Searching for Axion-like Particles with Cosmic shear and Line Intensity Maps

Shirasaki (2021) PRD, 103, 103014 ; arXiv:2102.00580

白崎正人 (国立天文台・統計数理研究所) 2021年11月17日 第10回観測的宇宙論ワークショップ (オンライン)

What are Axion-like particles (ALPs)?

- ALPs = pseudo-scalar bosons
 - 様々なBeyond-Standard-Model (e.g. string theory) で予言される
 - ALPsの一般的な性質:光子への崩壊 ($a \rightarrow \gamma + \gamma$)
 - 2つのパラメタ: particle mass m_a , 崩壊結合定数 $g_{a\gamma\gamma}$
 - QCD axions では $m_a \propto g_{a\gamma\gamma}$ だが、ALPsでは二つは独立なパラメタ
- ALPs は暗黒物質かもしれない。まだ見つかっていない。 <mark>見つけたい</mark>。

Current constraints of ALPs

arXiv:1901.09966

... and Future

Our Idea Testing the "darkness" of dark matter

- ALPsの崩壊で得られる光子の周波数
- ALPs = 暗黒物質なら、ALPsは大規模構造を形成する
- 大規模構造に沿って特定の周波数の光子が来ているかを見つければ良い
 - 大規模構造のトレーサー: Cosmic shear (弱重カレンズ効果)

$m_a c^2 = 2h\nu \rightarrow \nu = 1.21 \times 10^{14} (m_a/1 \text{ eV}) \text{ Hz}, \lambda = 2460 (m_a/1 \text{ eV})^{-1} \text{ nm}$

• 特定の周波数の光子 : Line intensity mapping (輝線強度マッピング観測)

Cosmic shear (weak lensing) maps

手前の重力源により、背景銀河
 の形が歪む

・ 歪みの度合い

視線方向共動距離 $\int d\chi W_{lens}(\chi) \delta_m(\chi \theta, \chi)$

 複数の観測計画で主要なター ゲットになっている (KiDs, HSC, DES, Roman, Rubin LSST, Euclid, ...)

APS/Alan Stonebraker; galaxy images from STScI/AURA, NASA, ESA, and the Hubble Heritage Team

Line Intensity mapping (LIM)

- Flux limit 以下のすべてのソースの輻射の足しあわせ
- 個別には検出できない暗い天体の研究に使われる
- 観測は特定の周波数ごとに集光
 - いろんな輝線の輻射があると,違う赤方偏移の構造 が重なって見える
- Ha: 656.28 nm, OIII: 500.7 nm → 1000 nm の周波数 での観測では, z=0.5 (Ha) と z=1 (OIII)の構造が重なる

検出できない天体

足しあわせ 未検出天住

Modeling cross correlations $\langle \mathrm{WL}(\overrightarrow{\theta}_1) \mathrm{LIM}(\overrightarrow{\theta}_2) \rangle \to C_{\mathrm{WL}-\mathrm{LIM}}(\mathscr{C})$

- 。周波数 ν におけるIntensityの重ね合わせ $I_{\mu}(\theta) =$
 - $\epsilon(\vec{x}, \nu)$: Volume emissivity (放射エネルギー/単位時間/単位エネルギー幅/単位体積)

。ALPs 崩壊率 :
$$\Gamma=rac{g_{a\gamma\gamma}^2m_a^3}{64\pi}$$
 , rest frameでの光子

- 観測されるintensity mapの周波数幅 $\Delta
 u$ >> 輝線幅, ALPs = 暗黒物質とすると
 - $\epsilon_{\text{ALP}}(\vec{x}, \nu) = \Gamma \rho_{\text{DM}}(\vec{x}) \,\delta_{\text{D}}(\nu \nu_0)$
- 典型的な周波数幅 $\Delta \nu / \nu \sim O(10)$, ビリアル速度分散による輝線幅 $\delta \nu / \nu \simeq \sigma_{
 m vir} / c \sim O(10^{-3})$ at $10^{13} M_{\odot}$

$$\frac{1}{4\pi} \int \frac{d\chi}{1+z(\chi)} \epsilon\left(\chi \overrightarrow{\theta}, \chi, (1+z)\nu\right)$$

^Zの周波数 $\nu_0 = m_a/(2h)$

 $\Gamma = 7.556 \times 10^{-26} \operatorname{sec}^{-1} (g_{a\gamma\gamma}/10^{-10} \,\mathrm{GeV}^{-1})^2 (m_a/1 \,\mathrm{eV})^3$ $\nu_0 = 1.21 \times 10^{14} \,\mathrm{Hz} \,(m_a/1 \,\mathrm{eV})$

