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focusing	on	failed	supernovae	 	
•  stability analysis with radial perturbations 
•  gravitational waves from PNS until apparent horizon appears 
inside the PNS with linear perturbation analysis 
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failed	supernovae	simulations	
•  1D-GR core-collapse simulations (by Sumiyoshi) 

–  40M⊙ progenitor model (W40) based on Woosley & Weaver 95 
–  50M⊙ progenitor model (T50) based on Tominaga, Umeda & Nomoto 07 
–  EOS: Shen (2.2M⊙), LS180 (1.8M⊙), LS220 (2.0M⊙) 
–  surface density ≈ 1011 g/cm3 
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FIG. 3: Evolution of the PNS radius (left), the gravitational mass (center), and the average density (right) for various PNS models, where the
surface density is fixed to be 1011 g/cm3.
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FIG. 4: Evolution of the eigenfrequencies for the PNS model of W40-Shen. The right panel is just an enlarged view of the left panel. The f -,
pi-, and gi-modes are shown with the diamonds, squares, and circles.

III. PROTONEUTRON STAR ASTEROSEISMOLOGY

We perform the linear perturbation analysis of the PNS models described above. Once the PNS models are given, how to
determine the eigenfrequencies of PNS is the same as in Ref. [21]. That is, for simplicity, we assume the relativistic Cowling
approximation, i.e., the metric perturbations are neglected during the fluid oscillations. In this case, the perturbation equations
can be derived by linearizing the energy momentum conservation law. The concrete equation system is given by Eqs. (23) and
(24) in Ref. [21]. By imposing appropriate boundary conditions, it eventually becomes an eigenvalue problem with respect to
the eigenvalue of ω. Then, the eigenfrequency of gravitational wave is determined by ω/(2π). As the boundary conditions, one
has to impose the regularity condition at the stellar center, while the Lagrangian perturbation of pressure should be zero at the
PNS surface.

First, we show the evolution of eigenfrequencies for the PNS model of W40-Shen in Fig. 4, where the right panel is just an
enlarged view of the left panel. The diamonds, squares, and circles correspond to the frequencies of the f -, pi-, and gi-mode
gravitational waves. One can clearly observe the phenomena of the avoided crossing. That is, for example, focusing on the
f -mode frequency, the avoided crossing occurs with p1-mode at Tpb ∼ 200 ms and with g1-mode at Tpb ∼ (300 − 350) ms.
Due to the avoided crossing, one can observe the plateau for a while in the evolution of the f -mode frequency. The evolutions
of eigenfrequencies for the other PNS models are shown in Appendix A.

Next, we focus on the behavior of the f -mode frequency. In Fig. 5, the evolution of f -mode frequency is shown for various
PNS models. It is interesting to commonly observe the plateau for a while around Tpb ∼ (200 − 300) ms. As a general trend
except for the small plateau, we find that the f -mode frequency can be fitted well as

ff (kHz) = c0 + c1

(
Tpb

1000ms

)
+ c2

(
Tpb

1000ms

)2

, (4)

where c0, c1, and c2 are fitting coefficients depending on the PNS models, as shown in Table II. In Fig. 6, the fitted line for each
PNS model is shown with the thick-solid line. By using this fitting formula together with the information about TBH determined
from the neutrino observations, one could estimate the f -mode frequency from the PNS model with the maximum mass (at



final	phase	
•  at last, the PNS radius is rapidly shrinking. 
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Figure 2. Time evolution of the PNS radius (top), mass (middle), and average density (bottom) for the final phase before the gravitational
collapse is shown as a function of Tpb − TBH for various models with ρs = 2× 1011 g/cm3.

Table 2. TBH and Tfξ=0 for various models, where TBH and Tfξ=0 are respectively the black hole formation time, i.e., the time when
the apparent horizon appears inside the PNS, and the time when the fundamental frequency of the radial oscillation becomes zero.

EOS Model TBH (sec) Tfξ=0 (sec)

Shen W40 1.345 1.345
T50 1.511 1.509

LS180 W40 0.566 0.561
T50 0.507 0.506

LS220 W40 0.784 0.782

3 STABILITY OF PROTONEUTRON STARS

As seen in the previous section, the mass of the protoneutron star increases with the accretion, which eventually approaches

the maximum mass allowed with the adopted EOSs. Then, the protoneutron star would gravitationally collapse to a black

hole. The moment when the protoneutron star approaches its maximum mass corresponds to the onset of the instability. In

order to determine the onset of instability in the evolution of the protoneutron stars, we make a linear analysis with the

radial perturbation on the protoneutron star models at each time step after core bounce. For this purpose, one can derive the

perturbation equations as

dξ
dr

= −
[
3
r
+

p′

p+ ε

]
ξ − η

rΓ
, (3)

dη
dr

=

[
r(p+ ε)e2Λ

(
ω2

p
e−2Φ − 8π

)
− 4p′

p
+

r(p′)2

p(p+ ε)

]
ξ −

[
εp′

p(p+ ε)
+ 4πr(p+ ε)e2Λ

]
η, (4)
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Figure 2. Time evolution of the PNS radius (top), mass (middle), and average density (bottom) for the final phase before the gravitational
collapse is shown as a function of Tpb − TBH for various models with ρs = 2× 1011 g/cm3.

