability of cluster-origin BH-MS binaries
- ~ 10 binaries can be detected considering interstellar extinction
 - 1 5% contribution to the detectability
 - Group 2 are dominant
 - → chemical abundance patterns of MSs will be a characteristic of cluster-origin binaries