Modeling cross correlations

• 重力レンズ観測量
$$\kappa(\vec{\theta}) = \int d\chi W_{\text{lens}}(\chi) \delta_m(\chi\vec{\theta},\chi)$$

。周波数 ν におけるALPs decayからくる寄与 $I_{\nu,AL}$

$$W_{\rm ALP}(\chi,\nu) = \frac{\Gamma}{4\pi} \frac{\Omega_{\rm DM} \rho_{\rm crit,0}}{\nu_0 H(z)} \,\delta_D(\chi-\chi_0) \, {\rm wh}$$

• Limber近似により cross power spectrum

$$\delta_{\rm DM} \simeq f_{\rm DM} \delta_m \qquad \text{Dark matter fractio}$$

$$C_{\rm ALP-\kappa}(\ell) = \int d\chi \; \frac{W_{\rm ALP}(\chi)W_{\rm lens}(\chi)}{\chi^2} P_{\rm DM-m}\left(\frac{\ell}{\chi}, z(\chi)\right) \simeq \frac{W_{\rm ALP}(\chi_0)W_{\rm lens}(\chi_0)}{\chi_0^2} f_{\rm DM} P_{\rm m}\left(\frac{\ell}{\chi_0}, z_0\right)$$

DMとtotal matterの3D cross power spectrum

$$\vec{\theta},\chi)$$

$$P_{P}(\theta) = \int d\chi W_{ALP}(\chi,\nu) \left(1 + \delta_{DM}(\chi \overrightarrow{\theta},\chi)\right)$$

here χ_0 = comoving distance to $z_0 = \nu_0/\nu - 1$

total matterの3D cross power spectrum

Future datasets Vera Rubin LSST / SPHEREx

- LSST
 - 地上望遠鏡による銀河撮像観測
 - 18000 平方度をカバー, 銀河密度 *n*_{source} = 26 arcmin⁻², 銀河楕円率分散 0.26

•
$$p(z) \propto z^{\alpha} \exp\left[-\left(\frac{z}{z_m}\right)^{\beta}\right]$$
, where $\alpha = 1.27, \beta = 1$

- SPHEREX
 - 宇宙望遠鏡による赤外線領域の狭バンド観測
 - $\lambda = 750 4100$ nm, $\Delta \nu / \nu = (41.5)^{-1}$, 角度分解能 (ピクセルサイズ) = 6.2"
 - 全天モードを仮定:limiting magnitude = 18.5 AB magnitude (5-sigma level)

 $1.02, z_m = 0.50$

arXiv:1412.4872

Relevant redshift ranges

- SPHERExでの主要な輝線: Ha: 656.28 nm, OIII: 500.7 nm
- 観測波長の範囲に入りそうなALPs $0.5 < m_a [eV] < 3.5$
- LSSTでの重力レンズ観測では、z=0.3-0.6くらいの大規模構造を見る
- 観測波長 2000 nmでは, Ha (OIII)はz=2 (z=3)の 構造を見る
- ・ 波長 2000 nm とレンズの相関 → 1250 1538
 nm の未知の輝線がある可能性

3.5

Power of cross correlations

LIMの自己相関では天体起源の信号が卓越 / LIM - LSS の相互相関は ALPsのサーチに最適

Expected signal-to-noise ratio (S/N)

•
$$\nu_{\min} < \nu < \nu_{\max}$$
 での S/N

$$(\mathbf{S/N})^2 = \sum_{\nu,\nu'} C_{\mathrm{ALP}-\kappa}(\ell_i | \nu) \operatorname{cov}^{-1} C_{\mathrm{ALP}-\kappa}(\ell_j | \nu')$$

•
$$C_{\text{ALP}-\kappa} \propto \Gamma \propto g_{a\gamma\gamma}^2$$
より

$$(S/N) = \left[\frac{\Gamma}{\Gamma_{upp}(\ell_{max})}\right] = \left[\frac{g_{a\gamma\gamma}}{g_{a\gamma\gamma,upp}(\ell_{max})}\right]^{2}$$

- 1 eV ALPs なら, $g_{a\gamma\gamma} \sim O(10^{-11}) \,\text{GeV}^{-1}$ まで見えそう
- ALPs with 1 eV and $g_{a\gamma\gamma} \sim O(10^{-11})\,{\rm GeV^{-1}}$ can explain the DM abundance and inflation (Daido+2018)