Table 2. TBH and Tfξ=0 for various models, where TBH and Tfξ=0 are respectively the black hole formation time, i.e., the time when
the apparent horizon appears inside the PNS, and the time when the fundamental frequency of the radial oscillation becomes zero.

EOS Model TBH (sec) Tfξ=0 (sec)

Shen W40 1.345 1.345
T50 1.511 1.509

LS180 W40 0.566 0.561
T50 0.507 0.506

LS220 W40 0.784 0.782

3 STABILITY OF PROTONEUTRON STARS

As seen in the previous section, the mass of the protoneutron star increases with the accretion, which eventually approaches

the maximum mass allowed with the adopted EOSs. Then, the protoneutron star would gravitationally collapse to a black

hole. The moment when the protoneutron star approaches its maximum mass corresponds to the onset of the instability. In

order to determine the onset of instability in the evolution of the protoneutron stars, we make a linear analysis with the

radial perturbation on the protoneutron star models at each time step after core bounce. For this purpose, one can derive the

perturbation equations as

dξ
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3
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FIG. 3: For the neutron stars constructed with Togashi EOS [76], the mass of stars is shown as a function of the central density, ρc, normalized
by the nuclear saturation density, ρ0, in the left-top panel and as a function of the stellar radius in the right-top panel, while the corresponding
frequencies of the lowest three radial oscillations are shown as a function of ρc/ρ0 in left-bottom panel. The open-circle denotes the stellar
model with the maximum mass. It is obvious that the frequency of the lowest (1st) radial oscillation becomes negative for the stellar model
constructed with the central density, which is more than that for the neutron star with the maximum mass.

frequency is positive for most of the PNS models considered in this study, while it becomes negative for a few PNS models at the
last moment. That is, the PNS model for which the lowest frequency is zero is the PNS model with the maximum mass allowed
with the adopted EOS. In addition, we find that the lowest frequency monotonically decreases with time at least in the phase
considered in this study, while the second and third lowest frequencies for the models with soft EOSs increase. Incidentally, the
second and third lowest frequencies become negative at the end as for the model of T50-Shen.

Furthermore, we focus on the lowest frequency in Fig. 5, where the lowest frequency is shown as a function of Tpb − TBH

(left panel) and the PNS compactness (right panel). From the left panel, we see that the time evolution of the lowest frequency
(especially in the last ∼ 40 msec) weakly depend on the PNS model, although the second and third lowest frequencies depend
on the PNS model, as mentioned above. We found that, from the right panel, the gradient of the lowest frequency with respect
to the PNS compactness seems to be almost independent of the PNS models at the last moment, although as shown in Fig. 2
the PNS properties in the final phase depend on PNS models. In practice, the radial oscillation itself is not associated with the
gravitational radiations, but one can observe the aspect of the radial oscillations in the gravitational waves through the nonlinear
coupling between the radial and nonradial oscillations [77].

IV. PROTONEUTRON STAR ASTEROSEISMOLOGY

In this study, we also examine the gravitational wave frequency from the PNSs in the final phase just before the black hole
formation. For this purpose, as in Ref. [41] we simply adopt the relativistic Cowling approximation, i.e, the metric perturbations
are neglected during the fluid oscillations, where one can derive the perturbation equations by linearizing the energy-momentum
conservation law. Then, by adopting the appropriate boundary conditions at the stellar center and the radius, the problem to solve
becomes an eigenvalue problem with respect to the eigenvalue ω, with which the gravitational wave frequency, f , is determined
via f = ω/(2π). The perturbation equations and boundary conditions are the same as in Ref. [17]. That is, we make a linear
analysis in a similar way to the previous study [41], but we especially focus on the final phase toward the black hole formation
in this study.

First, we examine how the gravitational wave frequencies from the PNSs depend on the PNS surface density. This dependence
has already been discussed in Refs. [16, 18] for the PNSs produced by the thrived supernova explosions, where the f - and g1-
mode frequencies are independent of the selection of the surface density after the avoided crossing between the both modes,

Stability	analysis	for	cold	NSs	

•  making radial perturbation analysis,  
NSs become gravitationally unstable,  
if fξ< 0. 

•  NS model with the maximum mass 
corresponds to the onset of instability. 
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Finally, as in the previous studies (e.g., Refs. [16, 17, 20, 21, 38, 41]), we assume that the PNS model are in a static equilibrium
at each time step and prepare the PNS model as a background model for considering the linear analysis in this study. In this
case, the metric is given with the spherical coordinate as

ds2 = −e2Φdt2 + e2Λdr2 + r2
(
dθ2 + sin2 dφ2

)
. (2)

Now, Φ and Λ are functions only of r and e2Λ is directly associated with the mass function m(r) via e−2Λ = 1− 2m/r.

