

The Connection between GRB - SNe

Woosley +06

Name				SN likeness/			
Burst/SN	z	Peak [mag]	$T_{\rm peak}^{\rm a}$ [day]	designation			
GRB 980425/1998bw	0.0085	$M_V = -19.16 \pm 0.05$	17	Ic-BL			
GRB 030329/2003dh	0.1685	$M_V = -18.8$ to -19.6	10 – 13	Ic-BL			
GRB 031203/2003lw	0.1005	$M_V = -19.0$ to -19.7	18 – 25	Ibc-BL			
XRF 020903	0.25	$M_V = -18.6 \pm 0.5$	~15	Ic-BL			
GRB 011121/2001dk	0.365	$M_V = -18.5$ to -19.6	12 – 14	I (IIn?)			
GRB 050525a	0.606	$M_V pprox -18.8$	12	Ι			
GRB 021211/2002lt	1.00	$M_U = -18.4$ to -19.2	~14	Ic			
GRB 970228	0.695	$M_V \sim -19.2$	~17	Ι			
XRR 041006	0.716	$M_V = -18.8$ to -19.5	16 - 20	Ι			
XRR 040924	0.859	$M_V = -17.6$	~11	?			
GRB 020405	0.695	$M_V \sim -18.7$	~17	Ι			

The central engine powering the GRBs jets (ultra re.) could be different Progenitors

NASA, SWIFT

Nuc 2021

Long GRBs (duration > 2sec)

Short GRBs (duration < 1sec)

Single Star as Progenitors- Collapsar

- Core collapse of rapidly-rotating stars, which are stripped of their outer hydrogen (also helium) envelopes
- Long GRBs associated with CC of massive WR stars.
- Collapse yields SBH or rapidly spinning, highly magnetized NS
- Infalling material form a tours around the CCO.
- ► Accretion in the torus fuel gamma-ray jet. $\geq 0.01 M_{\odot}$ sec⁻¹
- Internal shocks (gamma ray jet) external shocks with residual wind result in GRBs and the afterglows

Woosley & Bloom 2006; Nagataki 2018, Anderson 2019

Single Star as Progenitors- Collapsar

Bursts last for 2 sec, the longest known has 2000 sec.

- Total energy $\geq 10^{51} erg$
- Similar to the X-ray flash (XRF) which they fainter and softer.
- Hosts are late type (dwarf galaxies) and connected with center of star formation in host galaxies.
- They are bright and detected at all redshits
- **GRB 980326**, 011121,030329

SNe Ic-bl show a unique properties

- High ejecta expansion velocities $\sim 15000 30000 km sec^{-1}$.
- energy released $\geq 10^{52} erg sec^{-1}$
- The Ni56 amount $\sim 0.1 0.5 M_{\odot}$
- While all bona-fide long GRBs have been associated with SNe Ic-bl.
- According to the high luminosity, LGRBs can be detected at very high redshit.
- Unsuccessful direct imaging the progenitors of SNeIc-bl.
- Many SNe Ic-bl comes without observed GRBs.

Two phases of accretion rates

Hyper-accreting BH- neutron-rich through weak interactions < tens of gravitational radii → High T and ρ → heavy nuclei (A ≥ 130, Y_e ≪ 0.5).

■ In large radii the midplane temperature ~ $10^8 K \rightarrow X_i$ retain → accretes onto the central BH → high T in small radii → ignite nuclear burning in the midplane.

■ The "viscously-evolving isolated torus" → unexpected behavior of some GRB X-ray afterglows.

Nuc 2021

Macfadyen & Woosley 99; Beloborodov 03; Metzger 08; Kumer +08; Cannizzo et al 11; Siegel +19; YZ +20

$$t_{visc} \ll t_{ff}$$

Collapsar disk as a defferent mechanism

- the effects of nuclear burning on the late-time accretion flows generated by collapsar.
- The accretion flow starting from an equilibrium torus.
- Modified the angular momentum profile.

