The Assembly of the First Massive BHs and the Detections with Upcoming Observations

Kohei Inayoshi

Peking University/ Kavli Institute for Astronomy & Astrophysics

第10回観測的宇宙論ワークショップ

Supermassive black holes (SMBH)

- very massive objects: $M_{BH} \sim 10^6 10^{10} M_{sun}$
- universal existence at the galaxy centers
- very powerful engines of radiation & outflows

BH-galaxy coevolution

History of the universe

High-z monsters

See also Willott+10, Mortlock+11, Onoue+19, Yang+20

Subaru HSC, SHELLQs (Matsuoka et al. 2019)

High-z SMBH population

if not mass measurements

redshift

KI, Visbal & Haiman (2020)

Rapid SMBH assembly

BH-galaxy coevolution from high-z

Overmassive BHs from the BH-gal relation but possibly true for the brighter end (?)

The Assembly of the First Massive Black Holes

- 1. Massive Seed Formation
- 2. Rapid Growth of BHs
- 3. Toward Future Observations

BH seed formation

Rapid SMBH assembly

Formation channels of early BHs

The mass of seed BHs would depend on the environments

Basics of star formation

mass inflow rate in collapsing gas

$$\dot{M} \sim \frac{M_{\rm J}}{t_{\rm ff}} \simeq \frac{c_{\rm s}^3}{G} \propto T^{3/2}$$

if highly turbulent...

$$c_{\rm eff} = (c_{\rm s}^2 + v_{\rm tur}^2)^{1/2} \gg c_{\rm s}$$

in the radiation-dom. era (PBHs) $c_{\rm eff} = c/\sqrt{3}$

Warmer collapsing gas yields higher inflow rates

Seed formation \approx H₂ suppression

Lyman-Werner irradiation

 $H_2 + \gamma_{LW} \rightarrow 2 H$

Dynamical heating

 $c_{\rm eff}^2 = c_{\rm s}^2 + v_{\rm tur}^2$

Bromm & Loeb 2003; Shang +2010; Latif +2013; Johnson +(2013); Regan +2014; Inayoshi +2014; Sugimura + 2014; Visbal +2015; Latif +2016; Chon+2016; Hirano+2018; Inayoshi+2018; Wise +2019; Luo+2019 etc...

Seed formation \approx H₂ suppression

Lyman-Werner irradiation

 $H_2 + \gamma_{LW} \rightarrow 2 H$

Dynamical heating

$$c_{\rm eff}^2 = c_{\rm s}^2 + v_{\rm tur}^2$$

... leaving behind massive seed BHs (10³-10⁶M_{sun})

High-z star formation

data from KI, Omukai & Tasker (2014)

High acc. Rate & Massive star

gravitational collapse

accretion disk

- no/weak fragmentation
- high accretion rate

High acc. Rate & Massive star

Strong LW irradiation & merger heating lead to high accretion rates (>0.1M_{sun}/yr) in QSO hosts

Synergy btw EM & GW observations

Colpi et al. (2021), Astro2020

(Seed) BH mass function

Rapid growth of BHs via accretion

Rapid SMBH assembly

BH accretion in multi-scales

Nuclear disk: ~ 1 mpc

?

Galaxy scale: ~kpc

 $\dot{M} > \dot{M}_{\rm Edd}$

 $\dot{M} < \dot{M}_{\rm Edd}$

Construction of the global structure of the accretion flow including the BH influence radii (1-100pc) is essential !

Bondi accretion

suppose a spherically symmetric system

Cloud collapse conditions $g_{\text{grav}} \gtrsim g_{\text{gas}}$

$$r \lesssim R_{\rm B} \equiv \frac{GM_{\rm BH}}{c_{\rm s}^2} \propto M_{\rm BH}T^{-1}$$
 "Bondi radius"

Bondi accretion limit

Mass inflows within R_B

(gravity > thermal / kinetic)

 $M_{\rm B} \sim 4\pi\rho R_{\rm B}c_{\rm s}$

 $\propto \rho M_{\rm BH}^2 T^{-3/2}$

photo-heating by UV/X-rays reduces the mass supply

BH accretion in typical first galaxies

Feedback regulated case

Ciotti & Ostriker (2001) Milosavljevic+ (2009) Park & Ricotti (2011, 2012)

episodic accretion (radiation heating)

BH accretion in massive first galaxies

Rapidly growing case

KI, Haiman & Ostriker (2016) Takeo, KI et al. (2018,2019,2020) Toyouchi, KI et al. (2021)

hyper-Eddington acc.

 $\langle \dot{M} \rangle >> \dot{M}_{\rm Edd}$

Early BH-galaxy coevolution

Early BH-galaxy coevolution

Rapid BH growth is triggered in a massive halo $(T_{vir} \sim 10^5 \text{ K})$ with a bulge heavier than >100M_{BH}

Early BH-galaxy coevolution

Rapid BH accretion makes them "overmassive" (very unique locations on the diagram)

Future observations of seed BHs coevolving with galaxies

Ongoing/future high-z observations

- construction of LF/MF for low-mass / less luminous BHs
- direct probes of the host galaxy properties (radio IR) and SMBHs / seeds themselves (X-ray, GWs)

JWST & Roman for hunting seed BHs

JWST Imaging Sensitivity NIRCam 5E4 NIRISS = 10 in 10ks 2E4 1E4 MIRI 5E3 2E3 Sensitivity (nJy) S/N 1E3 500 10nJy 200 100 50 20 10 0.7 1.5 2 3 5 10 15 20 25 Wavelength (µm)

Observed wavelength **1.98µm** [(1+z)/16] Rest-frame ~ 10eV (0.124µm)

Light curves of growing seed BHs

Transient accretion bursts can be detected with JWST even at the source redshift z~15 (m_{AB}~ 26 - 29)

Summary

- The existence of high-z SMBHs requires their quick assembly mechanisms (massive seed formation, rapid accretion)
- Rapid accretion onto seed BHs in massive DM halos naturally explains the existence of "overmassive" BHs
- Future observations by JWST and RST will enable us to detect transient bursts (the first cry) of seed BHs

Thank you!