III. STABILITY OF PROTONEUTRON STARS

As seen in the previous section, the mass of the protoneutron star increases with the accession, which eventually approaches
the maximum mass allowed with the adopted EOSs. Then, the protoneutron star would gravitationally collapse to a black hole.
The moment when the protoneutron star approaches its maximum mass corresponds to the onset of the instability. In order to
determine the onset of instability in the evolution of the protoneutron stars, we make a linear analysis with the radial perturbation
on the protoneutron star models at each time step after core bounce. For this purpose, one can derive the perturbation equations
as

dξ

dr
= −

[
3

r
+

p′

p+ ε

]
ξ − η

rΓ
, (3)

dη

dr
=

[
r(p+ ε)e2Λ

(
ω2

p
e−2Φ − 8π

)
− 4p′

p
+

r(p′)2

p(p+ ε)

]
ξ −

[
εp′

p(p+ ε)
+ 4πr(p+ ε)e2Λ

]
η, (4)

where p, ε, and Γ denote the pressure, energy density, and adiabatic index for the background protoneutron star models, while
ξ and η are perturbative variables given by ξ ≡ ∆r/r and η ≡ ∆p/p with the radial displacement, ∆r, and the Lagrangian
perturbation of pressure, ∆p [71–73]. The prime in the equations denotes the radial derivative and the adiabatic index is given
by

Γ ≡
(

∂ ln p

∂ lnnb

)

s

=
p+ ε

p
c2s, (5)

where nb, s, and cs denote the baryon number density, entropy per baryon, and sound velocity, respectively. We remark that
one can derive the Sturm-Liouville type second order differential equation with respect to ξ from Eqs. (3) and (4). To solve the
eigenvalue problem with respect to the eigenvalue ω2, one should impose the appropriate boundary conditions. The boundary
condition at the stellar surface comes from the condition to remove the singularity in Eq. (4) [72], i.e.,

η = −
[(

ω2R3
PNS

MPNS
+

MPNS

RPNS

)(
1− 2MPNS

RPNS

)−1

+ 4

]
ξ, (6)

while the boundary condition at the center is the regularity condition, i.e.,

3Γξ + η = 0. (7)

In addition, as normalization of the eigenfunction, we set ξ = 1 at the stellar center. Then, with the resultant eigenvalue ω2, the
frequency of radial oscillations are given by

fξ = sgn(ω2)
√
|ω2|/2π, (8)

where the system is unstable when ω2 becomes negative.
For the case of cold neutron stars, it is well known that the stellar models constructed with the central density, which is more

than that for the neutron star model with the maximum mass, are unstable. As an example (and as a test of our code for the
eigenvalue problem with respect to the radial oscillations), we show the results for the neutron star models constructed with
Togashi EOS [76] in Fig. 3, where top panels correspond to the equilibrium models, i.e., the stellar mass is shown as a function
of the central density, ρc, noramalized by the nuclear saturation density, ρ0, in the left-top panel and as a function of the stellar
radius in the right-top panel. The open-circle denotes the stellar model with the maximum mass. In the bottom-left panel,
we show the frequencies of the lowest three radial oscillations as a function of ρc/ρ0. From this figure, it is obvious that the
frequency of the lowest radial oscillation becomes negative for the stellar models with the central density, which is larger than
that for the stellar model with the maximum mass, i.e., the corresponding stellar models are unstable.

Now, we consider the case of PNSs. In Fig. 4, we show the frequencies of the lowest three radial oscillations on the various
PNS models for the final phase just before the black hole formation. From this figure, one can obviously see that the lowest

HS,	Sumiyoshi	submitted	



Stability	of	PNS	@final	phase	
•  before the apparent horizon appears inside the PNS, the PNS 
seems to become gravitationally unstable 
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FIG. 4: The frequencies of the lowest three radial oscillations are shown as a function of Tpb − TBH, where the top and bottom panels
correspond to the PNS models with W40 and T50, while the left, middle and right panels correspond to the PNS models with Shen, LS180,
and LS220, respectively.
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FIG. 5: For various PNS models, the frequencies of the 1st radial oscillations for the final phase are shown as a function of Tpb − TBH (left
panel) and MPNS/RPNS (right panel).

while the other modes, especially the pi-modes with i ≥ 2, depend on the surface density. This behavior may be understood
by considering the radial profile of pulsation energy density (or eigenfunction) [18]. That is, the f - and g1-modes significantly
oscillate inside the star, while the other modes oscillate not only inside the star but also in the region closed to the PNS surface.

In the case for the PNSs in the failed supernovae considered in this study, we show the gravitational wave frequencies of the
f -, pi-, and gi-modes with i = 1− 3 in Fig. 6 for the PNS models of W40-Shen (left panel) and W40-LS220 (right panel) with
ρs = 1011 (open-marks) and 2× 1011 g/cm3 (filled mark). From this figure, we confirm that the f - and g1-mode frequencies are
basically independent of the selection of the surface density even for the failed supernovae after the avoided crossing between
the f - and g1-modes. We also find that the dependence of the surface density can be seen in the g1-mode frequency in the final
phase just before the black hole formation, which is the period after the avoided crossing between the g1- and g2-modes. In
addition, as in the previous studies for the PNSs produced via the thrived supernova explosions, the other modes seem to depend
on the selection of surface density, where we find that the p1-mode frequency significantly depends on the surface density in the
late phase after the core bounce. We remark that a wiggling in the p1-mode frequency with ρs = 1011 g/cm3 may come from

HS,	Sumiyoshi	submitted	



GWs	from	PNS	in	successful	supernova		
•  GW signals correspond to g1-mode in early phase and f-mode 
after avoided crossing. 
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Figure 5. Comparison between the gravitational wave signals obtained from the numerical simulation (background contour) and several
eigenfrequencies for the PNS with ρs = 1011 g/cm3, where circles, diamonds, and squares denote the f -, pi-, and gi-modes for i = 1 or
2. The source distance is assumed to be D = 10 kpc.