1-sigma Fisher circles

 $LSST \times SPHEREX$

0.5153

 $m_a \,[\mathrm{eV}]$

Linear intrinsic alignmentの振幅

 $18000 \deg^2, \lambda_{obs} = [750, 4100] \,\mathrm{nm}$

$$\ell_{\rm max} = 1000$$

 $\ell_{\rm max} = 2000$

 $\dots \quad \ell_{\max} = 500$

$$C_{\text{obs}} = C_{\text{ALP-lens}} + C_{\text{ALP-IA}} + C_{\text{astro-lens}} + C_{\text{astro-lens}}$$

LSST x SPHEREx で到達可能な制限 $m_a = 1 \pm 0.2 \,\mathrm{eV}$ $g_{a\gamma\gamma} = (1 \pm 0.5) \times 10^{-11} \,\text{GeV}^{-1}$

Can we apply this to Subaru HSC?

- NB921のデータは以下の質量に感度がある
 - $m_a \simeq 2.6 3 \,\mathrm{eV}$
- ただし、Ha輝線が対応するredshift ~ 0.4
 → HSC cosmic shear x Haのほうが受かりそう?
 - 暗いHa天体のhost halo massなど?
- narrow bandと撮像を両方やっているHSCの強み
- データはあるけど、時間がない (共同研究者募集
 中)

Summary and future prospect

- Axionlike particles (ALPs)は標準模型を超える物理で広く存在が予言
- eVスケールのALPsの探索手法として,銀河の弱重力レンズ効果と輝線強度マッピングの 相互相関を提案
- LSST x SPHEREx で以下の予言
 - Null detectionであれば, $g_{a\gamma\gamma} < 10^{-11} \,\text{GeV}^{-1}$ for $0.5 < m_a \,[\text{eV}] < 3.5$
 - $m_a = 1 \text{ eV}, g_{avv} = 10^{-11} \text{ GeV}^{-1}$ のALPsがいれば、 $\Delta m_a = 0.2 \text{ eV}$ で制限可能
- HSC wide layer x deep layerで、この手法のデモンストレーションができそう
- cosmic shearにこだわる理由は特にない (利点はgalaxy biasがないくらい)
 - Galaxies at lower redshifts (e.g. 2MASS, SDSS)でもできる / 赤外領域の銀河中心か らの放射でもできる (e.g. AKARI?)

Extra slides

Relevant astrophysical lines

- Ha 輝線 (656.28 nm)が主, その他には OIII (500.7 nm), Hβ (486.1 nm)など
- Kennicutt-Schimidt則 (Schmidt 1959, Kennicutt 1998)より
 - $L_{H\alpha} = 1.26 \times 10^{41} \,\mathrm{erg/s} \,(\mathrm{SFR}/1 \,M_{\odot} \,\mathrm{yr}^{-1})$
- Halo modelから, Ha 輝線 光度密度

•
$$\rho_{H\alpha}(\vec{x}) = \sum_{i} L_{H\alpha}(M_i, z_i) \delta_D(\vec{x} - \vec{x}_i) \simeq \bar{\rho}_{H\alpha}(z) N^{-1}(z) \sum_{i} SI_i$$

- 規格化定数 N(z) は $\langle \rho_{H\alpha} \rangle = \bar{\rho}_{H\alpha}(z)$ から決まる
- ・平均光度 $\bar{\rho}_{H\alpha} = \int dL_{H\alpha} \frac{dn}{dL_{H\alpha}} L_{H\alpha}$ から決める (Silva+2017, arXiv:1711.09902)
- SFRのmass, redshift依存性は, semi-analytic galaxy modelから引用 (Guo+2013; arXiv:1206.0052)
- Fisher解析では, mean intensityの振幅はnuisance parameterとして扱う

 $\operatorname{FR}(M_i, z_i) \, \delta_D(\overrightarrow{x} - \overrightarrow{x}_i)$

Impact of intrinsic alignments (IA)

- 銀河形状は潮汐力の影響で大規模構造に沿う
- 線形IAモデルを仮定 (Hirata & Seljak 2004)
 - shape $\propto (\nabla_x^2 \nabla_y^2, 2\nabla_x\nabla_y) \nabla^{-2}\delta_m$
- 3000 nmのintensity mapを考えると
 - z=0.3-0.6にいるDM → cosmic shear x ALPs
 - z=3.5にいるLSST銀河 → IA x Ha
- IAの寄与は,負の相関をうむことに注意
- IAの比例係数はよくわからない (LSSTでの銀河の選び方による)

ALP miracle? Daido+(2018), arXiv:1710.11107

Viable model of ALPs for dark matter

Constraints of lifetime of decaying DM