Nuc 2021

We do not follow the actual collapse and the formation of the disk.

$$e_{\rm tot} = \frac{1}{2} \left[v_{\bar{\rho}}^2 + \frac{l_z^2}{\bar{\rho}^2} \right] - \frac{GM_{\rm BH}}{r} - E_{\rm grav,d} + e_{\rm int},$$

 $t_{visc} > t_{ff}$

Specific angular momentum profiles of the progenitor models

Initial compositions of the collapsar accretion disks

Timescales as a key of the disc formation

$$t_{\rm visc}(r) = \frac{r_{\rm circ}^2(r)}{\nu_{\alpha}} \approx \frac{1}{\alpha} \left(\frac{r_{\rm circ}^3}{GM_{\rm enc}}\right)^{1/2} \left(\frac{H_0}{r_{\rm circ}}\right)^{-2}$$

$$t_{\rm ff}(r) = \left(\frac{r^3}{GM_{\rm enc}}\right)^{1/2}$$

The viscos time intersect the free fall time

Simulation should include both hydrodynamics and thermonuclear reactions

- BH-WD merger –during the merger, the WD is tidally disrupted and sheared into accretion disk. (Papaloizou et al 83, Fryer et al 1998 and Metzger 2012).
- Also Paschalidis et al. (2011) & Bobrick et al. (2017) has been explored the disruption and the disk formation process by with timedependent simulations.
- Thermonuclear process can play an important role also on the dynamics of accretion following the TD of WD. (Metzger 11+12,FM13, Zenati et al 2018).
- NS-WD mergers could be modeled in 2D using accretion disk. (FM13, Bobrick et al 2016 and Zenati et al 2018, FMM19).

Collapsar disks with nuclear burning

Collapsar disks with nuclear burning

Three classes of collapsar accretion disks

• 'Prompt' detonation $\Leftrightarrow \leq t_{visc} \sim 100 t_{orb}$.

• 'delayed' detonation $\Leftrightarrow \gtrsim (1 - few)t_{visc}$.

• 'Non' detonating disk \Leftrightarrow *No detonation*

Accretion rate onto the black hole

Viscosity dependence

Nuc 2021

Universal detonation collapsar disk or not?

Nuc 2021

The Iron group ejecta from all the detonating accretion disk

matter type		E20-m	G15B-m	F15B-m	E20-h	G15B-h	F15B-h
		$[M_{\odot}]$	$[M_{\odot}]$	$[M_{\odot}]$	$[M_{\odot}]$	$[M_{\odot}]$	$[M_{\odot}]$
ejected	^{48}Cr	6.8×10^{-5}	2.34×10^{-5}	1.96×10^{-5}	9.4×10^{-5}	8.2×10^{-5}	6.7×10^{-5}
	52 Fe	8.4×10^{-4}	6.6×10^{-4}	6.2×10^{-4}	4.3×10^{-4}	3.8×10^{-4}	2.7×10^{-4}
	54 Fe	$2.6 imes 10^{-4}$	$3.2 imes 10^{-4}$	2.2×10^{-4}	$7.4 imes10^{-4}$	1.65×10^{-4}	$5.9 imes 10^{-4}$
	56 Ni	5.4×10^{-3}	5.2×10^{-3}	3.2×10^{-3}	6.9×10^{-3}	7.0×10^{-3}	4.2×10^{-3}
outflow	56 Ni	$7.0 imes 10^{-3}$	$5.9 imes 10^{-4}$	6.2×10^{-4}	$4.26 imes 10^{-3}$	2.75×10^{-3}	2.84×10^{-3}
$_{\mathrm{outflow},\infty}$	56 Ni	$1.37 imes 10^{-1}$	3.51×10^{-2}	$3.58 imes 10^{-2}$	1.11×10^{-1}	2.83×10^{-2}	2.91×10^{-2}

"outflow, ∞ " - corrected for future accretion onto the BH

Summary

The generation of 56_{Ni} in disk outflows, which may contribute to powering GRB supernovae.

That's could provide the radioactive heating source necessary to make the spectral signatures of *r-process* elements visible in late-time GRB-SNe spectra.

The "viscously-evolving isolated torus" proposed to explain unexpected behavior of some GRB X-ray afterglows.