S̃(f, Tpb) =
1
2

∫ Tpb+∆t

Tpb−∆t

d2I−zz

dt2

[
1 + cos

(
π(t− Tpb)

2∆t

)]
exp(−2πift)dt, (6)

where 2∆t denotes the width of the window function and I−zz is the zz-component of the reduced mass-quadrupole tensor I−jk

given by Eq. (11) in Murphy, Ott, & Burrows (2009). In Fig. 5, we show the resultant value of hchar with contour, adopting

that D = 10 kpc and ∆t = 20 ms. In this figure, one can clearly observe the ramp up signals from ∼ 500 hertz up to ∼ 1.5

kilohertz in the time interval of Tpb ≃ 0.15− 0.65 sec. On this figure, we also plot the several eigenfrequencies on PNS model

with ρs = 1011 g/cm3. From this figure, it is obviously found that the ramp up signals correspond well to the g1-mode in

the early phase and to the f -mode after the avoided crossing. But, since the g1-mode frequency depends on ρs in the early

phase as mentioned before, it is not sure whether or not the ramp up signal corresponds well to the g1-mode for different PNS

models provided with the different numerical simulations. In order to check this point, we calculate the gravitational wave

signals from the 2D numerical simulations with completely different progenitor models and EOSs as in Table 1 and compare

it with the eigenmodes calculated for the corresponding PNS with ρs = 1011 g/cm3. Then, we find that the ramp up signals

still seem to be good agreement with the g1-mode on the PNS model with 1011 g/cm3 as shown in Fig. A1 (see the details in

Appendix A).

Now, it is observationally important what one can learn from the direct observation of the gravitational wave signals after

supernova explosion, assuming that principal signals are the ramp up signals appearing in numerical simulations. That is,

since the ramp up signals partially correspond to the f - and g1-mode frequencies, it is very useful if one could connect these

frequencies to the PNS properties. In the left panel of Fig. 6, we show the f - and g1-mode frequencies for the PNS model with

ρs = 1011 g/cm3 as a function of the square root of the normalized PNS average density, (MPNS/1.4M⊙)
1/2(RPNS/10km)−3/2.

With this data, we successfully find that the f - and g1-mode frequencies, which correspond to the ramp up signals, are well

expressed as

f(kHz) = −3.250− 0.978 ln(x) + 15.984x− 15.051x2, (7)

where x is the square root of the normalized PNS average density, i.e., x = (MPNS/1.4M⊙)
1/2(RPNS/10km)−3/2. In practice,

the frequency predicted from Eq. (7) is also plotted with the thick-solid line in the left panel of Fig. 6. Thus, using Eq. (7), one

could get the evolution of the PNS average density via the observed frequency of gravitational wave after supernova explosion.

In this study, since we consider only one progenitor model and one EOS, it is difficult to say how this relation is independent

of the models. Even so, this relation seems to be independent of the models at least in the early phase, as shown in Fig. A2

in Appendix A. Anyway, additional models should be considered in the future.

The relation similar to Eq. (7) has already been proposed, as a function of x in Sotani & Sumiyoshi (2019);

f(kHz) = 0.9733− 2.7171x+ 13.7809x2, (8)

and as a function of x̄ ≡ MPNS/R
2
PNS in the unit of M⊙/km

2 in Torres-Forné et al. (2019b);

f(kHz) = 12.4× 102x̄− 378× 103x̄2 + 4.24× 107x̄3, (9)

although in Torres-Forné et al. (2019b) the ramp up signal is identified as g2-mode in their classification. Eq. (8) are derived

for the f -mode frequency after the avoided crossing with the g1-mode with the PNS models provided by the 1D numerical

simulations, which are eventually collapsed into black hole. In the left panel of Fig. 6, we also plot the thick-dotted line

c⃝ 0000 RAS, MNRAS 000, 000–000
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Dependence	on	PNS	models	
•  Time evolution of f-mode GW  
strongly depends on the  
progenitor models. 

•  In any case, it can be well fitted  
as a function of Tpb, such as 

–  one can expect high fre. f-mode GW,   
even though it is not detected directly.  

26.	July	2021	 nuclear	burning	in	massive	stars		–	towards	the	formation	of	binary	black	holes	–		

6

0 400 800 1200 1600
0

0.5

1.0

1.5

2.0

2.5

3.0

Tpb (ms)

 f f
 (k

H
z)

W40-Shen
W40-LS180
W40-LS220
T50-Shen
T50-LS180

FIG. 5: Evolution of the frequency of the f -mode gravitational waves for various PNS models.
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FIG. 6: Comparison between ff obtained by eigenvalue problems (marks) and the expectation with the fitting formula given by Eq. (4)
(solid-thick lines). The left and right panels correspond to the cases for the PNS models with W40 and T50, respectively.

