Neutron-capture elements in UFDs

Yuta Tarumi with Shigeki Inoue and Naoki Yoshida

Yuta Tarumi with Takuma Suda, Freeke van de Voort, Shigeki Inoue, Naoki Yoshida, and Anna Frebel

Introduction

What are / Why UFDs?

 UFDs are small (< 10⁵ Lsun) satellite galaxies.

- * UFDs are old.
 - Good probe for high-z galaxy.
- * Stochasticity: "0 or 1 r-process".
- Small but important !

Neutron-capture éléments in UEDs

* Sr, Ba: deficit. Eu: Not enough data.

$$[X/Y] = \log_{10} \left[\frac{N_X}{N_Y} \right] + C$$

Normalized to solar

- * 3/16 UFD are enriched with Eu.
- What are the origins of these elements?
 3/14

Method: simulation

- * To investigate the effect of different explosion sites,
 - * On each selected UFD progenitor,
 - * (i) Pick up points on the spheres with various radii as "explosion points".
 - * (ii) "paint" cells around the "explosion points" with r-process elements to model NSM.

4/14

explosion at 100% of galaxy radius

$$[X/Y] = \log_{10} \left[\frac{N_X}{N_Y} \right] + C$$

Normalized to solar

- * Inside explosion is favored for highly enriched UFD (Ret II).
- Outside explosion is favored for Moderately enriched UFD (Tuc III, Gru II).

Part1: r-process (2020MNRAS.494..120T)

$$[X/Y] = \log_{10} \left[\frac{N_X}{N_Y} \right] + C$$
Normalized to solar

Normalized to solar

- * The differences between NSM and rare CCSNe are:
 - Delay time <- Chemical evolution models
 - * Travel distance before explosion <- <u>This work</u>

$$[Eu/H] = \log_{10} \left[\frac{m_{Eu}}{m_{H}} \right] \leftarrow \text{travel distance}$$

$$\leftarrow \text{gas mass, similar between Ret II and Gru II}$$

-> NSMs can make stars with a wide range of [Eu/H].

Ba in UFDs

 $[X/Y] = \log_{10} \left[\frac{N_X}{N_Y} \right] + C$

Normalized to solar

* Stars with Eu detection have high [Ba/Fe]. Abundance is consistent with the "rare, prolific r-process event".

- * What is the origin of Ba in "no r-process" UFDs?
 - Can AGB stars explain the Ba abundance?

Ret II, Tuc III, and Gru II have Eu-detected stars

Original figure: Ji+20

 $[X/Y] = \log_{10} \left[\frac{N_X}{N_Y} \right] + C$ Normalized to solar

- Code: AREPO
- Yield: FRUITY database
- * Star particle masses: 20Msun
- * Up to z=6, two galaxy samples
- * In addition to AGB stars, we test:
 - * Rotating massive stars (RMSs), Ba and Sr
 - * Electron-capture supernovae (ECSNe), Sr

$$[X/Y] = \log_{10} \left[\frac{N_X}{N_Y} \right] + C$$
Normalized to solar

- * [Ba/Fe] is too low.
- The standard model fails to reproduce the Ba abundance.
- * Possible solutions are...
 - * Modify IMF (skipped).
 - * Consider other channels for Ba production.

$[X/Y] = \log_{10} \left| \frac{N_X}{N_V} \right| + C$ Results: rotating massive stars

Normalized to solar

- Yield: Limongi&Chieffi (2018)
- Rotation velocity distribution: Prantzos (2018)
- * The amount of Ba is appropriate.
- Short star formation galaxy show large spread.
- Flat or decreasing [Ba/Fe] as [Fe/H] increase.

Results: rotating massive stars $[X/Y] = \log_{10} \left[\frac{N_X}{N_Y} \right] + C$ Normalized to solar

- * Tests for RMS:
 - * Measurement of nitrogen
 - * [Sr/Ba] ratio
- If RMS are dominant producers of neutroncapture elements, [Sr/Ba] would increase as metallicity.

 $[X/Y] = \log_{10} \left[\frac{N_X}{N_Y} \right] + C$ Normalized to solar

- * Yield: Wanajo (2018), 7.9 $\times 10^{-5}$ M_{\odot} of Sr produced
- * Assumed 2% of corecollapse SNe rate
- One ECSN enriches the system to more than [Sr/H]
 > -4.0

Results: ECSNe

 $[X/Y] = \log_{10} \left[\frac{N_X}{N_Y} \right] + C$ Normalized to solar

- Small UFDs have [Sr/H] < -4, consistent with no ECSN</p>
- * \rightarrow (ECSN rate) < 1/5000 Msun, $\Delta M \lesssim 0.1 M_{\odot}$

Conclusion

$$[X/Y] = \log_{10} \left[\frac{N_X}{N_Y} \right] + C$$
Normalized to solar

- Eu: "NSM at the center" explains Ret II abundances, while "NSM at the outskirt" explains Tuc III and Gru II abundances.
- * Ba: AGB contribution seems to be subdominant. Except for Eu-enhanced UFDs, maybe RMSs are the origins.
- Sr: Same as Ba, but also ECSNe can contribute. From the low values of [Sr/H] of UFDs, we can constrain the mass-range of ECSNe to be $\Delta M \leq 0.1 M_{\odot}$.