Tpb = TBH), even though the f -mode gravitational wave at Tpb ∼ TBH would not be observed directly due to the fact that the
frequency of f -mode in the final phase is relatively high for observation.

In addition, as in Fig 7, we find that the frequency of the f -mode gravitational waves strongly depends on the square root of the
PNS average density, (MPNS/1.4M⊙)1/2(RPNS/10 km)−3/2, almost independently of the progenitor models. This behavior is
understood, because the f -mode gravitational waves are excited as a result of acoustic oscillations, which can be characterized
by the average density. In fact, it is shown that the f -mode frequency can be written as a linear function of the square root
of the average density not only for cold neutron stars [29, 30], but also for the PNS born after the core-collapse supernovae
[21, 38, 40]. Owing to this behavior of the f -mode frequency, it is suggested that the evolution of the PNS average density could
be determined via the direct observation of the f -mode gravitational waves. On the other hand, for the black hole formation
considered in this study, we find the f -mode frequency can be fitted as

ff (kH) = 0.9733− 2.7171X + 13.7809X2, (5)

where X is the square root of the PNS average density defined by X ≡ (MPNS/1.4M⊙)1/2(RPNS/10 km)−3/2, i.e., fitting is
not a linear function of X . In this way, the evolution of the PNS average density would be determined via the direct observation

TABLE II: Coefficients in the fitting formula given by Eq. (4) for the various PNS models considered in this study.

EOS Model c0 (kHz) c1 (kHz) c2 (kHz)
Shen W40 0.4525 1.4453 −0.1618

T50 0.3960 1.7183 −0.3943

LS180 W40 0.4629 0.9244 4.2095
T50 0.5018 0.1830 6.6968

LS220 W40 0.3181 2.6230 0.3272

6

0 400 800 1200 1600
0

0.5

1.0

1.5

2.0

2.5

3.0

Tpb (ms)
 f f

 (k
H

z)

W40-Shen
W40-LS180
W40-LS220
T50-Shen
T50-LS180

FIG. 5: Evolution of the frequency of the f -mode gravitational waves for various PNS models.

0 400 800 1200 1600

0.5

1.0

1.5

2.0

2.5

Tpb (ms)

 f f
 (k

H
z)

W40-Shen
W40-LS180
W40-LS220

0 400 800 1200 1600

0.5

1.0

1.5

2.0

2.5

Tpb (ms)

 f f
 (k

H
z)

T50-Shen
T50-LS180

FIG. 6: Comparison between ff obtained by eigenvalue problems (marks) and the expectation with the fitting formula given by Eq. (4)
(solid-thick lines). The left and right panels correspond to the cases for the PNS models with W40 and T50, respectively.
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PNS average density, (MPNS/1.4M⊙)1/2(RPNS/10 km)−3/2, almost independently of the progenitor models. This behavior is
understood, because the f -mode gravitational waves are excited as a result of acoustic oscillations, which can be characterized
by the average density. In fact, it is shown that the f -mode frequency can be written as a linear function of the square root
of the average density not only for cold neutron stars [29, 30], but also for the PNS born after the core-collapse supernovae
[21, 38, 40]. Owing to this behavior of the f -mode frequency, it is suggested that the evolution of the PNS average density could
be determined via the direct observation of the f -mode gravitational waves. On the other hand, for the black hole formation
considered in this study, we find the f -mode frequency can be fitted as

ff (kH) = 0.9733− 2.7171X + 13.7809X2, (5)

where X is the square root of the PNS average density defined by X ≡ (MPNS/1.4M⊙)1/2(RPNS/10 km)−3/2, i.e., fitting is
not a linear function of X . In this way, the evolution of the PNS average density would be determined via the direct observation
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III. PROTONEUTRON STAR ASTEROSEISMOLOGY

We perform the linear perturbation analysis of the PNS models described above. Once the PNS models are given, how to
determine the eigenfrequencies of PNS is the same as in Ref. [21]. That is, for simplicity, we assume the relativistic Cowling
approximation, i.e., the metric perturbations are neglected during the fluid oscillations. In this case, the perturbation equations
can be derived by linearizing the energy momentum conservation law. The concrete equation system is given by Eqs. (23) and
(24) in Ref. [21]. By imposing appropriate boundary conditions, it eventually becomes an eigenvalue problem with respect to
the eigenvalue of ω. Then, the eigenfrequency of gravitational wave is determined by ω/(2π). As the boundary conditions, one
has to impose the regularity condition at the stellar center, while the Lagrangian perturbation of pressure should be zero at the
PNS surface.

First, we show the evolution of eigenfrequencies for the PNS model of W40-Shen in Fig. 4, where the right panel is just an
enlarged view of the left panel. The diamonds, squares, and circles correspond to the frequencies of the f -, pi-, and gi-mode
gravitational waves. One can clearly observe the phenomena of the avoided crossing. That is, for example, focusing on the
f -mode frequency, the avoided crossing occurs with p1-mode at Tpb ∼ 200 ms and with g1-mode at Tpb ∼ (300 − 350) ms.
Due to the avoided crossing, one can observe the plateau for a while in the evolution of the f -mode frequency. The evolutions
of eigenfrequencies for the other PNS models are shown in Appendix A.

Next, we focus on the behavior of the f -mode frequency. In Fig. 5, the evolution of f -mode frequency is shown for various
PNS models. It is interesting to commonly observe the plateau for a while around Tpb ∼ (200 − 300) ms. As a general trend
except for the small plateau, we find that the f -mode frequency can be fitted well as

ff (kHz) = c0 + c1

(
Tpb

1000ms

)
+ c2

(
Tpb

1000ms

)2

, (4)

where c0, c1, and c2 are fitting coefficients depending on the PNS models, as shown in Table II. In Fig. 6, the fitted line for each
PNS model is shown with the thick-solid line. By using this fitting formula together with the information about TBH determined
from the neutrino observations, one could estimate the f -mode frequency from the PNS model with the maximum mass (at
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Universality	in	f-mode	GWs	
•  The f-mode frequencies are 
well-expressed as a function 
of stellar average density, 
independently of progenitor 
models. 

•  Through the f-mode GW obs., one can extract the PNS average 
density, which leads to the time evolution of PNS average 
density. 
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FIG. 7: Frequencies of the f -mode gravitational waves from various PNS models are shown as a function of the square root of the PNS average
density for each time step. The solid-thick line denotes the fitting formula given by Eq. (5), using the data for PNSs with the square root of the
average density larger than 0.1.

of the f -mode gravitational waves. That is, using the observed frequency of f -mode gravitational wave, ff (Tpb), the square
root of the PNS average density, X(Tpb), is determined by

X(Tpb) = 9.8582× 10−2 ×
[
1 +

{
1− 7.2673×

(
1− ff (Tpb)

0.9733

)}1/2
]
, (6)

where ff is in the unit of kHz. We stress that the evolution of f -mode frequency for accreting PNSs is different from that for
ordinary non-accreting PNSs. It is possible to explore higher average density for the black hole forming case and the f -mode
frequency evolves beyond the linear relation, which was used in the ordinary PNSs.

Furthermore, as an advantage for considering the black hole formation, we can discuss the PNS model with the maximum
mass allowed by the adopted EOS. As mentioned above, the moment when the PNS would collapse to a black hole can be
determined via the neutrino observation. The PNS models at this moment should correspond to that with the maximum mass
allowed by the adopted EOS. We remark that the maximum mass of the PNS is different from that for the cold neutron star even
with the same nuclear EOS, due to the effects of the entropy and lepton distributions including neutrinos. As shown in Table I
and Fig. 6, TBH and the evolution of f -mode gravitational waves depend on the progenitor models of PNSs and the EOS. Even
so, the observed f -mode gravitational wave can be generally fitted as Eq. (4). Hence, via Eq. (4) with the help of the neutrino
observation, one can estimate the frequency of the f -mode gravitational waves from the last moment of the PNS re-collapse to
a black hole. With the resultant f -mode frequency (or the observed f -mode frequency if the f -mode gravitational wave would
be directly observed), the average density of the PNS with the maximum mass can be estimated via Eq. (6).

Now, we check how one can determine the square root of the average density of the PNS with the maximum mass in the
scheme suggested above by using the specific PNS models considered in this study. For this purpose, we compare the square
root of the average density for PNS with the maximum mass estimated with the fitting formula (4) and the neutrino observation,
Xest, with the corresponding value, Xsim, which is known from the simulation in advance. The result is shown in Table III for
various PNS models, where the relative error determined by (Xsim −Xest)/Xsim is also shown. From this Table, we can find
that the relative error in the square root of the average density for the PNS model with the maximum mass becomes at least
less than 10% independently of the progenitor models. In fact, even though the f -mode frequency for the progenitor model of
T50-Shen deviates relatively from the fitting formula given by Eq. (5) as shown in Fig. 7, one can estimate the square root of the
average density for the PNS model with the maximum mass within less than 10% accuracy even for the model of T50-Shen.

In contrast to the f -mode frequency, one can see the complex behavior in the gi-mode frequency. It comes from the avoided
crossing with the f - and g2-modes for i = 1 and with the gi±1-modes for i > 1. For example, as shown in Fig. 4, the avoided
crossing in the g1-mode frequency for the PNS model with W40-Shen happens at Tpb ∼ (300 − 350) ms with f -mode and at
Tpb ∼ 150 and ∼ 1100 ms with g2-mode. For various progenitor models, we show the evolution of the g1-mode gravitational
waves in the left panel of Fig. 8, from which one can observe that the time evolution of the g1-mode gravitational waves strongly
depends on the progenitor models. In particular, it seems that the time when the avoided crossing happens between the g1- and
g2-mode gravitational waves strongly depends on the progenitor models.

Nevertheless, we find the universal behavior, which is insensitive to the progenitor models, in the ratio of the g1-mode fre-
quency to the f -mode frequency, fg1/ff , as shown in the right panel of Fig. 8. That is, fg1/ff can be characterized well by
the PNS compactness independently of the progenitor models, although the progenitor dependence of fg1/ff remains in the
final phase just before the PNS would collapse to a black hole [65]. Owing to this feature, one can derive the PNS compactness
at each time step via the observation of the f - and g1-mode gravitational waves. On the other hand, from the observation of
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Tpb = TBH), even though the f -mode gravitational wave at Tpb ∼ TBH would not be observed directly due to the fact that the
frequency of f -mode in the final phase is relatively high for observation.

In addition, as in Fig 7, we find that the frequency of the f -mode gravitational waves strongly depends on the square root of the
PNS average density, (MPNS/1.4M⊙)1/2(RPNS/10 km)−3/2, almost independently of the progenitor models. This behavior is
understood, because the f -mode gravitational waves are excited as a result of acoustic oscillations, which can be characterized
by the average density. In fact, it is shown that the f -mode frequency can be written as a linear function of the square root
of the average density not only for cold neutron stars [29, 30], but also for the PNS born after the core-collapse supernovae
[21, 38, 40]. Owing to this behavior of the f -mode frequency, it is suggested that the evolution of the PNS average density could
be determined via the direct observation of the f -mode gravitational waves. On the other hand, for the black hole formation
considered in this study, we find the f -mode frequency can be fitted as

ff (kH) = 0.9733− 2.7171X + 13.7809X2, (5)

where X is the square root of the PNS average density defined by X ≡ (MPNS/1.4M⊙)1/2(RPNS/10 km)−3/2, i.e., fitting is
not a linear function of X . In this way, the evolution of the PNS average density would be determined via the direct observation

TABLE II: Coefficients in the fitting formula given by Eq. (4) for the various PNS models considered in this study.

EOS Model c0 (kHz) c1 (kHz) c2 (kHz)
Shen W40 0.4525 1.4453 −0.1618

T50 0.3960 1.7183 −0.3943

LS180 W40 0.4629 0.9244 4.2095
T50 0.5018 0.1830 6.6968

LS220 W40 0.3181 2.6230 0.3272
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Tpb = TBH), even though the f -mode gravitational wave at Tpb ∼ TBH would not be observed directly due to the fact that the
frequency of f -mode in the final phase is relatively high for observation.

In addition, as in Fig 7, we find that the frequency of the f -mode gravitational waves strongly depends on the square root of the
PNS average density, (MPNS/1.4M⊙)1/2(RPNS/10 km)−3/2, almost independently of the progenitor models. This behavior is
understood, because the f -mode gravitational waves are excited as a result of acoustic oscillations, which can be characterized
by the average density. In fact, it is shown that the f -mode frequency can be written as a linear function of the square root
of the average density not only for cold neutron stars [29, 30], but also for the PNS born after the core-collapse supernovae
[21, 38, 40]. Owing to this behavior of the f -mode frequency, it is suggested that the evolution of the PNS average density could
be determined via the direct observation of the f -mode gravitational waves. On the other hand, for the black hole formation
considered in this study, we find the f -mode frequency can be fitted as

ff (kH) = 0.9733− 2.7171X + 13.7809X2, (5)

where X is the square root of the PNS average density defined by X ≡ (MPNS/1.4M⊙)1/2(RPNS/10 km)−3/2, i.e., fitting is
not a linear function of X . In this way, the evolution of the PNS average density would be determined via the direct observation

TABLE II: Coefficients in the fitting formula given by Eq. (4) for the various PNS models considered in this study.

EOS Model c0 (kHz) c1 (kHz) c2 (kHz)
Shen W40 0.4525 1.4453 −0.1618

T50 0.3960 1.7183 −0.3943
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For	PNS	with	maximum	mass	
•  PNS at the moment when it collapses to BH, corresponds to 
the PNS model with maximum mass. 

•  How to determine the PNS property 
①  With the data of the f-mode GW, one can  
fit the time evolution of the f-mode GW  

②  Owning to the neutrino observation, one can 
know the moment when PNS collapses to BH 

③  The f-mode frequency is expected via ① and ②, 
even if the f-mode freq. at the final phase 
would not be detected. 

④  Via the universal relation of the f-mode,  
one can extract the average density of  
PNS with maximum mass 
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FIG. 7: Frequencies of the f -mode gravitational waves from various PNS models are shown as a function of the square root of the PNS average
density for each time step. The solid-thick line denotes the fitting formula given by Eq. (5), using the data for PNSs with the square root of the
average density larger than 0.1.

of the f -mode gravitational waves. That is, using the observed frequency of f -mode gravitational wave, ff (Tpb), the square
root of the PNS average density, X(Tpb), is determined by

X(Tpb) = 9.8582× 10−2 ×
[
1 +

{
1− 7.2673×

(
1− ff (Tpb)

0.9733

)}1/2
]
, (6)

where ff is in the unit of kHz. We stress that the evolution of f -mode frequency for accreting PNSs is different from that for
ordinary non-accreting PNSs. It is possible to explore higher average density for the black hole forming case and the f -mode
frequency evolves beyond the linear relation, which was used in the ordinary PNSs.

Furthermore, as an advantage for considering the black hole formation, we can discuss the PNS model with the maximum
mass allowed by the adopted EOS. As mentioned above, the moment when the PNS would collapse to a black hole can be
determined via the neutrino observation. The PNS models at this moment should correspond to that with the maximum mass
allowed by the adopted EOS. We remark that the maximum mass of the PNS is different from that for the cold neutron star even
with the same nuclear EOS, due to the effects of the entropy and lepton distributions including neutrinos. As shown in Table I
and Fig. 6, TBH and the evolution of f -mode gravitational waves depend on the progenitor models of PNSs and the EOS. Even
so, the observed f -mode gravitational wave can be generally fitted as Eq. (4). Hence, via Eq. (4) with the help of the neutrino
observation, one can estimate the frequency of the f -mode gravitational waves from the last moment of the PNS re-collapse to
a black hole. With the resultant f -mode frequency (or the observed f -mode frequency if the f -mode gravitational wave would
be directly observed), the average density of the PNS with the maximum mass can be estimated via Eq. (6).

Now, we check how one can determine the square root of the average density of the PNS with the maximum mass in the
scheme suggested above by using the specific PNS models considered in this study. For this purpose, we compare the square
root of the average density for PNS with the maximum mass estimated with the fitting formula (4) and the neutrino observation,
Xest, with the corresponding value, Xsim, which is known from the simulation in advance. The result is shown in Table III for
various PNS models, where the relative error determined by (Xsim −Xest)/Xsim is also shown. From this Table, we can find
that the relative error in the square root of the average density for the PNS model with the maximum mass becomes at least
less than 10% independently of the progenitor models. In fact, even though the f -mode frequency for the progenitor model of
T50-Shen deviates relatively from the fitting formula given by Eq. (5) as shown in Fig. 7, one can estimate the square root of the
average density for the PNS model with the maximum mass within less than 10% accuracy even for the model of T50-Shen.

In contrast to the f -mode frequency, one can see the complex behavior in the gi-mode frequency. It comes from the avoided
crossing with the f - and g2-modes for i = 1 and with the gi±1-modes for i > 1. For example, as shown in Fig. 4, the avoided
crossing in the g1-mode frequency for the PNS model with W40-Shen happens at Tpb ∼ (300 − 350) ms with f -mode and at
Tpb ∼ 150 and ∼ 1100 ms with g2-mode. For various progenitor models, we show the evolution of the g1-mode gravitational
waves in the left panel of Fig. 8, from which one can observe that the time evolution of the g1-mode gravitational waves strongly
depends on the progenitor models. In particular, it seems that the time when the avoided crossing happens between the g1- and
g2-mode gravitational waves strongly depends on the progenitor models.

Nevertheless, we find the universal behavior, which is insensitive to the progenitor models, in the ratio of the g1-mode fre-
quency to the f -mode frequency, fg1/ff , as shown in the right panel of Fig. 8. That is, fg1/ff can be characterized well by
the PNS compactness independently of the progenitor models, although the progenitor dependence of fg1/ff remains in the
final phase just before the PNS would collapse to a black hole [65]. Owing to this feature, one can derive the PNS compactness
at each time step via the observation of the f - and g1-mode gravitational waves. On the other hand, from the observation of
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Tpb = TBH), even though the f -mode gravitational wave at Tpb ∼ TBH would not be observed directly due to the fact that the
frequency of f -mode in the final phase is relatively high for observation.

In addition, as in Fig 7, we find that the frequency of the f -mode gravitational waves strongly depends on the square root of the
PNS average density, (MPNS/1.4M⊙)1/2(RPNS/10 km)−3/2, almost independently of the progenitor models. This behavior is
understood, because the f -mode gravitational waves are excited as a result of acoustic oscillations, which can be characterized
by the average density. In fact, it is shown that the f -mode frequency can be written as a linear function of the square root
of the average density not only for cold neutron stars [29, 30], but also for the PNS born after the core-collapse supernovae
[21, 38, 40]. Owing to this behavior of the f -mode frequency, it is suggested that the evolution of the PNS average density could
be determined via the direct observation of the f -mode gravitational waves. On the other hand, for the black hole formation
considered in this study, we find the f -mode frequency can be fitted as

ff (kH) = 0.9733− 2.7171X + 13.7809X2, (5)

where X is the square root of the PNS average density defined by X ≡ (MPNS/1.4M⊙)1/2(RPNS/10 km)−3/2, i.e., fitting is
not a linear function of X . In this way, the evolution of the PNS average density would be determined via the direct observation

TABLE II: Coefficients in the fitting formula given by Eq. (4) for the various PNS models considered in this study.

EOS Model c0 (kHz) c1 (kHz) c2 (kHz)
Shen W40 0.4525 1.4453 −0.1618

T50 0.3960 1.7183 −0.3943

LS180 W40 0.4629 0.9244 4.2095
T50 0.5018 0.1830 6.6968

LS220 W40 0.3181 2.6230 0.3272

②neutrino ob.


③fmax


fmax


①	

④	



summary	
•  We made a stability analysis on PNS 

–  PNS becomes gravitationally unstable before the apparent 
horizon appears inside the PNS.   

•  we examine the GW freq. from PNSs for failed supernova 
–  f-mode frequency can be expressed well as a function of PNS 
average density independently of the PNS models 

–  Owning to the neutrino observation, one would estimate the 
average density of PNS with maximum mass, even if the 
corresponding f-mode GW could NOT be detected. 

•  We will taken into account the effect of the radial velocity as 
background properties.  
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